Homework #5 - Math 2360: Linear Algebra

(1) Let V be the set of all ordered pairs of real numbers of the form (x_1, x_2) , with the additon defined by

$$(x_1, x_2) \oplus (y_1 + y_2) = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1)$$

and scalar multiplication by

$$\alpha \odot (x_1, x_2) = (\alpha + x_1, x_2).$$

Is V a vector space with these operations? Justify your answer.

(2) Determine if W is a subspace of V for the pairs V and W given below.

V	W
\mathbb{R}^4	$\{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 + x_4 = 0\}$
\mathbb{R}^3	$\{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 1\}$
\mathbb{R}^2	$\{(x_1, x_2) : x_1 = 3x_2\}$
\mathbb{R}^3	$\{(x_1, x_2, x_3) : x_1 = x_2 = x_3\}$
Set of 2×2 matrices	Upper triangular matrices
Set of 2×2 matrices	Matrices of the form $\begin{pmatrix} 0 & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$
Polynomials $(a_2x^2 + a_1x^1 + a_0)$	Polynomials $(ax^2 + ax^1 + a)$

- (3) (a) Determine if the elements given in the first column are linearly independant in the space given in the second column.
 - (b) Indicate if the elements would span the given space.
 - (c) In each case indicate the dimension of the span of the elements.
 - (d) Give a natural basis that spans the sub space spanned by the given elements in the first column.

Elements	Space
$\begin{pmatrix} 2\\3 \end{pmatrix}, \begin{pmatrix} 4\\6 \end{pmatrix}$	\mathbb{R}^2
$\begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 4\\6\\1 \end{pmatrix}$	\mathbb{R}^3
$\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}$	\mathbb{R}^{3}
$\begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\2 \end{pmatrix}$	\mathbb{R}^3
$ \begin{array}{c} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $	Space of 2×2 matrices