Home Work One Solutions

1. (a) i. Norm of the vector $\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$ is $\sqrt{1+4+1}=\sqrt{6}$.
ii. Norm of the vector $\left(\begin{array}{lll}1 & 1 & -1\end{array}\right)$ is $\sqrt{1+1+1}=\sqrt{3}$.
iii. Norm of the vector $\left(\begin{array}{lll}2 & 3 & 0\end{array}\right)$ is $\sqrt{4+9+0}=\sqrt{13}$.
(b) The cosine of the angle θ between any two vectors a and b is given as follows

$$
\cos \theta=\frac{a . b}{\|a\|\|b\|}
$$

Angle between the vectors (1 $\left.211 \begin{array}{l}1\end{array}\right)$ and $\left(\begin{array}{lll}1 & 1 & -1\end{array}\right)$ is

$$
\cos ^{-1} \frac{1+2-1}{\sqrt{6} \sqrt{3}}=\frac{2}{\sqrt{18}}=61.87 \text { degrees }=1.0799 \text { radians }
$$

Angle between the vectors $\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$ and $\left(\begin{array}{lll}2 & 3 & 0\end{array}\right)$ is

$$
\cos ^{-1} \frac{2+6+0}{\sqrt{6} \sqrt{13}}=\frac{8}{\sqrt{78}}=25.07 \text { degrees }=.437 \text { radians }
$$

Angle between the vectors $\left(\begin{array}{lll}1 & 1 & -1\end{array}\right)$ and $\left(\begin{array}{lll}2 & 3 & 0\end{array}\right)$ is

$$
\cos ^{-1} \frac{2+3+0}{\sqrt{3} \sqrt{13}}=\frac{5}{\sqrt{39}}=36.81 \text { degrees }=.642 \text { radians }
$$

(c) Let u be the vector $(3 \quad 4-5)$. We have $\|u\|=\sqrt{3^{2}+4^{2}+(-5)^{2}}=\sqrt{50}$. The required two vectors are $\frac{u}{\|u\|}$ and $-\frac{u}{\|u\|}$ given by

$$
\pm\left(\frac{3}{\sqrt{50}} \frac{4}{\sqrt{50}} \frac{-5}{\sqrt{50}}\right)
$$

(d) Let a and b be the two vectors (1 309) and (2 $4-6$

$$
\|a\|=\sqrt{91},\|b\|=\sqrt{56},\|a+b\|=\sqrt{67}
$$

Moreover

$$
|a \cdot b|=40 \text { and }\|a-b\|=\sqrt{227}
$$

Clearly $\sqrt{67}<\sqrt{91}+\sqrt{56}, 40<\sqrt{91} \sqrt{56}$ and $\sqrt{227}>\sqrt{91}-\sqrt{56}$
2. (a)

$$
\|(1 \quad 1)\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

Angle between (1 $\left.1 \begin{array}{l}1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0\end{array}\right)$ is

$$
\cos ^{-1} \frac{1}{\sqrt{2}}=45 \text { degrees }
$$

(b)

$$
\|(2-3)\|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}
$$

Angle between $\left(\begin{array}{ll}2 & -3\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0\end{array}\right)$ is

$$
\cos ^{-1} \frac{2}{\sqrt{13}}=-56.3 \text { degrees }
$$

(c)

$$
\left\|\left(\begin{array}{ll}
\sqrt{3} & 1
\end{array}\right)\right\|=\sqrt{3+1^{2}}=\sqrt{4}=2
$$

Angle between $(\sqrt{3} 1)$ and $\left(\begin{array}{ll}1 & 0\end{array}\right)$ is

$$
\cos ^{-1} \frac{\sqrt{3}}{2}=30 \text { degrees }
$$

(d)

$$
\left\|\left(\begin{array}{ll}
5 & 12
\end{array}\right)\right\|=\sqrt{5^{2}+12^{2}}=\sqrt{169}=13
$$

Angle between (5ll) and (10) is

$$
\cos ^{-1} \frac{5}{13}=67.38 \text { degrees }
$$

(e)

$$
\begin{gathered}
\left\|\left(\begin{array}{ll}
-5 & -12
\end{array}\right)\right\|=\sqrt{(-5)^{2}+(-12)^{2}}=\sqrt{169}=13 \\
\text { Angle between }\left(\begin{array}{ll}
-5 & -12) \text { and }\left(\begin{array}{ll}
1 & 0
\end{array}\right) \text { is } \\
\cos ^{-1} \frac{-5}{13}=-112.62 \text { degrees }
\end{array}\right.
\end{gathered}
$$

3. (a) If the vector is ($a b$), it follows that $a^{2}+b^{2}=1, \frac{b}{a}=\frac{1}{\sqrt{3}}$. Solving, we get $a=\frac{\sqrt{3}}{2}$ and $b=\frac{1}{2}$. The required unit vector is $\left(\frac{\sqrt{3}}{2} \quad \frac{1}{2}\right)$.
(b) The required vector is an unit vector making an angle of -30 degrees with respect to the $x-a x i s$. The vector is $(.866-.5)$
(c) The vector is $\left(\frac{3}{5}-\frac{4}{5}\right)$.
(d) The slope of the tangent vector is 4 . A unit vector with slope 4 is given by $\pm\left(\frac{1}{\sqrt{17}} \frac{4}{\sqrt{17}}\right)$
(e) The required unit normal vector is given by $\left(\frac{-4}{\sqrt{17}} \frac{1}{\sqrt{17}}\right)$
4. Assume that the cube is of length, breadth and height given by a. It can be aligned in such a way that the diagonal is the vector $d=\left(\begin{array}{lll}a & a & a\end{array}\right)$, the face diagonal is the vector $f=\left(\begin{array}{lll}a & a & 0\end{array}\right)$ and the edge is the vector $e=\left(\begin{array}{lll}a & 0 & 0\end{array}\right)$.
(a) Angle between d and e is given by $\cos ^{-1} \frac{a^{2}}{a \sqrt{3} \times a}=54.74$ degrees.
(b) Angle between d and f is given by $\cos ^{-1} \frac{2 a^{2}}{a \sqrt{3} \times a \sqrt{2}}=35.26$ degrees.
(c) If $a \neq 0$ and $b \neq 0$, then the line $a x+b y+c=0$ can be parameterized in vector as

$$
\{u+t v: t \text { is any real number }\}
$$

and where $u=\left(\begin{array}{ll}-\frac{c}{a} & 0\end{array}\right)$ and $v=\left(\begin{array}{ll}\frac{c}{a} & -\frac{c}{b}\end{array}\right)$. The vector $\left(\begin{array}{ll}a & b\end{array}\right)$ is clearly perpendicular to the vector v. If $a=0$, the line is given by $b y+c=0$ which is parallel to the x axis. The vector $(0 b)$ is clearly parallel to the x axis. If $b=0$, the line is given by $a x+c=0$ which is parallel to the y axis. The vector $(a 0)$ is clearly parallel to the y axis.
5. The vectors A and B are defined as follows:

$$
A=\left(\begin{array}{ll}
2 & 5
\end{array}\right), B=\left(\begin{array}{ll}
3 & -4
\end{array}\right)
$$

We have $\|A\|=\sqrt{29},\|B\|=5$ and $A . B=6-20=-14$. It follows that
(a)

$$
\operatorname{proj}_{A} B=\frac{B \cdot A}{\|A\|^{2}} A=-\frac{14}{29}(2
$$

(b)

$$
\operatorname{proj}_{B} A=\frac{A \cdot B}{\|B\|^{2}} B=-\frac{14}{25}\left(\begin{array}{ll}
3 & -4
\end{array}\right)
$$

(c)

$$
C=A-\operatorname{proj}_{B} A=\frac{1}{25}(92
$$

(d)

$$
C . B=\frac{1}{25}(92 \quad 69) .(3 \quad-4)=\frac{1}{25} \times(276-276)=0 .
$$

Hence the vectors C and B are orthogonal to each other.

