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ABSTRACT. In this note, we present sharp inequalities relating hypergeometric analogues of the
arithmetic-geometric mean discussed in [5] and the power mean. The main result generalizes the
corresponding sharp inequality for the arithmetic-geometric mean established in [10].
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1. I NTRODUCTION

In 1799, Gauss made a remarkable discovery (see equation (1.2) below) regarding the closed
form of the compound mean created by iteratively applying the arithmetic meanA1 and geo-
metric meanA0, which are special cases of

Aλ(a, b) ≡
(

aλ + bλ

2

) 1
λ

(λ 6= 0),

with A0(a, b) ≡
√

ab for a, b > 0. A standard argument reveals that the power meanAλ is
an increasing function of its orderλ. In particular, the arithmetic and geometric means satisfy
the well-known inequalityA0(a, b) ≤ A1(a, b). From this it can be shown that the recursively
defined sequences given byan+1 = A1(an, bn), bn+1 = A0(an, bn) (with b0 = b < a = a0)
satisfy

A0(a, b) ≤ bn < bn+1 < an+1 < an ≤ A1(a, b) for all n ∈ N.

Thus{an}, {bn} are bounded and monotone sequences satisfying

lim
n→∞

an+1 = lim
n→∞

A1(an, bn) = lim
n→∞

A0(an, bn) = lim
n→∞

bn+1,

128-07

mailto:roger.w.barnard@ttu.edu
mailto:richards@southwestern.edu
http://www.ams.org/msc/


2 ROGERW. BARNARD AND KENDALL C. RICHARDS

by continuity and the fact that these means are strict (i.e.Aλ(a, b) = a iff a = b). It is this com-
mon limit which is used to define the compound meanA1⊗A0(a, b) ≡ limn→∞ an, commonly
referred to as thearithmetic-geometric meanAG ≡ A1 ⊗ A0. Moreover, the convergence is
quadratic for this particular compound iteration. For more on the historical development ofAG,
the article [1] by Almkvist and Berndt and the textPi and the AGMby Borwein and Borwein
[3] are lively and informative sources.

By construction,A0(a, b) < AG(a, b) < A1(a, b) for a > b > 0. However,A1 is not the best
possible power mean upper bound forAG. For example, since

a2 =
a+b
2

+
√

ab

2
=

(√
a +

√
b

2

)2

= A1/2(a, b),

it follows that
A0(a, b) < AG(a, b) < A1/2(a, b) for all a > b > 0.

Vamanamurthy and Vuorinen [10] showed that the order1/2 is sharp. As a result

(1.1) Aλ(a, b) < AG(a, b) < Aµ(a, b) for all a > b > 0

if and only if λ ≤ 0 andµ ≥ 1/2. The aim of this note is to discuss sharp inequalities that
parallel (1.1) for hypergeometric analogues of the arithmetic-geometric mean introduced in [5]
and described below.

A review of the above iterative process leading toAG reveals that any two continuous strict
meansM,N can be used to construct a compound mean, providedM is comparable toN (i.e.
M(a, b) ≥ N (a, b) for a ≥ b > 0). Moreover,M⊗N inherits standard mean properties such
as homogeneity (i.e.M(sa, sb) = sM(a, b) for s > 0) when possessed by bothM andN (see
[3, p. 244]). While the definition of the compound mean as the limit of an iterative process is
pleasingly simple, it is natural to pursue a closed-form expression to facilitate further analysis.
Gauss engaged in this pursuit forAG and his discovery yields the following elegant identity
(see [3, 9]):

(1.2) AG(1, r) =
1

2F1(1/2, 1/2; 1; 1− r2)
,

where2F1 is the Gaussian hypergeometric function

2F1(α, β; γ; z) ≡
∞∑

n=0

(α)n(β)n

(γ)nn!
zn, |z| < 1,

and(α)n ≡ Γ(α + n)/Γ(α) = α(α + 1) · · · (α + n− 1) for n ∈ N, (α)0 ≡ 1.
Using modular forms, Borwein et al. (see [5]) constructed quadratically convergent com-

pound means that can be expressed in closed form as

(1.3) M⊗N (1, r) =
1

2F1(1/2− s, 1/2 + s; 1; 1− rp)q
.

Motivated by a comparison with (1.2), compound means satisfying (1.3) are described in [5] as
hypergeometric analoguesof AG. Sharp inequalities similar to (1.1) for these “close relatives”
ofAG can be obtained by applying the following theorem from [8] involving thehypergeomet-
ric mean2F1(−a, b; c; r)1/a (discussed by Carlson in [6]) and the weighted power mean given
by

Aλ(ω; a, b) ≡
[
ω aλ + (1− ω) bλ

]1/λ
(λ 6= 0)

andA0(ω; a, b) ≡ aωb1−ω, with weightsω, 1− ω > 0.
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Theorem 1.1([8]). Suppose1 ≥ a, b > 0 andc > max{−a, b}. If c ≥ max{1− 2a, 2b}, then

Aλ(1− b/c; 1, 1− r) ≤ 2F1(−a, b; c; r)1/a, ∀ r ∈ (0, 1)

if and only ifλ ≤ a+c
1+c

. If c ≤ min{1− 2a, 2b}, then

Aλ(1− b/c; 1, 1− r) ≥ 2F1(−a, b; c; r)1/a, ∀ r ∈ (0, 1)

if and only ifλ ≥ a+c
1+c

.

2. M AIN RESULTS

The principal contribution of this note is the observation that Theorem 1.1 can be used to
obtain sharp upper bounds for the hypergeometric analogues ofAG. We also note that the cor-
responding lower bounds can be verified directly using elementary series techniques presented
here (or as a corollary to more involved developments as in [7]). Simultaneous sharp bounds of
this type are of independent interest.

Proposition 2.1. Suppose0 < α ≤ 1/2. Then for allr ∈ (0, 1)

(2.1) Aλ(α; 1, rα) <
1

2F1(α, 1− α; 1; 1− r)
< Aµ(α; 1, rα)

if and only ifλ ≤ 0 andµ ≥ (1− α)/(2α).

Proof. By the monotonicity ofλ 7→ Aλ, it suffices to verify the first inequality in (2.1) for the
elementary case thatλ = 0. It follows easily by induction that(α(1−α))n

n!
≥ (α)n(1−α)n

n!n!
for all

n ∈ N. Thus

(1− r)−α(1−α) =
∞∑

n=0

(α(1− α))n

n!
rn

>
∞∑

n=0

(α)n(1− α)n

n!n!
rn = 2F1(α, 1− α; 1; r).

This implies

A0(α; 1, (1− r)α) = (1− r)α(1−α) < 2F1(α, 1− α; 1; r)−1.

The replacement ofr by (1 − r) completes a proof of the established first inequality in (2.1)
for λ ≤ 0. Sharpness follows from the observation that ifλ > 0, thenAλ(α; 1, 0) > 0 while
2F1(α, 1− α; 1; r)−1 → 0 asr → 1− (see [9, p. 111]). Thus, forλ > 0 andr sufficiently close
to and less than 1, it follows that

Aλ(α; 1, (1− r)α)− 2F1(1/2, 1/2; 1; r)−1 > 0.

That is,λ ≤ 0 is necessary and sufficient for the first inequality in (2.1).
The proof of the second inequality is not as obvious. From Theorem 1.1, ifα = −a > 0,

β = 1− α > 0 andmax{α, β} < γ ≤ min{1 + 2α, 2β}, then for allr ∈ (0, 1)

2F1(α, β; γ; r)−1/α ≤
[(

1− β

γ

)
+

β

γ
(1− r)σ

] 1
σ

= Aσ

(
1− β

γ
; 1, 1− r

)
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for the sharp orderσ = (γ − α)/(1 + γ). (By the proof of Theorem 1.1 in [8], the above
inequality is strict unlessγ = 1 + 2α = 2β). The conditions for strict inequality are met for
0 < α ≤ 1/2, β = 1− α, γ = 1. Thus

2F1(α, 1− α; 1; 1− r)−1 < Aσ(α; 1, r)α for all r ∈ (0, 1),

if and only if σ ≥ (1− α)/2. Noting thatAσ(ω; 1, r)α = Aσ/α(ω; 1, rα), we obtain the second
inequality in (2.1) forµ = σ/α. �

Corollary 2.2. Suppose0 < α ≤ 1/2 andp > 0. Then for allr ∈ (0, 1)

(2.2) Aλ(α; 1, r) <
1

2F1(α, 1− α; 1; 1− rp)
1

αp

< Aµ(α; 1, r)

if and only ifλ ≤ 0 andµ ≥ p(1− α)/2.

Proof. Proposition 2.1 implies that for allr ∈ (0, 1) andq > 0

Aλ̂(α; 1, rpα)q <
1

2F1(α, 1− α; 1; 1− rp)q
< Aµ̂(α; 1, rpα)q

if and only if λ̂ ≤ 0 andµ̂ ≥ (1− α)/(2α). Since

Aµ̂(α; 1, rpα)q = Aµ̂/q(α; 1, rpqα),

the result follows by settingλ = λ̂/q andµ = µ̂/q for pqα = 1. �

It is interesting to note that properties of the important class ofzero-balancedhypergeometric
functions of the form2F1(a, b; a+ b; · ), which includes those appearing in (2.2), can be applied
(see [2, 4]) to obtain inequalities directly relating these compound means.

3. APPLICATIONS

Borwein et al. (see [4, 5] and the references therein) used rather involved modular equations
to discover meansMn,Nn that can be used to build hypergeometric analoguesAGn ≡Mn ⊗
Nn converging quadratically to closed-form expressions involving2F1(1/2− s, 1/2 + s; 1; · ).
In particular, they demonstrated that such compound means exist fors = 0, 1/6, 1/4, 1/3 (and
the trivial cases = 1/2). The resulting closed forms include

AG2(1, r) = 2F1(1/2, 1/2; 1; 1− r2)−1,

AG3(1, r) = 2F1(1/3, 2/3; 1; 1− r3)−1,

AG4(1, r) = 2F1(1/4, 3/4; 1; 1− r2)−2,

AG6(1, r) = 2F1(1/6, 5/6; 1; 1− r3)−2.

Notice that each2F1 satisfies the form appearing in Corollary 2.2. It can be shown thatAG2,
AG3, andAG4 are formed by compounding the following homogeneous means:

M2(a, b) ≡ a + b

2
, N2(a, b) ≡

√
ab,

M3(a, b) ≡ a + 2b

3
, N3(a, b) ≡ 3

√
b(a2 + ba + b2)

3
,

M4(a, b) ≡ a + 3b

4
, N4(a, b) ≡

√
b(a + b)

2
.
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(See [5] for the development of these and the more intricateM6,N6.) Applying Corollary 2.2
with α = 1/3, p = 3, and invoking homogeneity withr = b/a, we find

Aλ

(
1

3
; a, b

)
< AG3(a, b) < Aµ

(
1

3
; a, b

)
for all a > b > 0,

if and only if λ ≤ 0 andµ ≥ 1. In a similar fashion, withα = 1/4 andp = 2, (2.2) implies

Aλ

(
1

4
; a, b

)
< AG4(a, b) < Aµ

(
1

4
; a, b

)
for all a > b > 0,

if and only if λ ≤ 0 andµ ≥ 3/4. SinceA3/4(1/4; a, b) < A1(1/4; a, b) = M4(a, b), this
sharpens the known fact thatAG4(a, b) < M4(a, b). Next, withα = 1/6 andp = 3, Corollary
2.2 yields

Aλ

(
1

6
; a, b

)
< AG6(a, b) < Aµ

(
1

6
; a, b

)
for all a > b > 0,

if and only if λ ≤ 0 andµ ≥ 5/4. Finally, we note that another proof of the sharpness of (1.1)
can be obtained by applying Corollary 2.2 withα = 1/2 andp = 2.
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