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the rgsponse to stimulus onset;and this is evident from the experimentdl data.

3.4 Stability and state space

Based on Theorem 2, all possible solutions of second order differential equations with
constant coefficients may now be grouped into a small number of categories. This cat-
egorization is based on the fact that the characteristic equation is quadratic and therefore
must have exactly two roots. We have already seen that the unique equilibrium point for a
linear differential equation can always be translated to the origin. Thus, it might be
expected that solutions can be characterized by their behavior near the origin. An
important concept here is that of a trajectory. A trajectory is the entire time course of the
solution of a differential equation from 7 = 0 to 1 = oc, given a particular initial condi-
tion. Thus, any differential equation defines an infinite number of trajectories, each
corresponding to a different initial condition. Additionally, note that an equilibrium
point is itself a trajectory, since a trajectory starting at equilibrium must by definition
remain there for all eternity!

We may now define the concepts of stability, asymptotic stability, and instability of an
equilibrium point. An equilibrium point of a system of differential equations is asymp-
totically stable if all trajectories starting within a region containing the equilibrium point
decay to that point exponentially as 1 — oc. Conversely, the equilibrium is unstable if at
least one trajectory beginning in a region containing the point leaves that region per-
manently. Finally, an equilibrium is stable or neutrally stable if nearby trajectories remain
nearby as ¢t — oo but do not approach asymptotically.
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Trajectories for second order differential equations may be conveniently plotted in a
two-dimensional space in which the variables of the equations define the axes. Such a
space is known as a state space or a phase space, terms that will be used interchangeably.
Analytical solution of the system equations yields explicit functions of 7, such as C(#) and
H(1) in (3.24). If time is regarded as a parameter, then it is possible to plot the entire
course of each system trajectory as a curve in the phase space. Phase space plots reveal
the relationship between the variables at all points on the trajectory. Both the time
dependence of solutions and the phase space are plotted by LinearOrder2.m, and
experimentation with that program will provide a great deal of insight into the nature of
phase space trajectories. Note that the phase space plot contains arrows indicating the
local directions in which trajectories flow at various points in the space.

All possible solutions to the second order differential equation described in Theorem 2
may now be categorized and their phase space trajectories illustrated. From the fact that
the characteristic equation is quadratic with real coefficients, the two eigenvalues must
either both be real, both be pure imaginary, or else be a complex conjugate pair. The
possibilities are enumerated below, and typical equations are given along with solutions
for initial conditions x(0) = 1, y(0) = L.

A spiral point results when the eigenvalues are a complex conjugate pair. Thus, the
solutions are in the form of exponentials multiplied by a sine and a cosine. The spiral point
is asymptotically stable if the real part of the eigenvalues is negative. A typical trajectory
of an asymptotically stable spiral point is plotted in the upper left of Fig. 3.3, which makes

. °
Spiral Point Node
R . -
Saddle Pdint Center

Fig. 3.3 Typical phase plane trajectories for the four characteristic equilibrium points of linear dynamical
systems: spiral point, node, saddle point, and center. The horizontal and vertical axes represent the two
variables describing each system. Equilibrium points are depicted by a dot in the center of each plot.
Trajectories illustrated for the spiral point and node are asymptoticaily stable. Saddle points are always
unstable, while centers are stable but not asymptotically stable.
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clear that the trajectory is in fact a spiral. The following equation provides an example
of a system with an asymptotically stable spiral point:

-0 20
de\y) 4 o)\
solution : (3.25)

x(1) = e cos(8r) — 2~ sin(81)

y(t) = e ¥ cos(81) + 0.5¢¥ sin(81)

The equilibrium point is a node if the eigenvalues are both real and have the same sign.
The node is asymptotically stable if the eigenvalues are negative, and it is unstable if they
are positive. Typical trajectories at a node are plotted in Fig. 3.3, and an illustrative

solution : (3.26)

A saddle point occurs when both eigenvalues are real but have opposite signs. Because
one eigenvalue is positive, all saddle points are unstable. As illustrated in Fig. 3.3, tra-
Jectories approach a saddle point along one axis ( v in this example) but diverge from it
along a different axis (x in this case). Typical equations generating a saddle point are:

d /x 2 -1\ /x
dr (}) B (0 -3> <1>

solution : (3.27)
x(t) = 0.8e" +0.2e

o =e

The final possibility is that the pair of eigenvalues are pure imaginary, and this con-
dition defines a center. Euler’s formula (1.15)1in this case dictates that all trajectories must
be a sum of a sine and a cosine of the same frequency. Because of this, all trajectories
around a center will be strictly periodic oscillations. Because any periodic function repeats
itself, phase space trajectories around a center will always be closed circular or ellipsoidal
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shapes like those plotted in the lower right of Fig. 3.3. A typical example of a system

Wlth a center iS:
(x) l ( )

solution : (3.28)
x(t) = cos(3r) — 0.33sin(3¢)
y(t) = cos(3t) + 1.33sin(3r)

As the nature of the solutions and their stability are determined by the eigenvalues of
the characteristic equation, all trajectories for all possible initial conditions will have the
same qualitative behavior in any given linear system. However, this holds true only for
linear systems, and it must be qualified when nonlinear systems are discussed. Indeed, the
power and elegance of phase space representations can only be fully appreciated in
nonlinear dynamics.

3.5 Critical damping and muscle caontraction

Theorem 2 covers all possible second ordepdinsar differential equation§ excopt for one:
the case where both roots of the charagtéristic eQuation are identi¢al. The casdof two
identtjcal roots is generally called crjtical damping for historicatreasons deriving from
physics, Critical damping is an exgeptional case, as the probahflity that the coefficients's
the charagteristic equation, if cifosen at random, would géfierate identical eigenvalues is
zero. Nevextheless, it is easy to construct mathema
eigenvalues are identical, and these will be solved now’
significant becab 1t pépresents the simplest approximation to t
contraction. In adyifion, the cascades of equ4 evious chapter aré
another case of ¢ritica] damping (because the time constants of all stiges are ide ical).
Let us motiydte critical damping by cefnsidering a simple model of musgle confraction.
Figure 3.4 pitts data on the force gepérated by a cat soleus muscle as a fun®on of length
at two different levels of motqrngutron activation (Rack and Westbury, 1969 Although
the overall curves are nonlinez ¢ force geherated is
near}y linear over the considefabla es. No force is generated
fop'x < x, a state wherethe muscle is relaxed. The equilibriufn length shifts to smaller
alues as the level of/motorneurom\activity increases. Neural specification of %o is
believed to be the way in which the centcal nervous sysiefn determines the desired length
and force exerteg'by each muscle in the
hypothesis’. Qfer the linear range, the forge of gfntraction is of the form a?(x — xp),
where the lerigth of the muscle x is always assyafied to be greater than or equal to x;. The

force of géntraction is generated as actin—m{osin bonds are formed, after which a con-
figurational change in the myosin head cafises th&muscle fiber to shorten (see Rothwell,
1994). There is also some frictional resi§tance to cortraction within the muscle due to the
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8

The study of nonlinear dynamical systems in the last two chapters has enabled us to
analyze rather complex neural networks in terms of the stability of their equilibrium

states. However, we have yet to consider one of the most exciting and important topics in
all of dynamical systems theory: nonlinear oscillations. Indeed, nonlinear oscillations, or

rhythms, are ubiquitous in living organisms. Circadian rhythms, cardiac rhythms, hor-
monal cycles, the rhythms of breathing and locomotion (walking, running, swimming):

all are of the essence of life. Not only are many of these rhythms generated by neural
networks, but we shall shortly see that even the generation of action potentials in single -

neurons is the result of inherently nonlinear oscillations.

In linear systems the only possible oscillations involve sines and cosines. These linear -
oscillations form closed circular or elliptical trajectories around an equilibrium point that
is a center. Furthermore, if the initial conditions are changed even slightly, the resultisa -
neighboring oscillatory solution with the same form in the phase plane but a different -
amplitude. No other type of oscillation is possible in a linear system, regardless of whether -
it has two or two thousand dimensions. In the nervous system and other biological sys- =

tems, there is always some degree of noise resulting from physiological or environmental

fluctuations. Such noise would continuously alter the amplitude of a linear oscillation, .

causing it to wander around the state space rather aimlessly. Clearly, such a sloppy linear

oscillation could not control one’s breathing or heartbeat very effectively. As we shall see,
nonlinear oscillations are largely immune to this noise problem. For this reason alone, itis
safe to conclude that biological rhythms evolved to be inherently nonlinear. To even begin
to understand the rhythms of life and the nervous system, it is thus essential to study

nonlinear oscillations.

8.1 Limit cycles

Let us start discussion of nonlinear oscillations with the definition of an oscillation itself.

A trajectory X(¢) of a dynamical system with any number of dimensions is an oscillationif: -

(8.1) ;

X(T+1)=X(r) for some unique T > 0 and all 7.

This states that the system will always return to exactly the same state after time T, and T'is )
therefore called the period of the oscillation. Note that if (8.1) is true for T, it will also be |
true for NT where N is any integer > 0, so the period is defined to be the minimum T for.
which (8.1) is holds. Also, the requirement that T be unique excludes equilibrium points,
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for which (8.1) would otherwise hold. The reciprocal of T, /T, is termed the frequency of
the oscillation. Note that (8.1) applies to linear systems as well as nonlinear.

If a linear system is periodic, there are infinitely many periodic solutions within any
small neighborhood of a given oscillation: as the solution is a sum of sines and cosines, an
oscillation of any amplitude whatsoever is a solution. (The amplitude is, of course,
determined by the initial conditions.) Nonlinear systems can also produce analogous
oscillations, but this is rare in biological systems. Of vastly greater significance is the fact
that nonlinear systems can generate isolated oscillations that are surrounded by open,
non-oscillatory trajectories that either spiral towards or else away from the oscillation
over time. Let us make this precise with a definition:

Definition: An oscillatory trajectory in the state space of a nonlinear system is a
limit cycle if all trajectories in a sufficiently small region enclosing the trajectory
are spirals. If these neighboring trajectories spiral towards the limit cycle as
t — oo, then the limit cycle is asymptotically stable. If, however, neighboring
trajectories spiral away from the limit cycle as 7 — oo, the limit cycle is unstable.

Figure 8.1 shows schematic illustrations of both asymptotically stable and unstable limit
cycles in the phase plane of a two-dimensional system. Notice that the definition of a limit
cycle only requires that trajectories which are sufficiently close be open spirals. The reason
for this restriction is that many nonlinear systems contain several limit cycles separated
from one another.

Before exploring limit cycles in neuroscience, it will be necessary to develop some
analytical tools to predict their existence. Let us first restrict our consideration to two-
dimensional systems, as the relevant theorems are both more numerous and more
intuitive in this case. A very useful theorem due to Poincaré, the discoverer of limit
cycles, states that a limit cycle must surround one or more equilibrium points:

Theorem 9: If a limit cycle exists in an autonomous two-dimensional system, it
must necessarily surround at least one equilibrium point. If it encloses only one,
that one must be a node, spiral point, or center, but not a saddle point. If it
surrounds more than one equilibrium point, then the following equation must be
satisfied:

N-§=1

where N is the number of (nodes + spiral points + centers), and S is the number of
saddle points.

The requirement that the system be autonomous means that all coefficients must be
constant. This guarantees that no trajectory can cross itself. The reason is simple: the
differential equations describing the system define a unique direction at every point in
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Fig. 8.1 Closed curves depict an asymptotically stable limit cycle (left) and an unstable limit cycle (right).
Neighboring trajectories are plotted by arrows.

°
Node

Saddle

Fig. 8.2 Phase plane of a two-dimensional dynamical system with the three steady states indicated. Theorem
9 indicates that any possible limit cycle must surround one of the sets of steady states indicated by the three

closed curves.

state space. If a trajectory were to cross itself, there would have to be two different

directions specified by the equations at some point, but this is impossible unless the
coefficients of the equations change with time, which has been prohibited. An intuitive |
grasp of Theorem 9 can therefore be gained from the observation that trajectories ori-

ginating inside a limit cycle in the phase plane can never cross the limit cycle becauseitisa

closed oscillatory trajectory. Therefore, these trajectories must either originate or ter-

minate somewhere, and that must be a steady state (or another limit cycle which itself j

surrounds a steady state, etc.)

Figure 8.2 illustrates the possible locations for limit cycles in a two-dimensional system
with three steady states: a node, a spiral point, and a saddle point. In this example,
Theorem 9 precludes a limit cycle around any pair of the steady states. Note that Theorem :
9 tells us nothing about the exact location or size or even the existence of the limit cycle but -

only about the set of steady states it would have to enclose if it existed.

Theorem 9 is a necessary but by no means sufficient condition for the existence of limit .
cycles in a nonlinear system. In Chapter 6, for example, we encountered several nonlinear
systems with multiple steady states, such as two nodes and a saddle point, and yet there
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Nonlinear oscillarions 119

were no limit cycles to be found in those cases. What we need is a theorem that specifies
conditions under which a system must have a limit cycle. Fortunately, such a theorem
exists fur two-dimensional systems. Let us first state the Poincaré—Bendixon Theorem and
then sketch a proof using diagrams.

Theorem 10 (Poincaré-Bendixon): Suppose there is an annular region in an
autonomous (i.e. constant coefficient) two-dimensional system that satisfies two
conditions: (1) the annulus contains no equilibrium points; and (2) all trajectories
that cross the boundaries of that annulus enter it. Then the annulus must contain
at least one asymptotically stable limit cycle.

Theorem 10 is easily understood by examining Fig. 8.3. This figure shows an annular
region (gray) that satisfies the conditions of the theorem. To be consistent with Theorem 9,
the annulus must surround a node, spiral point, or center, which is plotted as a dot. Note,
however, that this steady state, although surrounded by the annulus, is not within
the annular region itself, so it does not violate the conditions of the theorem. Arrows in
Fig. 8.3 show representative trajectories entering the annulus over both its inner and outer
boundaries as required by Theorem 10. Once these trajectories enter the annulus, the
conditions of the theorem guarantee that they can never leave. Also, they can never come
to rest, because there are no equilibrium points in the annulus. Finally, because the system
is autonomous, no two entering trajectories can ever cross one another. As trajectories
entering from region A and region B move closer together, therefore, there must be at Jeast
one closed trajectory that they approach asymptotically. Thus, there must be at least one
asymptotically stable limit cycle enclosed within the annulus. This completes an intuitive
proof of the Poincaré-Bendixon theorem.

It is important to recognize that Theorem 10 specifies that the annulus must contain at
least one asymptotically stable limit cycle, but the theorem also permits there to be an odd
number of limit cycles. In this case, the outer and inner limit cycles would have to be
asymptotically stable, because trajectories entering the annulus across the outer and inner

B

Fig. 8.3 Annulus (gray region) fulfilling the requirements of Theorem 10. Region A contains a steady state
(unstable), and trajectories enter the annulus from both regions A and B. As indicated, a limit cycle must exist
within the annulus.
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Fig. 8.4 Schematic of an annulus (gray region) satisfying Theorem 10 but containing three limit cycles. Two
are asymptotically stable (solid curves), but the intervening one (dashed curve) must be unstable. A is an
unstable node or spiral point. Representative trajectory directions are shown by the arrows.

boundartes must all approach limit cycles (not necessarily the same one). If there is more
than one limit cycle, asymptotically stable limit cycles must alternate with unstable limit
cycles. You can convince yourself of this by imagining what would happen to trajectories
originating between two nested, asymptotically stable limit cycles: they would have to be
separated by an unstable limit cycle, which is illustrated schematically in Fig. 8.4,
Although the existence of alternate asymptotically stable and unstable limit cycles may
seem to be an unlikely occurrence, they are actually predicted by the Hodgkin-Huxley
equations, and their existence has been experimentally verified! Armed with Theorems 9
and 10, we are now ready to study limit cycles in two-dimensional neural systems.

8.2 Wilson—Cowan network oscillator

non-spagial) version of the WilSon-CoWan (1972) equefions. The equiagions presented

possesses a limit cychy Copsfder a

afly excitatory E neurons wh€ in turn

stimulate oneNphibitefy I neuron that providés hegative feedback onto thethiree Peells as

¢ e cortex, where

ke total popyMtion of cortical cells

6Ty glutamate neuronNJones, 4995). Thus, the network
in Fig. 8. #Cal circuit module.

Let pf simplify the Wikon—Cowan network by assumfindthat all E neurons receive
idengiCal stimuli and pdveNdentical synaptic strengihs. UnderNhese conditions we can
inyOke symmetry gd set £} X E> = E3, thereby péducing the nuigber of neurons in the

etwork, a progefiure sometimeMtermed subsapipling (Wallén ez al., ¥992). This results in
- the mathemg#cally equivalent twocneuron pétwork shown on the right in Fig. 8.5. In fact,
we can gerferalize this argument to, anyAumber of mutually excitatory and inhibitory
neurongwith identical interconnectigus, so the key concept is that of recurrent excitation
couptd with recurrent inhibition,/Note that by reducing the network to two neurons
(oy/two neural populations), e recurrent excitation is transformed into equivalent

inhibitory GABA
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8.4 Hopf bifurcations

Theorems 9 and 10 provide us with powerful means to determine whether limit
cycles exist in a nonlinear system. Unfortunately, however, both theorems are limited to
two-dimensional systems and do not apply when more than two neurons or two ion flows

are involved. Theorem 9 does not generalize to higher dimensions, because a closed
trajectory defining a limit cycle oscillation cannot be said to enclose equilibrium points in
three or more dimensions in any meaningful sense. One might think at first that the
Poincaré-Bendixon theorem (Theorem 10) would generalize to higher dimensions if
instead of specifying an annulus into which trajectories flow, one specified a solid
‘doughnut’ shape in three dimensions or a ‘hyper-doughnut’ in higher dimensional sys-
tems. However, such a ploy also fails to guarantee the existence of a limit cycle, because
trajectories need not be closed to avoid crossing in higher dimensions. This means that a
trajectory might remain within the doughnut but be chaotic (see Chapter 11) rather than
being a limit cycle oscillation. Fortunately, there is one powerful theorem that applies to a
system with any number of dimensions from two up, the Hopf bifurcation theorem.

Theorem 11 (Hopf bifurcation theorem): Consider a nonlinear dynamical system
in N > 2 dimensions that depends on a parameter 3:

5 = B

Let X, be anisolated equilibrium point of this system. Assume that there is a critical
value G=a with the following properties determined from the Jacobian,
A(B) : (1)X, is asymptotically stable for some finite range of values 3 < a. (2) When
3=« the system has one pair of pure imaginary eigenvalues A = =+ iw while all other
eigenvalues have negative real parts. (3) Xy is unstable for some range of values
3> a. Then either the system possesses an asymptotically stable limit cycle over a
range 3> « or else it possesses an unstable limit cycle over some range 3 < . Near
3= a the frequency of this oscillation will be approximately w/27, and the oscillation
will emerge with infinitesimal amplitude sufficiently close to a.
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