ESE 501, Home Work 6

1. Assuming that λ_{0} is any nonzero real number, compute exponential of the following matrices.
(a)

$$
\left(\begin{array}{cccc}
\lambda_{0} & 1 & 0 & 0 \tag{1}\\
0 & \lambda_{0} & 1 & 0 \\
0 & 0 & \lambda_{0} & 1 \\
0 & 0 & 0 & \lambda_{0}
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cccc}
\lambda_{0} & 0 & 1 & 0 \tag{2}\\
0 & \lambda_{0} & 0 & 1 \\
0 & 0 & \lambda_{0} & 0 \\
0 & 0 & 0 & \lambda_{0}
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{cccc}
\lambda_{0} & 0 & 0 & 1 \tag{3}\\
0 & \lambda_{0} & 0 & 0 \\
0 & 0 & \lambda_{0} & 0 \\
0 & 0 & 0 & \lambda_{0}
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{cccc}
\lambda_{0} & 0 & 1 & 1 \tag{4}\\
0 & \lambda_{0} & 0 & 1 \\
0 & 0 & \lambda_{0} & 0 \\
0 & 0 & 0 & \lambda_{0}
\end{array}\right)
$$

(e)

$$
\left(\begin{array}{cccc}
\lambda_{0} & 1 & 0 & 0 \tag{5}\\
1 & \lambda_{0} & 1 & 0 \\
0 & 1 & \lambda_{0} & 1 \\
0 & 0 & 1 & \lambda_{0}
\end{array}\right)
$$

Remark: I have never tried (d) and (e). You can use any method except typing the matrix into a symbolic computer.
2. (a) Calculate e^{A} and $e^{A^{2}}$ assuming A to be the following matrix:

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{6}\\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right)
$$

(b) Verify, using matlab if necessary, that A, e^{A} and $e^{A^{2}}$ commute.

Remark: I am expecting that you will compute the eigenvalues and compute the exponential function by expressing it as a linear combination of I, A and A^{2}. You can use matlab to compute the linear combination. Do not use the exponential command.
3. (a) Calculate eigenvalues, eigenvectors and generalized eigenvectors of the following matrix.

$$
M=\left(\begin{array}{rrrr}
45 & 120 & 315 & 672 \tag{7}\\
-60 & -252 & -756 & -1680 \\
45 & 216 & 651 & 1440 \\
-12 & -60 & -180 & -396
\end{array}\right)
$$

Remark: You can use matlab and if you do, you need to verify your answer by using the definition of eigenvalues, eigenvectors and generalized eigenvectors.
(b) Write $e^{M t}$ as a linear combination of I, M, M^{2} and M^{3} using the eigenvalues of M.
(c) Using the matlab 'jordan' command, obtain the matrix P such that $P^{-1} M P$ is block diagonal. Verify your results by actually multiplying the matrices using matlab.
4. Show that the matrix

$$
M=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{8}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-24 & 50 & -35 & 10
\end{array}\right)
$$

has an eigenvector at $\left(1, \lambda, \lambda^{2}, \lambda^{3}\right)$ for every eigenvalue λ. Also show that the eigenvalues are at $1,2,3$ and 4 . Write down the matrix P (without using matlab) such that $P^{-1} M P$ is diagonal. Now use matlab to verify that $P^{-1} M P$ is indeed diagonal.
5. Manufacture a 10×10 symmetric and positive definite matrix M. Calculate eigenvalues of the matrix M. Also calculate an orthogonal matrix P such that $P^{T} M P$ is diagonal. Verify by explicit multiplication that $P P^{T}=P^{T} P=I$ (You can use matlab for this purpose)
6. Let A be a $n \times n$ matrix. Also assume that the eigenvalues of A are all distinct and let v_{i} be an eigenvector of A corresponding to an eigenvalue λ_{i}. Prove that the vectors $v_{i}, i=1, \cdots n$ are all linearly independent.

