


9 Action potentials and limit cycles

In the previous chapter we developed criteria for the existence of limit cycles in nonlinear
dynamical systems, namely the Poincaré-Bendixon theorem and the Hopf bifurcation
theorem. As one example, we examined the FitzHugh-Nagumo equations, the simplest
approximation to the dynamics of action potentials. However, these equations are not
closely related to physiology, as they fail to include ionic currents and equilibrium
potentials.

We are now poised to study the dynamics of ionic currents underlying the generation of
action potentials in the Hodgkin—~Huxley equations, where it will be shown that a periodic
spike train is in fact a limit cycle. Following a brief review of the concepts behind the
Hodgkin—-Huxley equations, we shall study a set of equations that are simple to analyze
mathematically but that provide a remarkably accurate description of action potentials.
Subsequent topics examine hysteresis in spike generation, a dynamical categorization
of neuron types, and various nonlinear resonance phenomena, including stochastic
resonance.

9.1 Hodgkin—Huxley equations

The Hodgkin-Huxley (1952) equations describe the change in membrane potential or
voltage I as a function of the sodium (/n,). potassium (/y), leakage (Jicak ), and stimu-
lating (Ziupue) currents across the membrane as well as membrane capacitance C. The most
general form of the Hodgkin-Huxley equations is:

dav
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As each current obeys Ohm's law, the current / = g(V — E), where g is the electrical
conductance (reciprocal of the resistance), V' is the voltage across the membrane, and Eis
the equilibrium potential of the ion in question computed from the Nernst equation
(2.16). The capacitance C (in micro-Farads/cm?, uF/cm?) arises from the fact that the
lipid bilayer of the axon membrane forms a thin insulating sheet that serves to store
electrical charge in the same way as an electrical capacitor (cf. Hille, 1992; Johnston and
Wu, 1995; Delcomyn, 1998). Hodgkin and Huxley discovered empirically that the con-
ductances were not constant but rather were functions of the membrane potential ¥, and
this voltage dependence is the key to understanding action potentials. Therefore, (9.1) was
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Inthe first equation, Exa, Ex, and Eje, are the equilibrium potentials at which each of the
three currents is balanced by ionic concentration differences across the membrane. Evi-
dently, the Hodgkin-Huxley equations are a fourth order system of nonlinear differential
equations. The additional variables m, &, and n represent the rates of Na conductance
channel activation, Na channel inactivation, and K channel activation respectively.
Nonlinearity results from the fact that the equilibrium values of these variables, /{1 I
H(V'),and N(V') are all functions of the membrane potential V, as are the time constants
Tms Tn, and 7,. Explicit mathematical forms for all these functions may be found in
Hodgkin and Huxley (1952), Cronin (1987), and Johnston and Wu (1995).

The scientific content of the Hodgkin~Huxley equations comes from two sources. First
is the observance of Ohm’s law for the individual currents. The second is the hypothesis
that the Na, K and leakage currents are all independent and therefore sum in (9.11. This
hypothesis was tested by solving the mathematical model (9.2) that resulted (on a
mechanical desk calculator!) and showing that it reproduced the experimentally observed
shape and duration of the action potential in the squid giant axon. The mathematical
forms chosen for the functions 7,,. 7, 7,, M(V). H(}), and N(V"), were biologically
motivated curve fits to the data. Hodgkin and Huxley’s (1952) work represents the
first and perhaps most dramatic success of nonlinear dynamics in predicting neuro-
physiological data.

The mathematical forms chosen by Hodgkin and Huxley for functions 7,,. 7, 1,,, M(V).
H(V'), and N(¥") are all transcendental functions. Both this and the presence of four
equations in (9.2) make the Hodgkin—-Huxley equations difficult to analyze mathemat-
ically. Fortunately, detailed study of these equations has led to several insightful sim-
plifications. Rinzel (1985) noticed that 7, is so small for all values of I that the variable i
rapidly approaches its equilibrium value, M(}"). As a good approximation, therefore, the
second equation in (9.2) can be eliminated and m - M(F') substituted into the equation
ford1”dr. Second. Rinzel noted that the equations for /7 and 1 were similar in time course
and in their equilibrium values H(}") and N(¥). In fact. an accurate approximation 1s
obtained by setting # = 1 — . What this means in ionic terms is that Na” channel closing.
h, occurs at the same rate but in the opposite direction to K~ channel opening, 1.
This relationship permits one to eliminate the equation for /1, thereby reducing (9.2) to a
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two-dimension dynamical system. Under these assumptions, (9.2) assumes the form
{Rinzel, 1985):
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To emphasize the simplifications and changes of variables, R has been used to describe
the K~ channel opening and Na ™~ channel closing, which together constitute the recovery
variable (hence the appellation R). The explicit expression for m(V), the recovery
time constant, has been included to indicate the general transcendental nature of these
functions.

Using the forms of H(}) and G(V') derived from the original Hodgkin-Huxley
equations as described above, let us examine the action potentials and the state space of
the system. (Mathematical forms for M(}") and G(}') are contained in the MatLab scripts
MM.m and GG.m, but they are too complex to provide much analytical insight.) The
script RinzelHH.m implements (9.3), and action potentials are plotted in Fig. 9.1 for
Lupu = 10 pA. The state space for (9.3) is plotted on the left of Fig. 9.2. Note in particular
that the dR/d¢ = 0 isocline is straight over most of its range, while the d¥V/d isocline is
approximately cubic, although it does not agree with the exact cubic shape assumed in the
FitzZHugh-Nagumo equations (8.8). Changes in the spike rate and isocline shapes can be
explored by running RinzelHH.m for different values of the input current. You can also
estimate the threshold current necessary for spike generation: it lies in the range
0 < fippur < 10.
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Fig. 9.1 Action potentials generated by (9.3), the Rinzel (1985) approximation to the Hodgkin-Huxley
(1952) equations. In this instance [, = 10 pA, and the resultant spike rate is 250 Hz.
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Fig. 9.2 Phase planes for (9.3) on left and (9.7) on right. For both equations the primary effect of increasing

Ligpui 18 to shift the lower left lobe of the d1/dr isocline (solid curves) upwards us shown by the vertical arrows.
Spike height (horizontal double-headed arrows) is primarily determined by the distance between the
equilibrium point on the dR/dr isocline (dashed) and the right branch of the d17dr isocline.

9.2 Essential dynamics of the Hodgkin—Huxley equations

The two-dimensional Rinzel approximation to the Hodgkin—Huxley equations in (9.3)
can be simplified still further to reveal the essential dynamical principles underlying action
potential generation. It is evident from the phase plane diagram in Fig. 9.2 (left) that the
dV'dr isocline is roughly cubic in shape, while the d R d7 isocline is linear over most of its
range. These observations were exploited by FitzHugh (1961) in developing the simplified
FitzHugh-Nagumo equations discussed in the previous chapter. In the interests of
mathematical simplicity, however, the FitzHugh—Nagumo equations ignored most
physiological aspects of the Hodgkin-Huxley equations, such as adherence to Ohm’s law
and explicit reference to the Na” and K equilibrium potentials. Let us develop a more
accurate approximation to the Hodgkin—Huxley equations that rectifics the short-
comings of the FitzHugh-Nagumo equations while retaining their mathematical tract-
ability. To maintain biophysical significance, Ohm’s law and the dependence on Na™ and
K™ equilibrium potentials must be made explicit. This approach, which exposes the
biological significance of the isoclines. leads to equations of the form:

dl . i :
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These equations have the same form as (9.3). namely an equation for d I dr that is the sum
of Na' and K" currents plus the stimulating current 1. and a second equation for the
recovery variable R. (The passive leakage current in (9.3), which plays no role inspike

|
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generation, has been absorbed into the Na™ current for convenience.) For mathematical
tractability, the first equation can be restricted to a cubicin V (based on isocline shapes
discussed above). so g, (}7) must be restricted to a quadratic polynomial. Similarly,
G(V) can only be quadratic if the term R(V — Ex) in the first equation is to remain no
higher than cubic. Given these constraints, let us examine the isoclines of (9.4), which are:

R~ —gN:\U’/:/} 14 ;'EN:J + 1 for %}/_ 0
S
= (G ;/ —
R=G(V) for T 0
Setting 7 == 0 for the moment, it is evident from the first isocline equation that:
R=0 when V=Ey
Na (96)

R=o00 when V=Eg

These points are marked on the right-hand phase plane in Fig. 9.2. Thus, simply writing
the dynamics in a form obeying Ohm's law leads to a dV/dr =0 isocline with a natural
biophysical interpretation in terms of En, and Eg!

A fit of (9.5) to the isoclines on the left of Fig. 9.2 leads to the following differential
equations:

Y (1781 + 4771V 4 32.6313)(V ~ 0.55) = 26.0R(V +0.92) + I
(9.7)
dR L Ry1357 4+ 1.03)
dt 7

where the capacitance C = 0.8 uF/‘cm2 and 7 = 1.9ms. In generating these equations,
the voltages were divided by 100 to keep the parameter values near unity. Thus, the
equilibrium potentials are En, = 0.55(or +55mV), and Ex = —0.92 (or —92 mV), which
are the same values that were used in (9.3). Thus, (9.7) expresses potential in deci-volts,
and the input current 7 is in pA/100. For all comparisons with Hodgkin-Huxley results
the solutions of (9.7) will therefore be multiplied by 100.

Having derived these equations, let us first determine whether they produce spikes that
are accurate reflections of the Hodgkin-Huxley solutions. Figure 9.3 compares spike
shapes at two different spike frequencies and also plots spike rates for both (9.7) and the
full Hodgkin—Huxley formulation over the entire physiological range of input currents I
Equation (9.7) produces a good approximation to action potential shape, the correlation
between the two spike shapes being > 0.96, and it also reproduces the reduction in spike
amplitude with increasing spike rate observed in the Hodgkin—Huxley equations. The
reader can explore the dependence of spike rate and spike height on input current 1 by
running MatLab script HHWegn.m and varying input current over therange0 < I < 2.0.
Note that the numerical values of / are also 100 times smaller than those for the Hodgkin-
Huxley equations, so the threshold value is in the range 0.0 < I < 0.090. Figure 9.2 also
shows that the d¥/dr isocline in (9.5) deforms primarily on the lower left side as / is
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Fig. 9.3 Comparison of spike trains gencrated by (9.7) and the Hodgkin~Huxley equations (9.2). (A) Spike
trains at 200 and 350 Hz for (9.7) (solid lines) and Hodgkin~-Huxley (dushed lines). In addition to the
similarity in shape, both equations produce a reduction in spike amplitude with increasing frequency. (B) Spike
rate as a function of input current for Hodgkin- Huxley (dashed line) and (9.7) (solid line). Spike threshold is
indicated by the arrow,

changed from threshold to 10 times threshold. Finally, Fig. 9.2 also shows that the limit
cycles for (9.3) and (9.7) are quite similar in shape when plotted in state space. Thus. (9.7)
provides a reasonably accurate approximation to the Hodgkin-Huxley equations given
the simplifying assumptions made by Rinzel (1985) to obtain (9.3).

Let us now see how casy the analysis of (9.7) can be. The equilibrium state ts given by the
simultaneous solution of (9.5), which becomes, with parameters from (9.7):

40,7881 = 81.07917 - 63.3021 "+ 1.257 - 18.553 - 0 (9.8)
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This can cither be solved for specific values of 7 using the roots function in MuatLab.

For example. /- 0 yields only one real root: V' = —0.70, or —70 mV. the same as for the

Hodgkin--Huxley simulations in Fig. 9.3, and R 0.088 at rest. The Jacobian matrix for

(9.7) 1s:

~32.5) - 29
3251 -29 )) 9.9)

0.71053 —0.52632

i <-123.36V3 — 118.281" ~22.937
where the equilibrium equation for R has been used to climinate it from the matrix.
Equations (9.8) and (9.9) can now be used to determine the stability of the equilibrium
point for any value of /in the usual way. Forexample, if 7 = 0.25, V' = —0.67 from (9.8),
and the eigenvalues of the 4 matrix are A = 0.53 £ 2.1 81, so the steady state is an unstable
spiral point. The Poincaré- Bendixon Theorem can now be used to prove the existence of a
limit cycle using a construction similar to that employed for the FitzHugh-Nagumo

equation (see Exercise 1).

.3 Hysteresis in the squid axon

Onelef the most striking aspects of dynamical modeling in neuroscience is thed@ct that
nonlingar equations frequently predict novel phenomena that the creators@f the equa-
tions hai:"-gcver imagined. Asa case in point, Hodgkin and Huxley createddhcir equations
in 1952, yé'tm_;_my years elapsed before it was shown that the equatiopg predicted a novel
hysteresis effe@n that had never been observed (Cooley ef a., 1968 Rinzel, 1978; Best,
1979). Subsequéfitly, Guttman, Lewis, and Rinzel (1980) tesfed this prediction and
showed that hystergsis actually occurred in the squid axon. Figiire 9.4 shows the results of
their experiment. A'Sguid axon was stimulated with a gbfrent [ that began at 0 and
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Fig. 9.4 Hydleresis in the giant axon of the squid (reproduced with permission. Gitlman er af.. 1980). In
response M i triangular current ramp, spiking activity begins at a high current at A but then continues to the
much j@wer current at B. thus demonstrating hysteresis. :
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