## ESE501 Solutions to the Midterm II

1. In this problem we are considering a first order ordinary differential equation given by

$$
\dot{y}(t)+3 y(t)=5 u(t)
$$

where

$$
y(0)=2
$$

and where

$$
u(t)=e^{-7 t}, t \geq 0
$$

Calculate $\mathrm{y}(\mathrm{t})$ manually by showing all the steps.
Solution: Using the variation of constants formula we obtain

$$
\begin{gathered}
y(t)=e^{-3 t} y(0)+\int_{0}^{t} e^{-3(t-\tau)} 5 e^{-7 \tau} d \tau= \\
2 e^{-3 t}+5 e^{-3 t} \int_{0}^{t} e^{-4 \tau} d \tau= \\
2 e^{-3 t}-\frac{5}{4} e^{-3 t}\left(e^{-4 t}-1\right)= \\
\left(2+\frac{5}{4}\right) e^{-3 t}-\frac{5}{4} e^{-7 t}
\end{gathered}
$$

## It follows that

$$
y(t)=\frac{13}{4} e^{3 t}-\frac{5}{4} e^{-7 t} .
$$

2. A $2 \times 2$ matrix $A$ has repeated eigenvalues at 2,2 , with a corresponding chain of generalized eigenvectors $v_{1}, v_{2}$ where

$$
v_{1}=\binom{2}{1}, \text { and } v_{2}=\binom{7}{4}
$$

Assume that $v_{1}$ is the eigenvector and $v_{2}$ is the generalized eigenvector.
Calculate $e^{A t}$ from this data.
Solution: Using the eigenvectors and generalized eigenvectors of the matrix $A$, define the matrix P as follows:

$$
P=\left(\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right)
$$

It is well known that $P^{-1} A P$ has the jordan canonical form

$$
B=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
$$

where

$$
e^{B t}=\left(\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
0 & e^{2 t}
\end{array}\right)
$$

It would follow that

$$
e^{A t}=P e^{B t} P^{-1}
$$

i.e.

$$
e^{A t}=\left(\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
0 & e^{2 t}
\end{array}\right)\left(\begin{array}{rr}
4 & -7 \\
-1 & 2
\end{array}\right) .
$$

which equals

$$
e^{A t}=\left(\begin{array}{cc}
e^{2 t}(1-2 t) & 4 t e^{2 t} \\
-t e^{2 t} & e^{2 t}(1+2 t)
\end{array}\right) .
$$

3. Let us define the following $2 \times 2$ matrices:

$$
B=\left(\begin{array}{rr}
0 & 1 \\
-4 & 4
\end{array}\right), \text { and } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Calculate

$$
\left(\frac{2 B+I}{5}\right)^{100}
$$

Solution: Writing

$$
(2 B+I)^{100}=\alpha_{0} I+\alpha_{1} B
$$

we obtain

$$
(2 \lambda+1)^{100}=\alpha_{0}+\alpha_{1} \lambda,
$$

where $\lambda$ the eigenvalue is at 2 . Since the eigenvalues are repeating, we take a single derivative w.r.t. $\lambda$ and obtain

$$
200(2 \lambda+1)^{99}=\alpha_{1}
$$

Solving for the coefficients $\alpha_{0}$ and $\alpha_{1}$ we obtain

$$
\alpha_{1}=200(5)^{99}, \alpha_{0}=-395(5)^{99}
$$

It follows that

$$
\begin{gathered}
(2 B+I)^{100}=\left(\begin{array}{ll}
-395 & 200 \\
-800 & 405
\end{array}\right)(5)^{99}= \\
\left(\begin{array}{rr}
-79 & 40 \\
-160 & 81
\end{array}\right)(5)^{100} .
\end{gathered}
$$

Thus we conclude that

$$
\left(\frac{2 B+I}{5}\right)^{100}=\left(\begin{array}{rr}
-79 & 40 \\
-160 & 81
\end{array}\right)
$$

4. A discrete time recursive system is given by

$$
X_{k+1}=A X_{k}+b u_{k}, y_{k}=c X_{k},
$$

where $X_{0}=0$. The matrices are given by

$$
A=\left(\begin{array}{rr}
0 & 1 \\
-\frac{1}{8} & \frac{3}{4}
\end{array}\right), b=\binom{0}{1}
$$

and

$$
c=\left(\begin{array}{ll}
1 & 0
\end{array}\right) .
$$

The eigenvalues of the matrix $A$ are at $\frac{1}{2}$ and $\frac{1}{4}$. The input sequence $u_{k}$ is given by

$$
u_{k}=\{1,1,1, \ldots\}
$$

Calculate the sequence $y_{k}$ given by

$$
y_{k}=\sum_{j=1}^{k} c A^{j-1} b
$$

Solution: Let us denote

$$
S=I+A+\ldots+A^{k-1}
$$

and we compute

$$
S=\left(I-A^{k}\right)(I-A)^{-1}
$$

It follows that

$$
y_{k}=c\left(I-A^{k}\right)(I-A)^{-1} b
$$

where

$$
(I-A)^{-1} b=\binom{\frac{8}{3}}{\frac{8}{3}}
$$

Let us now write

$$
A^{k}=\alpha_{0} I+\alpha_{1} A
$$

it follows that

$$
c\left(I-A^{k}\right)=\left(1-\alpha_{0}-\alpha_{1}\right)
$$

We would thus obtain

$$
y_{k}=\frac{8}{3}\left(1-\left(\alpha_{0}+\alpha_{1}\right)\right) .
$$

The quantity $\alpha_{0}+\alpha_{1}$ is compute as follows:
If $\lambda_{1}$ and $\lambda_{2}$ are the two eigenvalues of $A$ we write:

$$
\left(\begin{array}{cc}
1 & \lambda_{1} \\
1 & \lambda_{2}
\end{array}\right)\binom{\alpha_{0}}{\alpha_{1}}=\binom{\lambda_{1}^{k}}{\lambda_{2}^{k}} .
$$

Solving, we obtain

$$
\alpha_{0}=\frac{\lambda_{1}^{k} \lambda_{2}-\lambda_{2}^{k} \lambda_{1}}{\lambda_{2}-\lambda_{1}}
$$

and

$$
\alpha_{1}=\frac{\lambda_{2}^{k}-\lambda_{1}^{k}}{\lambda_{2}-\lambda_{1}}
$$

It would follow that

$$
\alpha_{0}+\alpha_{1}=\frac{\left(\lambda_{2}-1\right) \lambda_{1}^{k}-\left(\lambda_{1}-1\right) \lambda_{2}^{k}}{\lambda_{2}-\lambda_{1}}
$$

