
Cryptanalysis of a matrix-based MOR system

Chris Monico

Department of Mathematics and Statistics
Texas Tech University

e-mail: c.monico@ttu.edu

Draft of October 10, 2014

Abstract

We cryptanalyze a recently proposed matrix-based MOR cryptosystem. The secu-

rity of the system depends on the difficulty of solving the following discrete logarithm

problem: given an inner automorphism φ of SL(d,Fq) and φa (each given in terms of

their images on generators of SL(d,Fq)), find a. We show that this problem can be

reduced to a small number of similar problems in quotients of polynomial rings and

solved in subexponential-time.

1 Introduction

One of the principal concerns of public key cryptography is developing mechanisms for two
parties, who do not already share some common secret information or key, to communicate
securely in the presence of eavesdroppers. The first publicly known solution to this problem
was proposed by W. Diffie and M. Hellman in [1], and proceeds as follows:

1. The two parties Alice and Bob agree (openly) on a large finite field Fq and a generator
γ of the multiplicative group F∗q.

2. Alice (privately) chooses a large integer a, computes α = γa, and sends α to Bob.

3. Bob (privately) chooses a large integer b, computes β = γb, and sends β to Alice.

4. Alice finds γab using the fact that γab = βa. Bob finds γab using the fact that γab = αb.

At this point, Alice and Bob each know the quantity κ = γab, and may communicate securely
using some cipher with key κ. An eavesdropper would know Fq, γ, α, and β, but has no
obvious means to determine κ other than solving a Discrete Logarithm Problem (DLP):
determine a from γ and α (or determine b from γ and β). For an appropriately chosen finite
field Fq, this problem can be computationally infeasible with currently available hardware
and known algorithms.

Since 1976, numerous other schemes have been developed for solving this problem. For
more background on cryptology in general, we recommend consulting any of the sources



[3, 2, 7]. The ElGamal system is a slight extension of the Diffie-Hellman scheme outlined
above which allows direct transmission of a specifically chosen secret message; if in Step 3
above Bob wishes to send the secret message m ∈ F∗q to Alice, he chooses a random integer
k, computes y = γk, z = αk, and sends the pair (y, zm) to Alice. Alice can then recover the
message by first finding z−1 = (αk)−1 = (γak)−1 = (ya)−1 and multiplying this by zm.

In this paper, we consider the system proposed in [4], which is similar to the ElGamal
system, but with the group F∗q replaced by the automorphism group of SL(d,Fq). This system
can be seen as an implementation of the MOR cryptosystem [6], and may be summarized as
follows.

Fix a positive integer d and finite field Fq. For each i, j ∈ {1, 2, . . . , d} let eij denote
the d × d matrix over Fq having a one in the (i, j)-th position and zeros elsewhere, and set
Eij = I + eij.

1. Alice chooses A ∈ GL(d,Fq) and a positive integer a. She uses A to determine an
automorphism φ of SL(d,Fq) by φ(X) = A−1XA. She computes {φ(Eij)}i 6=j, and
{φ1(Eij)}i 6=j, where φ1 = φa.

2. Alice publishes her public key: d,Fq, {φ(Eij)}i 6=j, {φ1(Eij)}i 6=j.

3. Bob wishes to send Alice the message P ∈ SL(d,Fq). He chooses a random positive
integer b and computes and sends to Alice {φ2(Eij)}i 6=j and φ3(P ), where φ2 = φb and
φ3 = φb1.

4. Alice computes φ−13 = φ−a2 and recovers P = φ−13 (φ3(P )).

Note, in particular, that Alice’s matrix A is not part of the public key. Instead, the
automorphism φ of SL(d,Fq) is given implicitly by its action on a set of generators. This
introduces some additional computational requirements on using the system, since Alice and
Bob must be able to efficiently compute the action of large powers of φ, φ1, and φ2 on the
generators using such a description. This can done in a straightforward way using the Eij
matrices, since e.g.,

φ(I + λeij) = I + λA−1eijA = I + λ(−I + φ(I + eij)) = (1− λ)I + λφ(Eij),

and writing an arbitrary matrix in SL(d,Fq) as a product of matrices of the form I + λeij is
easily done using Gaussian elimination.

In Section 2, we show that the keysize of this system can be substantially reduced with
no loss of security. In Sections 3 and 4, we show how one can attack this system by solving
some DLPs in quotients of polynomial rings. In Section 4 we provide a small example of the
method and in Section 5 we show that the attack requires a number of operations which is
a subexponential function of the keysize. We also note that with its suggested parameters
this system requires a (reduced) keysize of at least 115,520 bits to achieve the same level of
security as a 6080-bit traditional ElGamal key.
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2 Recovering a scalar multiple of A

Suppose φ is an automorphism of SL(d,Fq) of the form φ(X) = U−1XU for some unknown
U ∈ GL(d,Fq) and we have ‘black-box access’ to φ. It was already observed in [4] that

one can efficiently find a matrix Ũ such that Ũ = αU for some unknown scalar α. For
completeness, we describe the procedure here.

For all i 6= j we have that

φ(I + eij)− I = U−1eijU = (uj1vi, uj2vi, . . . , ujdvi),

where vi is the i-th column of U−1. Since vi 6= 0 for all 1 ≤ i ≤ d, it follows that uj1 = 0 iff
the first column of φ(I + eij)− I is zero. Since U is invertible, there is a k for which uk1 6= 0,
and we can find such a k by computing φ(I + e11)− I, φ(I + e12)− I, . . . until one is found
for which the first column is not 0. Note that uk1 is itself unknown - all that is known is
that it is nonzero.

For each 1 ≤ i ≤ n, we find uk1vi as the first column of the matrix φ(I + eik) − I, and
construct the matrix

W = (uk1v1, . . . , uk1vd).

It follows that W = uk1U
−1, and so W−1 = u−1k1 U , a scalar multiple of U .

This process requires at most 2d calls to the black-box function φ and the inversion of a
single d× d matrix, and is therefore polynomial-time, assuming the black-box function φ is
such. In particular, the key for this system is unnecessarily large. Instead of issuing as part
of the public key {φ(Eij)}i 6=j and {φ1(Eij)}i 6=j, which have combined size 2d3(d − 1) log2 q,
Alice could simply give out a random scalar multiple of A and a random scalar multiple of
Aa, substantially reducing this portion of the key size to 2d2 log2 q with no loss of security.
With the value d = 19 proposed in [4], this reduces the keysize by a factor of 1/342.

3 Reduction to DL-like problem in GL(d,Fq)
Suppose that φ, φ1, φ2, φ3 are automorphisms of SL(d,Fq) of the form

φ(X) = A−1XA,

φ1(X) = A−aXAa,

φ2(X) = A−bXAb,

φ3(X) = A−abXAab,

for some unknown A ∈ GL(d,Fq), a, b ∈ Z, and that we have black-box access to φ, φ1, φ2.
If T,D ∈ GL(d,Fq) and k ∈ Z satisfy φ(X) = T−1XT , φ1(X) = T−kXT k, and φ2(X) =

D−1XD, then for all X ∈ SL(d,Fq) we have that

D−kXDk = φk2(X) = A−kbXAkb = φkb(X)

= T−kbXT kb

= φb1(X)

= A−abXAab = φ3(X),
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so that X = Dkφ3(X)D−k. Therefore, given such T,D and k, we can easily invert φ3.
Using the technique of Section 2, we can efficiently find matrices S, T,D ∈ GL(d,Fq)

so that φ(X) = T−1XT , φ1(X) = S−1XS, and φ2(X) = D−1XD for all X ∈ SL(d,Fq).
Furthermore, if α ∈ F∗q is a scalar and k ∈ Z and S = αT k, then for all X ∈ SL(d,Fq) we
have that

T−kXT k = αS−1X(α−1S) = S−1XS = φ1(X),

as needed. So the cryptanalyst’s problem is reduced to the following: given S, T ∈ GL(d,Fq),
find an integer k so that S = αT k for some scalar α ∈ Fq. In the present context, this problem
necessarily has a solution since T = α1A and S = α2A

a for some a ∈ Z and α1, α2 ∈ F∗q.

4 Translating to a polynomial ring problem

Throughout, suppose we are given two matrices S, T such that S = αT k for some unknown
α ∈ Fq and unknown k ∈ Z. Let µ(t) ∈ Fq[t] denote the minimal polynomial of T and set
n = deg µ. Then αtk = γ(t) + w(t)µ(t) for some γ, w ∈ Fq[t] with deg γ < n ≤ d, and
it follows that αT k = γ(T ), and so S = γ(T ). On the other hand, since T 0, T 1, . . . , T n−1

are linearly independent over Fq, S is uniquely represented as a linear combination of these
matrices. Therefore, if we solve a system of d2 linear equations in n unknowns to write

S = c0I + c1T + · · ·+ cn−1T
n−1,

we have that γ(t) = c0 + c1t + · · · + cn−1t
n−1 and αtk ≡ γ(t) (mod µ(t)) . Furthermore,

if α ∈ Fq and k ∈ Z can be found which satisfy αtk ≡ γ(t) (mod µ(t)) , it follows that
αT k = γ(T ) = S. The problem at hand is therefore reduced to finding such α and k.
Suppose that µ(t) = π1(t)

e
1 · · · πm(t)em with each πj ∈ Fq[t] irreducible and ej ≥ 1. We will

first solve the problem modulo each ideal 〈πj(t)ej〉 and then lift these to a global solution
modulo 〈µ(t)〉. The technique described for solving this problem is essentially a generalization
of the Pohlig-Hellman algorithm. It also resembles the technique of Menezes and Wu [5],
except that explicit Jordan decomposition is avoided. In Sections 4.1 and 4.2 we show how to
perform certain calculations which will be needed later. In Section 4.3 we solve the problem
modulo each πj(t)

ej and in Section 4.4 we lift the local solutions to a solution modulo µ(t).

4.1 Element orders

Suppose that π(t) ∈ Fq[t] is irreducible, π(t) 6= t, and e ≥ 1 is the largest integer for which
πe|µ, Let N denote the order of t in the multiplicative group (Fq[t]/〈πe〉)∗. Let N1 denote
the order of t in (Fq[t]/〈π〉)∗. In the worst case, N1 can be determined in the standard way,
by factoring the order qdeg π − 1 of this group. This factorization can be done using the
number field sieve in time which is a subexponential function of log(qdeg π), and therefore
a subexponential function of the keysize 2d2 log2 q since deg π ≤ d. Specifically, given the
factorization qdeg π − 1 = pf11 · · · pfrr , the order of t in (Fq[t]/〈π〉)∗ can be determined by the
following algorithm.

1. Set N1 ← qdeg π − 1, and j ← 1.
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p freq. of p 6 | ord(t) rel. freq.

2 9766 1/1.02396
3 4733 1/2.11282
5 2001 1/4.99750
7 1376 1/7.26744

13 776 1/12.8866
31 342 1/29.2398

113 104 1/96.1539
1847 9 1/1111.11
1871 8 1/1250.00

17683 1 1/10000.0

Table 1: Results of an experiment with q = 786945682360241, δ = 6. 10000 irreducible
polynomials in Fq of degree δ were chosen and the order of t modulo each of them was
computed. The table summarizes how often each prime p did not divide the order of t.
The remaining possible primes 218963, 227579167, 827073991, 2351403673, 386895615713,
3290126882059, 22878386160649 divided the order of t in every case.

2. Find the largest nonnegative integer f ∈ [0, fj] for which tN1/p
f
j ≡ 1 (mod π(t)) then

set N1 ← N1/p
f
j . Set j ← j + 1.

3. If j ≤ r, goto Step 2. Otherwise, output N1 as the order of t.

However, a complete factorization of qdeg π− 1 seems not to be generally necessary. Each
element β of the group (Fq[t]/〈π〉)∗ has order (qdeg π−1)/aβ for some divisor aβ of (qdeg π−1).
Since this group is cyclic, if p is a prime divisor of qdeg π − 1, then for randomly chosen
β, it follows that p|aβ with probability 1/p. Therefore, to find the order of a randomly
chosen element, with high probability it would suffice to find the small prime divisors of
qdeg π−1, say those with at most 20 digits, and apply the algorithm above with the incomplete
factorization.

For the problem at hand, we need to determine the order of the specific element t, which
is certainly not a randomly chosen element. Although we are not offering any theoretical
basis for this, experimental evidence suggests that the order of t still behaves in roughly the
same way as a randomly chosen element. In each performed experiment, we chose a prime
q, a degree δ, and 10000 randomly chosen irreducible polynomials in Fq[t] of degree δ. For
each irreducible polynomial π(t), we computed the order of t modulo π(t) and examined the
frequency of occurrences of each prime divisor of qδ − 1 as a cofactor of the order of t (that
is, how often each such prime did not divide the order of t). The results of one typical such
experiment are summarized in Table 1.

This suggests that we need not completely factor qdeg π − 1 to find the order of t modulo
π; it should most often suffice to find the small prime factors. In the event that we do this
and make an error, it either will not affect the rest of our attack, or the failure will present
itself as an inconsistent system of congruences later.
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Once the order of t modulo π is known, it is a straightforward matter to determine the
order of t modulo πe. Suppose that N1 is the order of t modulo π, so that tN1 = 1 +h(t)π(t)
for some h(t) ∈ Fq[t]. Letting p = char(Fq), we have that tpN1 = 1 + h(t)pπ(t)p, and by

induction, tp
kN1 = 1 + h(t)p

k
π(t)p

k
. It follows that the order of t modulo π(t)e is one of

N1, pN1, p
2N1, . . . , p

fN1, where f is the least positive integer for which pf ≥ e.

4.2 Discrete logarithms in Fq[t]/〈πe〉
Suppose we have that tk ≡ z(t) (mod π(t)e) for some unknown k ∈ Z. Since π(t) is irre-
ducible, Fq[t]/〈π(t)〉 is a finite field and we can solve the DLP

tk1 ≡ z(t) (mod π(t)) ,

for k1 using any of the standard DLP algorithms for this finite field.
We show now how to easily lift this to a solution modulo π(t)e, one degree at a time.

Suppose e′ ≥ 1 and we have found a positive integer k′ for which tk
′ ≡ z(t) (mod π(t)e

′
) .

Then tk
′

= z(t) + r(t)π(t)e
′

for some r(t) with deg r < deg π. Note that we can easily
determine r(t) modulo π(t) via

r(t) mod π(t) =
tk

′ − z(t) mod π(t)e
′+1

π(t)e′
.

We wish to find an integer k′′ for which tk
′′ ≡ z(t) (mod π(t)e

′+1) . Let N denote the
order of t modulo π(t)e

′
so that

tN = 1 + g(t)π(t)e
′
, for some g(t) ∈ Fq[t].

Note that we can easily determine g(t) modulo π(t) via

g(t) mod π(t) =
tN − 1 mod π(t)e

′+1

π(t)e′
.

Since k′′ ≡ k (mod N) , we have that k′′ = k′ + sN for some s ∈ Z. Then

z(t) ≡ tk
′′ ≡ tk

′
tsN ≡

(
z(t) + r(t)π(t)e

′)(
1 + g(t)π(t)e

′)s
(mod π(t)e

′+1)

≡
(
z(t) + r(t)π(t)e

′)(
1 + sg(t)π(t)e

′)
(mod π(t)e

′+1)

≡ z(t) + π(t)e
′(
sg(t)z(t) + r(t)

)
(mod π(t)e

′+1) ,

from which we have that sg(t)z(t) + r(t) ≡ 0 (mod π(t)) . Since each of g(t), z(t), r(t) are
known modulo π(t), it is a trivial matter to find such an s.

Therefore, discrete logarithms in Fq[t]/〈π(t)e〉 are no harder than discrete logarithms in
Fq[t]/〈π(t)〉, and can be computed using an appropriate Lqdeg π [1/3, c] algorithm.
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4.3 Solving locally

We first require a straightforward lemma.

Lemma 4.1 Suppose π(t) ∈ Fq[t] is irreducible and e is a positive integer. Then x ∈ Fq[t]
satisfies xq−1 ≡ 1 (mod π(t)e) if and only if x = α + h(t)π(t)e for some α ∈ F∗q and
h(t) ∈ Fq[t].

Proof: The “if” is clear, so we prove only the converse. Since Fq[t]/π(t) is a field extension
of Fq, the result clearly holds when e = 1.

Proceeding by induction on e, suppose the result holds for e = e′, and x ∈ Fq[t] satisfies
xq−1 ≡ 1 (mod π(t)e

′+1) . Then xq−1 ≡ 1 (mod π(t)e
′
) , so by the induction hypothesis,

x = α + h(t)π(t)e
′
, for some α ∈ Fq and h(t) ∈ Fq[t].

It follows that

1 ≡ xq−1 ≡
(
α + h(t)π(t)e

′
)q−1

(mod π(t)e
′+1)

≡
q−1∑
j=0

(
q − 1

j

)
αq−1−jh(t)jπ(t)e

′j (mod π(t)e
′+1)

≡ αq−1 + (q − 1)αq−2h(t)π(t)e
′

(mod π(t)e
′+1)

≡ 1− αq−2h(t)π(t)e
′

(mod π(t)e
′+1) .

Therefore αq−2h(t)π(t)e
′ ≡ 0 (mod π(t)e

′+1) , so that h(t) = π(t)h1(t) for some h1 and we
have x = α + h1(t)π(t)e

′+1.

Suppose that π(t) is irreducible over Fq, e is a positive integer and γ(t) ≡ αtk (mod π(t)e)
for some unknown α ∈ Fq and unknown k ∈ Z.

As described in Section 4.2, find an integer k0 for which

γ(t)q−1 ≡
(
tq−1

)k0 (mod π(t)e) .

Set α0 = t−k0γ(t) and note that αq−10 ≡ 1 (mod π(t)e) , so α0 ∈ Fq by Lemma 4.1. Then
γ(t) ≡ α0t

k0 (mod π(t)e) .

4.4 Solving globally

Suppose that π(t) is irreducible over Fq and π(t)e|µ(t). Let ` denote the least positive integer
for which t` is constant modulo π(t)e. Let N denote the order of t in the ring Fq[t]/〈πe〉. Let
u, v ∈ Z so that u`+vN = gcd(`,N) = g. Since tg = tu`+vN ≡ (t`)u is constant modulo π(t)e,
it follows that g ≥ `, so that g = `. Therefore `|N . It follows immediately that ` = N/w
for some w dividing q − 1. In [4], it is proposed to take q around 2160, and for such q it is a
trivial matter to factor q − 1 completely. Therefore, ` can be easily determined from N in
an obvious way.
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Suppose that µ(t) = π1(t)
e1 · · · πm(t)em , with the πj irreducible and ej ≥ 1. For each

1 ≤ j ≤ r, let `j be the least positive integer such that t`j is constant modulo π(t)ej . Then
solutions aj to each of

γ(t) ≡ αjt
aj (mod πj(t)

ej) , for some αj ∈ Fq,

are unique modulo `j, and can be found using the technique described in Section 4.3.
We then want to find a solution to the system of congruences

a ≡ a1 (mod `1)
...

a ≡ am (mod `m) .

Note that a solution necessarily exists, so this system is consistent; in practice, the system
obtained may be inconsistent if we obtained incorrect values for some `j resulting from
having used an incomplete factorization in computing the order of t modulo some πj(t)

e
j .

This situation is a low-probability event but is easily rectified by computing the complete
factorization of each qdeg πj − 1 and recomputing the orders rigorously.

5 A small example

For the example in this section, we take Fq = F173 and d = 3. Suppose we have used the
technique described in Section 2 to obtain matrices

T =

 27 19 23
106 8 3
43 149 111

 , S =

 124 85 143
35 112 74
51 144 2

 ,

for which φ(X) = T−1XT and φ1(X) = S−1XS for all X ∈ SL(3,Fq). The minimal
polynomial µ of T is µ(t) = t3 + 27t2 + 132t+ 31, which is irreducible. We solve a system of
9 equations in 3 unknowns to write S as a linear combination of T 0, T 1, T 2:

S = 160I + 161T + 113T 2.

The polynomial γ(t) = 160+161t+113t2 therefore satisfies αtk ≡ γ(t) (mod µ(t)) , for some
unknown k ∈ Z and α ∈ Fq.

We compute

x := tq−1 mod π(t) = 18 + 144t+ 46t2,

y := γ(t)q−1 mod π(t) = 42 + 104t+ 170t2,

and solve the discrete log problem y = xa0 in Fq[t]/〈µ(t)〉. We obtain the solution a0 = 19982,
and set α0 :=

(
t−a0γ(t) mod π(t)

)
= 89. It follows that

γ(t) ≡ 89t19982 (mod π(t)) ,

and so S = 89T 19982. Thus, φ1(X) = T−19982XT 19982, as desired.
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6 Runtime

The techniques of Sections 2 and 3 to reduce the problem to solving S = αT k are clearly
polynomial-time in the keysize. The minimal polynomial µ of T is computed and factored
in probabilistic polynomial-time as µ(t) = π1(t)

e1 · πm(t)em . Using the number field sieve to
factor each integer qdeg πj − 1, we determine `1, `2, . . . , `m with

∑
j Lqdeg πj [1/3, c1] operations

for some c1 > 0. Using the techniques in Sections 4.2 and 4.3, we find a1, . . . , am such that

γ(t) ≡ αjt
aj (mod πj(t)

ej) , for some αj ∈ Fq,

by computing a discrete logarithm in each field Fq[t]/〈πj(t)〉. This can be done with a total
of
∑

j Lqdeg πj [1/3, c2] operations for some c2 > 0. All other calculations require polynomial-
time, so the total runtime for this attack is∑

j

Lqdeg πj [1/3, c],

where c = max{c1, c2}. Since
∑

j deg πj ≤ d, this runtime is maximized when µ(t) =
π(t) is irreducible of degree d, and the worst-case runtime is Lqd [1/3, c]. Since this is a
subexponential function of log(qd), it is also a subexponential function of the (reduced)
keysize 2d log2(q

d).

7 Conclusions

The system proposed in [4] with its suggested parameters of q ≈ 2160, d = 19 offers no
more security than the traditional ElGamal system in a finite field whose size is around
2160·19 = 23040. While the keysize for such an ElGamal system would be about 6080 bits,
the system proposed in [4] requires a keysize of about 2 · 193 · 18 · 160 = 39, 507, 840 bits.
As mentioned in Section 2, this keysize can be reduced to 2 · 192 · 160 = 115, 520 bits with
no loss of security. However, there seems to be no particular advantage over traditional
ElGamal to offset this larger keysize; the MOR system here requires a keysize 19 times
larger than ElGamal to offer (at most) the same level of security and is computationally
more expensive to implement. On the other hand, if a 115,520-bit key were acceptable in a
particular application, then an ElGamal system with this keysize would be computationally
comparable to implement and have security resting on the DLP in a much larger finite field
of approximate size 252760.
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