SSM 501, First Midterm Examination

- 1. For three distinct real numbers $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = 3$ show if it is true that the three vectors
 - $v_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ $v_2 = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix}$ $v_3 = \begin{pmatrix} \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix}$

and

are linearly independent. Otherwise argue why they are not.

2. In \mathbb{R}^4 let \mathbb{P}_1 and \mathbb{P}_2 be two planes described parametrically as follows:

$$P_{1} = \left\{ \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix} + t_{1} \begin{pmatrix} 3\\4\\6\\8 \end{pmatrix} + t_{2} \begin{pmatrix} 5\\9\\4\\0 \end{pmatrix} : t_{1}, t_{2} \in R \right\}$$
$$P_{2} = \left\{ \begin{pmatrix} 6\\2\\0\\5 \end{pmatrix} + t_{3} \begin{pmatrix} 6\\2\\0\\0 \end{pmatrix} + t_{4} \begin{pmatrix} 7\\0\\0\\0 \end{pmatrix} : t_{3}, t_{4} \in R \right\}$$

Calculate the intersection of P_1 and P_2 .

3. In \mathbb{R}^3 let ℓ_1 and ℓ_2 be two lines described parametrically as follows:

$$\ell_1 = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix} + t_1 \begin{pmatrix} 0\\1\\0 \end{pmatrix} : t_1 \in R \right\}$$
$$\ell_2 = \left\{ \begin{pmatrix} 1\\3\\-1 \end{pmatrix} + t_2 \begin{pmatrix} 1\\1\\1 \end{pmatrix} : t_2 \in R \right\}.$$

- (a) Write down the equations of the two lines ℓ_1 and ℓ_2 in cartesian coordinates.
- (b) Show that the two lines ℓ_1 and ℓ_2 do not intersect.
- (c) Let ℓ'_2 be another line parallel to ℓ_2 such that ℓ'_2 and ℓ_1 intersect at a point. Find equation of the plane that contains the two lines ℓ'_2 and ℓ_1 .
- 4. Let V be the set of vectors in a vector space R^4 such that the following two conditions are satisfied.
 - The first coordinate of the vectors in V is negative of the fourth coordinate.
 - The second coordinate of the vectors in V is equal to the third coordinate.
 - (a) Calculate the dimension of V by obtaining a basis of V.
 - (b) Let u be the vector $(1 \ 1 \ -1 \ 1)$, obtain $\operatorname{proj}_V u$ the projection of the vector u on the space V. Recall that $\operatorname{proj}_V u$ is the vector w such that u w is perpendicular to the space V.