## SSM 501, Home Work Seven

1. (a) Manufacture a $4 \times 4$ matrix $A$ with eigenvalues at $5,7,13$ and 17 and eigenvectors precisely at

$$
v_{1}=\left(\begin{array}{l}
1  \tag{1}\\
0 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{r}
1 \\
3 \\
-1 \\
-1
\end{array}\right), v_{3}=\left(\begin{array}{r}
2 \\
3 \\
5 \\
-2
\end{array}\right), v_{4}=\left(\begin{array}{r}
3 \\
4 \\
-5 \\
-1
\end{array}\right)
$$

(b) Orthogonalize the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ using Gramm-Schmidt Orthogonalization. Call the orthogonal vectors $u_{1}, u_{2}, u_{3}, u_{4}$.
(c) Manufacture a $4 \times 4$ symmetric, p;ositive definite matrix $B$ with eigenvalues at $5,7,13$ and 17 and eigenvectors precisely at $u_{1}, u_{2}, u_{3}, u_{4}$.
(d) Consider the ellipsoid in $\mathbb{R}^{4}$ given by

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right) B\left(\begin{array}{l}
x_{1}  \tag{2}\\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=100
$$

Write down the homogeneous, quadratic, polynomial equation of the ellipsoid using variables $x_{1}, x_{2}, x_{3}, x_{4}$. Define a new set of variables $y_{1}, y_{2}, y_{3}, y_{4}$ such that the ellipsoid is given as

$$
5 y_{1}^{2}+7 y_{2}^{2}+13 y_{3}^{2}+17 y_{4}^{2}=100
$$

(e) Compute the point of intersection $p$ between the line

$$
\ell=\left\{x_{1}=3 t, x_{2}=4 t, x_{3}=-5 t, x_{4}=-t: t \in \mathbb{R}\right\}
$$

and the ellipsoid (2).
(f) Compute equation of the tangent plane to the ellipsoid at the point $p$. (Excluded from HW, will discuss in class)
(g) Consider a function

$$
\phi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=8 x_{1}+9 x_{2}+7 x_{3}-12 x_{4} .
$$

Find maximum and minimum value of $\phi$ subject to the constraint that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ belongs to the ellipsoid. (Excluded from HW, will discuss in class)
2. Let us define

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

(a) Construct a $4 \times 4$ matrix $A$ and a vector of initial conditions $X_{0}$ such that when you solve

$$
\dot{X}=A X, X(0)=X_{0}
$$

we get $x_{1}=\sin 2 t, x_{3}=\sin 4 t$. Also calculate $x_{2}$ and $x_{4}$ for your choice of $A$ and $X_{0}$.
(b) Construct a $4 \times 4$ matrix $A$ and a vector of initial conditions $X_{0}$ such that when you solve

$$
\dot{X}=A X, X(0)=X_{0}
$$

we get $x_{1}=t e^{-3 t} \sin 7 t$. Also calculate $x_{2}, x_{3}$ and $x_{4}$ for your choice of $A$ and $X_{0}$.
3. Consider the following $2^{\text {nd }}$ order o.d.e.

$$
m \ddot{x}+b \dot{x}+k x=\sin 4 t
$$

assuming initial conditions $x(0)=5$ and $\dot{x}(0)=15$. Take $m=1$, and $k=1$. Solve the equation for the following three different values of $b$.
(a) $b=1$ (underdamped case)
(b) $b=3$ (overdamped case)
(c) $b=2$ (critically damped case).

Using any plotting software, plot $x(t)$ as a function of $t$.
4. Determine the type and stability of the critical point. Find a real general solution. Sketch or plot some trajectories in the phase plane. (Pick any 5 for credit, it may be too much to do all)
(a)

$$
\dot{x_{1}}=x_{1}, \dot{x_{2}}=2 x_{2} ;
$$

(b)

$$
\dot{x_{1}}=2 x_{1}+x_{2}, \dot{x_{2}}=5 x_{1}-2 x_{2} ;
$$

(c)

$$
\dot{x_{1}}=x_{1}+2 x_{2}, \dot{x_{2}}=2 x_{1}+x_{2} ;
$$

(d)

$$
\dot{x_{1}}=-6 x_{1}-x_{2}, \dot{x_{2}}=-9 x_{1}-6 x_{2} ;
$$

(e)

$$
\dot{x_{1}}=-2 x_{1}+2 x_{2}, \dot{x_{2}}=-2 x_{1}-2 x_{2} ;
$$

(f)

$$
\dot{x_{1}}=x_{1}-2 x_{2}, \dot{x_{2}}=5 x_{1}-x_{2}
$$

(g)

$$
\dot{x_{1}}=x_{2}, \dot{x_{2}}=-9 x_{1} ;
$$

(h)

$$
\dot{x_{1}}=-x_{1}+4 x_{2}, \dot{x_{2}}=3 x_{1}-2 x_{2}
$$

(i)

$$
\dot{x_{1}}=-2 x_{1}-6 x_{2}, \dot{x_{2}}=-8 x_{1}-4 x_{2} ;
$$

(j)

$$
\dot{x_{1}}=-x_{1}, \dot{x_{2}}=-5 x_{1}-x_{2} ;
$$

(k)

$$
\dot{x_{1}}=2 x_{1}+x_{2}, \dot{x_{2}}=6 x_{1}+2 x_{2} ;
$$

