1. For three distinct real numbers $\lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=3$ show if it is true that the three vectors

$$
\begin{aligned}
& v_{1}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \\
& v_{2}=\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right)
\end{aligned}
$$

and

$$
v_{3}=\left(\begin{array}{lll}
\lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2}
\end{array}\right)
$$

are linearly independent. Otherwise argue why they are not.
2. In R^{4} let P_{1} and P_{2} be two planes described parametrically as follows:

$$
\begin{aligned}
& P_{1}=\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)+t_{1}\left(\begin{array}{l}
3 \\
4 \\
6 \\
8
\end{array}\right)+t_{2}\left(\begin{array}{l}
5 \\
9 \\
4 \\
0
\end{array}\right): t_{1}, t_{2} \in R\right\} \\
& P_{2}=\left\{\left(\begin{array}{l}
6 \\
2 \\
0 \\
5
\end{array}\right)+t_{3}\left(\begin{array}{l}
6 \\
2 \\
0 \\
0
\end{array}\right)+t_{4}\left(\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right): t_{3}, t_{4} \in R\right\}
\end{aligned}
$$

Calculate the intersection of P_{1} and P_{2}.
3. In R^{3} let ℓ_{1} and ℓ_{2} be two lines described parametrically as follows:

$$
\begin{aligned}
& \ell_{1}=\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+t_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right): t_{1} \in R\right\} \\
& \ell_{2}=\left\{\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right)+t_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right): t_{2} \in R\right\} .
\end{aligned}
$$

(a) Write down the equations of the two lines ℓ_{1} and ℓ_{2} in cartesian coordinates.
(b) Show that the two lines ℓ_{1} and ℓ_{2} do not intersect.
(c) Let ℓ_{2}^{\prime} be another line parallel to ℓ_{2} such that ℓ_{2}^{\prime} and ℓ_{1} intersect at a point. Find equation of the plane that contains the two lines ℓ_{2}^{\prime} and ℓ_{1}.
4. Let V be the set of vectors in a vector space R^{4} such that the following two conditions are satisfied.

- The first coordinate of the vectors in V is negative of the fourth coordinate.
- The second coordinate of the vectors in V is equal to the third coordinate.
(a) Calculate the dimension of V by obtaining a basis of V.
(b) Let u be the vector (1 $\left.1 \begin{array}{lll}1 & -1 & 1\end{array}\right)$, obtain $\operatorname{proj}_{V} u$ the projection of the vector u on the space V. Recall that $\operatorname{proj}_{V} u$ is the vector w such that $u-w$ is perpendicular to the space V.

