Homework \#9 - Vectors

1. Sketch the following vectors given in the component form and compute the magnitude. [Remember that the length of a vector $x \mathbf{i}+y \boldsymbol{j}$ is given by $\sqrt{x^{2}+y^{2}}$]
a. $1 \boldsymbol{i}+2 \boldsymbol{j}$
b. $-4 \boldsymbol{i}+3 \boldsymbol{j}$
c. $-5 \boldsymbol{i}-12 \boldsymbol{j}$
2. Find the vector (in component form) connecting each pair of points given.
a. $P=(-1,5) \& Q=(9,8)$
b. $P=(-1,0) \& Q=(0,0)$
c. $P=(10,5) \& Q=(10,8)$
3. Find the values of x and y which satisfy the following equations.
[Hint: When do you say that two vectors equal?]
a. $(8+x) \boldsymbol{i}+(8+y) \boldsymbol{j}=(3 x) \boldsymbol{i}+0 \boldsymbol{j}$
b. $\left(4+x^{2}\right) \boldsymbol{i}+(8) \boldsymbol{j}=(4 x) \boldsymbol{i}+\left(\log _{e} y\right) \boldsymbol{j}$
4. Find $\boldsymbol{a}+\boldsymbol{b}$ and $\boldsymbol{a}-\boldsymbol{b}$ in component form and demonstrate how the parallelogram law is used.

5. Use 'dot product' of vectors to find the angles between the given vectors:
[Remember that for two vectors $\boldsymbol{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $\boldsymbol{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$, the dot product is given by $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}| \cdot|\boldsymbol{b}| \cdot \cos \theta=a_{1} a_{2}+b_{1} b_{2}$, where θ is the angle from a to $\left.b\right]$
i. $\boldsymbol{a}=1 \boldsymbol{i}+2 \boldsymbol{j}$ and $\boldsymbol{b}=4 \boldsymbol{i}+3 \boldsymbol{j}$
ii. $\boldsymbol{a}=1 \boldsymbol{i}+-4 \boldsymbol{j}$ and $\boldsymbol{b}=-4 \boldsymbol{i}+3 \boldsymbol{j}$
6. Using the dot product of vectors, find the angle between all the possible combinations of sides and diagonals of a cube of which each side is 1 unit in length.

