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INEQUALITIES FOR ZERO-BALANCED 
HYPERGEOMETRIC FUNCTIONS 

G. D. ANDERSON; R. W. BARNARD, K. C. RICHARDS, 
M. K. VAMANAMURTHY, AND M. VUORINEN 

ABSTRACT. The authors study certain monotoneity and convexity properties of 
the Gaussian hypergeometric function and those of the Euler gamma function. 

1. INTRODUCTION 

The Gaussian hypergeometric function is defined by 

(l.l) F(a, b; c; x) = 2FI(a, b; c; x) = E (a, n) (b , n) Xn 

for x E (-1, 1), where (a, n) denotes the shifted factorial function (a, n) = 

a(a+1) (a+n-1), n=1,2,..., and(a,0)=1 fora$ 0.Thesum 
is well defined at least when (c, n) $ 0, i.e., when c # 0, -1, -2, .... This 
function has found frequent applications in various fields of the mathematical 
and natural sciences [Ask2]. Many elementary transcendental functions are 
special cases or limiting cases of F(a, b; c; x) ; for an extensive list see [AS, pp. 
556-566], [PBM, pp. 430-615]. Two important special cases are the complete 
elliptic integrals 

(1.2) (x) = F (2 X 2; 1 F2 (X) = F (-2 ' 2;1; x2- 

As a function of its parameters a, b, c the function F(a, b; c; x) is 
smooth, and it is thus natural to expect that the properties of %(x) extend also 
to F(a, b; c; x2) for (a, b, c) close to (, I, 1). Recall that F(a, b; c; x) 
is called zero-balanced if c = a + b. We obtain several results for the zero- 
balanced F(a, b; a + b; x), a, b > 0, extending well-known properties of 
X(x). 

1.3. Theorem. (1) For a, b E (O, o) the function 

1 - F(a , b; a + b; x) 
f(x) 

log( - x) 

Received by the editors September 17, 1993; originally communicated to the Proceedings of the 
AMS by Hal L. Smith. 

1991 Mathematics Subject Classification. Primary 33C05, 33B1 5; Secondary 26D07. 
Key words and phrases. Hypergeometric function, gamma function, elliptic integral. 

01995 American Mathematical Society 
0002-9947/95 $1.00 + $S25 per page 

1713 



1714 G. D. ANDERSON ET AL. 

is strictly increasing from (0, 1) onto (ab/(a + b), 1/B), where B = B(a, b) 
is the Euler beta function. 

(2) For a, b E (0, xc) the function 

g(x) = BF(a, b; a + b; x) + log(l - x) 

is strictly decreasing from (0, 1) onto (R, B), where 

R = -UP(a) - uI(b) - 2y. 

Here UP(a) = F'(a)/F(a), and y is the Euler-Mascheroni constant. 

1.4. Theorem. For a, b E (O, xc), let 

f(x) = xF(a, b; a + b; x)/log(l/(1 - x)) 

on (O, 1) and let B, R be as in Theorem 1.3. 
(1) If a, b E (O, 1), then f is decreasing with range (1 /B, 1). 
(2) If a, b E (1, xc), then f is increasing with range (1, 1/B). 
(3) If a = b = 1, then f(x) = 1 for all x E (O, 1) . 
(4) If a, b E (O, 1) thefunction g, (x) _ BF(a, b; a+b; x)+(l/x) log(l-x) 

is increasing from (O, 1) onto (B - 1, R). 
(5) If a, b E ( 1, x), then g, is decreasing from (O, 1) onto (R B - 1). 

Here Theorem 1.3(1) generalizes the fact that ((2/7r)X(x) - 1)/log(l/x') 
is increasing from (0, 1) onto (1/2, 2/Xr); 1.3(2) generalizes the well-known 
fact that X(x)+logx' is decreasing from (0, 1) onto (log 4, ir/2) (cf. [AVVY, 
Theorem 2.2(2)]); and 1.4(1) generalizes the result that x2Z(x)/log(1/x') is 
decreasing from (0, 1) onto (1, 7r) [AVV3, Theorem 2(19)]. 

The asymptotic relation 

F(a, b; a + b; X) B(a b) log(l - x) 

as x 1 is due to Gauss, and its refined form 

(1.6) B(a, b)F(a, b; a + b; x) + log(1 - x) = R + 0((1 - x) log(1 - x)) 

as x 1, with R = -UP(a) - 'P(b) - 2y, is due to S. Ramanujan [Ev, p. 553], 
[Be, p. 71]. Theorems 1.3 and 1.4 are refinements of these classical relations. 
Ramanujan also gave extensions of (1.6) to the generalized hypergeometric func- 
tion pFq for certain values of p and q [Ev, pp. 553-558], [Be, pp. 12, 71]. 
Formulas (1.5) and (1.6) follow from the identity in [AS, 15.3.10], which has 
been generalized recently in [B, p. 152]. 

1.7. Theorem. For each a, b E (O, ox) the function 

f(x) = (1 -x)'/4F(a, b; a+b; x) 

is a strictly decreasing automorphism of (O, 1) if and only if 4ab < a + b. 

While studying relationships between the arithmetic-geometric mean and 
some other means, J. and P. Borwein [BB2, (2.9)] recently proved that 

(1.8) F ( 1 ; 1 - xC < F (2-o , + a ; 1 ; 1- x d 

forall xE(O, 1),with c=2, d=3, 5=3 . 
We obtain the following generalization. 
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1.9. Theorem. For c, d E (0, ox), 4c < 7rd, inequality (1.8) holds for all 
X E (0, 1) andfor all a E (0, JO), where JO = ((d7r - 4c)/(47rd)) 12. 

We conclude the paper by proving some inequalities for the gamma func- 
tion. Our notation is mostly standard. For x E [0, 1], we often denote 
x= /1 - . 

2. PROOFS 

For many important properties of the functions F(a, b; c; x), f(x), and 
F(x) see [AS, pp. 556-566, 589-626], [C, Chapters 2, 9], [PBM, pp. 430-615]. 
Some algorithms for computing these functions are given in [Ba, pp. 345-372, 
416-424], [M, Chapter 7], [PNB, p. 249], and [PT, pp. 404-426]. Various 
aspects of the theory of special functions are surveyed in [Askl], [Ask2], [AVV3], 
[LO, 5.3, 5.5]. 

We shall give here a proof of the Gauss asymptotic formula (1.5), since we 
have been unable to find a proof in the recent literature or in the standard texts. 
Various generalizations of (1.5) appear in [Ev, pp. 553-558], [B, p. 152]. 

2. 1. Lemma. (1) For a, b E (0, xc), the sequence 

(a, n)(b, n) 

(a+b, n)(n- 1)! 

is increasing to the limit 1/B(a, b), as n -x 0. 

(2) For a, b E (0, 1), the sequence 

(a , n)(b, n)(n+ 1) 

(a+ b ,n)n! 
is decreasing to the limit 1/B(a, b), as n -x 0. 

(3) For a, be (1, 00), thesequence g(n) is increasing to the limit 1/B(a, b), 
as n -* 00. 

In particular, for each positive integer n, 

(4) ab < f(n) < for all a, b E (0, 00), a +b B(a ,b) 

(5) B < g(n) < 2+bb for all a, b E (0,9 1),9 

(6) 2+1b < g(n) < bforall a, bE (1, x), 2ab 1) 

where the weak inequalities reduce to equality if and only if n = 1. 

Proof. Part (1) is proved in [AVV3, Theorem 6(4)]. For (2) and (3), 

g(n+ 1) (a+n)(b+n)(n+2) <1 
g(n) (a+b+n)(n+ 1)2 

iff w =((a+b+n)n+ab)(n+2) < W2 (a+b+n)(n+ 1)2,whichistrue 
since W2 - W1 = (a + b - 2ab) + n(1 - ab) is positive if a, b E (0, 1), and 
negative if a, b E (1, 0) . The limiting values follow form Stirling's formula 
[C, p. 24], [Mi, p. 184]. o 
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2.2. Remark. The following inequalities due to Wallis appear in [Mi, p. 192]: 

1 (b n) 1 

Since B(', 2) = ir, the result in Lemma 2.1(4) generalizes the second Wallis 
inequality here. 

2.3. Lemma (Gauss). For a, b E (O, x0), the relation (1.5) holds. 
Proof. Let B = B(a, b) . From Lemma 2. 1, we have 

F (a , b; a + b; x) (a n+ (b( ,n) n < 1 + 
0 

-- 1 - 1 log( l - x). 
n=O (a+b, n)n!x __ B 

Hence 

lim sup 
F 

('ab + b x) < B- 

Next, fix E E (0, 1/B). Then by Lemma 2.1 there exists a positive integer nO 

such that (a, n)(b, n)/((a + b, n)(n - 1)!) > (1/B) - E, for all n > nO . Hence, 

F(a, b; a+b; x) >Fn,+ (B-e) E - no-Be (10g(l -x)+SnO),9 
n=n0+1 

where 
no (a, n)(b, n) no xn 

nO-E (a + b, n)n! S no Z n 

Dividing by log(l /(1 - x)) and letting x - 1, since E E (0, 1 /B) is arbi- 
trary, we get 

lim infF(,ab) 
X-imm log(1/(1 - x)) - B' 

so that the limit is 1/B. o 
2.4. Proof of Theorem 1.3. (1) The limiting value as x -O 0 follows from 
series expansions, while the one as x 1 follows from Lemma 2.3. Next, let 
g(x) = F(a, b; a+b; x)-1 and h(x) =log(l/(1-x)). Then g(O) = h(O) = 0, 
and by the monotone l'Hopital rule [AVV4, Lemma 2.2] it is enough to show 
that g'(x)/h'(x) is strictly increasing. Now [WW, p. 281] 

9,(x), 
a 
ab (1 - x) F(a + 1, b + 1 ; a + b + 1 ; x) g'(x) a +b 

a b {1 ? (a + 1 , n + 1) (b + 1 , n + 1) 
a+b O + E (a+b+ 1, n+ 1)(n+ 1)! 

(a + 1, n)(b+ 1, n) n+I 
(a+b+ 1, n)n! ) 

The coefficient of xn+1 here is positive if and only if (a + 1 + n)(b + 1 + n) > 
(a + b + n + 1)(n + 1) , which holds if and only if ab + (a + b)(n + 1) + (n + 1)2 > 
(a+b)(n+ 1)+(n+ 1)2, which is true. 
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(2) The limiting values are clear from (1.6). Next, by series expansion, 

(x)-B=E B( +b, n)(n -1)! n"' 

so that all coefficients are negative by Lemma 2.1(4). 0 

2.5. Proof of Theorem 1.4. For (1), let g(x) = xF(a, b; c; x), c = a + b, 
and h(x) = log(l/(l - x)) . Then g(O) = h(O) =O and 

-=(1 - x) F(a, b; c; x) + abxF(a + 1, b + 1; c + 1; x)) 
h'(x) ~ k,C 

(I -x ? (a,n)(b,_n)Xn ab ?? (a+1,n)(b+1), n)Xn+1) 
( 

) 
~~~(c, n) n! 

+ c- 
E (c + I, n) n!) 

kn=O (,)n=O 
0 
? (a, n)(b, n) x n ??2 (a,. n + l )(b, n + 1) Xn+1 

) nE (c( n) )! + ((c, n+ ()n! 

1 (a, n)(b, n) X2n ??(a, n + )(b, n + 1) (a, n)(b, n)n x)n+ 

n='((cx n) n! nO n(C, n2+ (c, n) 

_0 (a, n + 1)(b, n + 1)Xn+2 
E (c, n+ 1) n! 1 

n=o 

Hence 

9'(x) (2ab \ (a, n + 2)(b, n + 2) Xn+2 

h'(x) _ < c , n=O (c, n + 2) (n + 2)! 

?? (a, n + 2)(b, n + 2)(ab- 1)+2 (a, n + b )(b, n + 1) Xn+2 

n=O (C, no+2) (nH + 1)! n[O (C, n+ 2 n! 

The prowor()issmla,ecetta all coefficients are positive.Thsg()'x)ideran,hnc 

Part (3) follows from ( 1.1) and the series for log(1l/(1l - x)) . 
(4) In the series expansion, 

g(x) -(B-i)=n 1 ((a+b( n n)B- 1n) 

n=O~~~= 

all coefficients are positive by Lemma 2.1(5). 
(5) The proof is similar to (4), except that all coefficients are negative by 

Lemma 2.1(6). The limiting values are clear by (1.6). 0 
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2.6. Lemma. For a, b E (0, c), n = 1, 2, 3,... 

(a, k)(b, k) > (a + 1, n)(b + 1, n) (a, n)(b, n) 

k (a+b, k)k! (a+b+ 1, n)n! (a+b, n)n! 
Proof. The first inequality follows by induction, and the second one by the 
factorial property of (a, n) . o 
2.7. Lemma. For a, b E (0, xo) and x E (0, 1) the Maclaurin series of the 
functions 

F(a , b ;a +b ;x) -F(a+ l, b+ l ; a +b+ l ; x) 

and 
F(a + 1, b + 1; a +b + 1; x) -F(a, b; a +b; x) 

have constant term zero and all other coefficients strictly positive. In particular, 
these functions are increasing and convex on (0, 1) and 

F(a, b;a+b;x) <F(a+ 1, b+ 1; a+b+ l;x) < 1 _F(a, b;a+b;x) 

for all x E (0, 1). 
Proof. The results follow immediately from Lemma 2.6. o 

2.8. Proof of Theorem 1.7. The limiting value f(0) = 1 is obvious, while 
f(1-) = 0 follows from Theorem 1.3(1). Next, for each x E (O, 1) we have 

4(1 x+'/4f(x) = bF(a+l , b+l; a+b+l; x)- 1 x F(a , b; a+b; x). 

If 4ab < a + b, then Lemma 2.7 implies that f'(x) < 0. Conversely, if f is 
decreasing, then f'(x) < 0 for all x E (O, 1), and letting x tend to 0 we get 
4ab<a+b. o 

The special case a = b = o of Theorem 1.7 is well known. This special 
case follows, for instance, from the infinite product formulas for x'/lfx and 
(2/ir)v/x' (x) in terms of the Jacobi nome q = exp(-7X'/I) [WW, p. 488, 
Exercise 10] or from [AVY1, Theorem 2.2(3)]. 

2.9. Remark. It is easy to show that (Va, n)2 < (a, n)(b, n) < 
((a + b)/2, n)2 for all positive a, b and all n = 1, 2,..., with equality 
if and only if a = b. Thus 

(2.10) F(Va,Va;c;x)<F(a,b;c;x)<F((a+b)/2,(a+b)/2;c;x) 

for a, b, c > 0, x E [0, 1), with equality if and only if a = b or x = 0. 
Furthermore, for a, c > 0 and for t E (0, a) we see that (a + t, n)(a - t, n) 
is a decreasing function of t on [O, a] for n = 1, 2, ..., so that 

(2.11) F(a+t2, a-t2; c; x) < F(a+ti, a - t1; c; x) 

for x E (O, 1), 0 < tl < t2 < a. The second assertion of Lemma 2.7 also fol- 
lows from the fact that (a, n)(b, n)/(a+b, n), a, b > 0, is a strictly increasing 
function of a. 



INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC FUNCTIONS 1719 

3. THE GAMMA FUNCTION 

We next study some properties of the functions 
00 ~~~~d 

F(x) = tx-'e-'dt and P(x) = dx logF(x) 

when x is real and positive. 

3.1. Theorem. The function f(x) = x(logx - T(x)) is decreasing and convex 
from (0, oc) onto (I , 1). 
Proof. From [WW, p. 251, ? 12.32, Example] it follows that 

1(x + x tdt 
f(x) = 2 

+2X] (t2+X2)(e2Kt- l)t 

Hence, 
c 

tdt 
oc 

+ tdt 
f'(x) J;2 (t2 + X2)(e27rt (t2 + X2)2(e2' - 1 ) 

-2 00 t(t2 -X2 )dt 

Jo (t2 +x2)2(e2nt -1) 

-2 [X t (t2_X2 ) dt +2 ? t (t2 -X2 dt 

J e27rtX l (t2+X2)2 JX e27' -l (t2+X2)2 

Since t/(e2nt - 1) is decreasing on (0, ox), we get 
f'(x) 2x [00 ( t2 -x2)dt 
f e(x) < 2x 1 (t2 + X2)2 

Substituting t = x tan u, we get 

J0 (t2 + X2)2 = I 2 
(sin2 u -cos u) du =0. 

Thus we have shown that f (x) is strictly decreasing, so that f(O+) exists. To 
obtain this limit we observe first that t/(e2nt - 1) < 1/(27r) implies that 

00 tdt1 
lim 

2xJo (t2 + x2)(e27rt - 1) - 

Next, fix e E (0, 1/(27r)). Since limt_.O+t/(e2nt - 1) = 1/(2n), there exists 
3 > 0 such that t/(e2X' - 1) > 1/(27r) - e for all t E (0, 3). Thus 

2xj (t2 1) >2x (-- )J dt = 2 ( - e arctan-. 

Now letting first x, then E, tend to zero gives 

lim 2x I' d 
x-*0+ Jx (t2 +x2)(e2nt - 1) -2 

For 0 < a < b < oo denote 

Lb t2 t dt I(a, b) = t2+ X2)(e2nt - 
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Then, since t/(e2Kt - 1) < 1/(27r), 

2xI(O, 1) < -arctan-, 
7r x 

while 

if00? t dt 1 [00 te" dt 
I(l,oo)? I 

1+x2J e2Kt 1 - +x2JI 2sinh(7rt) 

<2 1 +x) ]e tdt= 

Hence limxoo f(x) = 
To prove the convexity, let J[g] denote the integral of a function g from 

0 to 00. Then, as above, f'(x) = 2J[g(t)h(t, x)], where 

g(t) = t/(e2Kt- 1) and h(t, x) = (t2 -x2)/(t2 + )2. 

Hence, 

f'(x) = 4xJ[g( t)H(t, x)], where H(t, x) = dh(tXx) = x2-3t2 

Since g(t) is decreasing, by splitting the integral on (O, 00) into the sum of 
an integral on (O, x/Xv3) and one on (x/v3 , 0), we get 

f "(x) > 4xg(xvr3) J[H(t, x)]. 

Now substituting t = x tan u, we see that J[H(t, x)] = 0. Hence f"(x) > 0 
on (O, 0), so that f is convex on (O, x). o 

3.2. Theorem. (1) The function fi (x) = xlI2-xexl(x) is decreasing and log- 
convex from (O, 00) onto (v'2i, 00). 

(2) The function f2(x) = xl-xexr(x) is increasing and log-concave from 
(O, oo) onto (1, oo). 
Proof. (1) The limiting value at 0 follows from the relation r(x + 1) = xr(x), 
while the one at oo follows from Stirling's formula. Next, 

d 
-xd-logfi(x) = f(x) - 

where f(x) is as in Theorem 3.1, is clearly positive and decreasing. 
(2) The limiting value at 0 follows from the relation F(x + 1) = xF(x), while 

the one at oo follows from Stirling's formula. Next, 

d 
-x y logf2(x) = 1 - f(x) > , 

where f(x) is as in Theorem. 3.1. Moreover, by the monotone l'Hopital rule 
[AVV4, ?2], it follows that E logf2(x) is decreasing. 0 

3.3. Remark. A result similar to Theorem 3.2 appears in [Lu, p. 17], whereas 
in [Mi, 3.6.55, p. 288] a version of Theorem 3.1 is given. In [G, p. 283] it is 
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shown that xT(x) is convex for x > 0. For some recent results on the gamma 
function see [Al]. 

4. REFINEMENTS 

A problem of interest is to obtain upper estimates for the complete elliptic 
integral 

-(xt) = F (I 1; 1- x2) 

in terms of variants of the type 

F (2 -c5 +6; 1; 1 -x3) 

for x E (0, 1) and c5 E (0, !). Observe initially that the inequality 

-(4.1) Ft2 2;1 -x2)< F(2 2;1 -x3) 

for x E (0, 1) follows immediately from the monotoneity of F( E !; 1; x) as 
a function of x. We seek a refinement of (4.1). 

J. Borwein and P. Borwein [BB2, (2.9)] have shown that 

(4.2) F(2' 2; 1; 1-x2) <F(,-c5 2+5; 1; 1 -x3) 

for c5 =6 and for all x E (0, 1). It has been conjectured recently [AVV3, p. 
79] that (4.2) holds for all c5 E (0, O ) and for all x E (0, 1). We next obtain 
a refinement of (4.2), which also proves the statement of Theorem 1.9. 

4.3. Theorem. Let x E (O, 1), c, d E (O, oo), 4c <ird. Then 

(4.4) F(2 2;9 1; l -x < F 60o 2+60; 1; l-1 

(4.5) <1F ( 2 +6; 1; 1-xd) 

(4.6) < F (2 '; 1; 1 - x d 

for all a E (O, 50), where 50 = ((d7r - 4c)/(47rd))'/2. 
Proof. Let f, (x) be defined by 

(log(1 - x) 

It follows from Theorem 1.,3 that, for all x E (0, 1) and 3 E [0, O), 

(4.8) (2 ) 2 )< {6(X) < B(I -a 
I 

+6s)X 

where B(a, b) is the Euler beta function. From the reflection formula 
r(a)F( 1 - a) = ir/ sin(a7r) [AS, p. 256], it follows that 

(4.9) (X) 1 <-sin (1 ( 
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for all x E (0, 1) and ( E [0, 2). From (4.9) with a = 0 it follows that 

F(2 2; 1; l _X9) 1_fo(1 X C)< 
lgl o Xg ) 1 )7r 

Again applying (4.9) with a E (0, 3o) yields 

F(-J ,+(5; 1; -Xd)-1 d [F( -J, i+6; 1; I-xd)d ] 
log( 1 /xC) c log( 1/xd) 

=df( d) d 1 _2 

>d I1 <8 > (1162) 502 

Therefore, for 0 < a < (0 and x E (0, 1), 

F 1;I- xC I+ fo(l - xc1log 1 

< 1 +-log 
I 

<1 + -fd(l xd) log 
c ~~~Xc 

= F I2-b 6 +6; 1; 1 -x ), 

which establishes (4.4). Inequalities (4.5) and (4.6) are immediate consequences 
of (2.1 i). 0 

4.10. Conjectures. (1) For c = 2, d = 3 the best possible value of ^0 for 
which Theorem 4.3 is valid is o0 = (r - 2arcsin(2/3))/(27r) 0.268 (see 
[AVV3, p. 6]). 

- (2) Theorem 1.4 has a counterpart for the generalized hypergeometric func- 
tion pFq(ai, ..., ap; bi, ..., bq;x) for the case ai > 0, bj > 0, p = q+ 1, 
when the sum is zero-balanced, i.e. when , ai = I bj. See also [B, 
p. 152]. 
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