Math 2360: Linear Algebra
 Fall 2009 - Section 004
 Final Exam

- Exam time: 7.30 am - 10.00 am (2 hours and 30 minutes)
- This is a closed book exam.
- Answer all ten (10) questions.
- Show all the necessary work to earn full credit.
- Answers written on the test paper will not be graded.
- Please print your name on the first page of your answer book.
- Please write your answers clearly within the space provided in the answer book.
(1) Solve the following pair of equations in 4 variables:

$$
\begin{array}{r}
x_{1}+2 x_{3}-x_{4}=2 \\
2 x_{1}+x_{2}+2 x_{4}=1
\end{array}
$$

Use either echelon form or reduced row echelon form.
(2) Let

$$
A=\left(\begin{array}{lll}
3 & 2 & 0 \\
1 & 1 & 1 \\
0 & 0 & 4
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 2 \\
1 & 0 & 0
\end{array}\right)
$$

Calculate $A B$ and $B A$ and find out if they are equal.
(3) Let A be the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 2 \\
2 & 1 & 0
\end{array}\right)
$$

Calculate A^{-1} of this matrix.
(4) Find a basis for the null space of the following matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
2 & 1 & -1
\end{array}\right)
$$

(5) For the matrix in problem 4, check
(a) if the rows are linearly independant
(b) if yes, go to the next problem; if not, find which rows are linearly independant.
(6) Consider the following vectors in \mathbb{R}^{5}

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
2 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

(a) Are the vectors v_{1}, v_{2} and v_{3} linearly independant?
(b) Find a vector which is not in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
(7) Calculate the determinant of the following matrix A :

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 3 \\
2 & 0 & 1 & 0 \\
3 & 4 & 1 & 7 \\
-2 & 0 & 0 & -1
\end{array}\right)
$$

(8) Let A be the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a) Write down $\operatorname{det} A$.
(b) Write down trace A.
(c) Write down $I+A$, where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(d) Write down $\operatorname{det}(I+A)$.
(e) Verify if it is true that $\operatorname{det}(I+A)=1+\operatorname{trace} A+\operatorname{det} A$.
(9) Using the matrix A in problem 7, consider the linear equation

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 3 \\
2 & 0 & 1 & 0 \\
3 & 4 & 1 & 7 \\
-2 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Calculate x_{2} using Cramer's rule.
(10) Let L be a map from \mathbb{R}^{3} to \mathbb{R}^{3} described as follows:

$$
\begin{gathered}
L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right)
\end{gathered}
$$

(a) Is L a linear transformation?
(b) Calculate $L(L(x))$.
(c) Find a matrix A such that $L(x)=A x$.

