MATH 2360: Linear Algebra Fall 2009 – Section 004

Problems on Determinants

- 1. Evaluate the determinant of the matrix $A = \begin{bmatrix} 4 & 6 \\ 3 & 5 \end{bmatrix}$.
- 2. Using 1., evaluate the determinant of the matrix $B = \begin{bmatrix} 5 & 6 & 10 \\ 4 & 4 & 6 \\ -2 & 3 & 5 \end{bmatrix}$. Clearly indicate your steps.
- 3. Find all the values of λ which makes the following determinant equal zero:

$$\begin{bmatrix} 3-\lambda & -4 \\ 1 & -2-\lambda \end{bmatrix}$$

4. Compute the determinant, adjoint and use them to compute the inverse for the following matrices.

(a)
$$A = \begin{bmatrix} 4 & 6 \\ 3 & 5 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

5. Use Cramer's rule to solve the following systems:

$$(a) x + 2y = 9$$
$$2x + y = 6$$

(b)
$$x + y + z = 6$$

 $2x + 2y + y = 9$
 $3x + y + 2y = 11$

- 6. Suppose you are given two $n \times n$ matrices C and D which ha the property that $C = D^T$. Further more it is known that det(CD) = 1. What are the possible values of det(C)?
- 7. Given that P, Q, R and S are 3×3 matrices with determinants 1, -1, 2 and 4 respectively.
 - (a) Justify that all the matrices above have a well defined inverse.
 - (b) Find the values of the following, if possible, if not indicate so:

(i)
$$\det(PQRS)$$
 (ii) $\det(QR^T)$ (iii) $\det(2QR^{-1})$ (iv) $\det(P+Q^{-1})$ (iv) $\det(R(PQ^{-1})^T)$