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ABSTRACT. In this note, we present sharp inequalities relating hypergeometric analogues of the
arithmetic-geometric mean discussed_in [5] and the power mean. The main result generalizes the
corresponding sharp inequality for the arithmetic-geometric mean established in [10].
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1. INTRODUCTION

In 1799, Gauss made a remarkable discovery (see equiatipn (1.2) below) regarding the closed
form of the compound mean created by iteratively applying the arithmetic tdgamnd geo-
metric meanA,, which are special cases of

Avat) = (5 )i (A £0).

with Ay(a,b) = vab for a,b > 0. A standard argument reveals that the power mdaris

an increasing function of its ordex. In particular, the arithmetic and geometric means satisfy
the well-known inequality4,(a, b) < A;(a,b). From this it can be shown that the recursively
defined sequences given by, = A;(a,,b,), byys1 = Ao(an,b,) (With by = b < a = ag)
satisfy

Ao(a,b) < b, < bpi1 < apy1 < ap < Ai(a,b) foralln e N.
Thus{a,}, {b,} are bounded and monotone sequences satisfying

lim ap11 = lim A (an, b,) = lim Agy(a,,b,) = lim b,41,
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by continuity and the fact that these means are strictfi\¢a, b) = a iff a = b). Itis this com-
mon limit which is used to define the compound me&nz Ay(a, b) = lim,,_., a,,, commonly
referred to as tharithmetic-geometric meadG = A; ® Ay. Moreover, the convergence is
guadratic for this particular compound iteration. For more on the historical developméant,of
the article [1] by Almkvist and Berndt and the teRt and the AGMby Borwein and Borwein
[3] are lively and informative sources.

By construction,4,(a, b) < AG(a,b) < A(a,b) fora > b > 0. However,A, is not the best
possible power mean upper bound f#¢. For example, since

ot 4 \/ab B\
a2ZQTa: \/ET\/_ = Ay ja(a,b),

it follows that
Ao(a,b) < AG(a,b) < Ayjs(a,b) foralla >b>0.
Vamanamurthy and Vuorinen [10] showed that the ofde€ris sharp As a result

(1.1) Ay(a,b) < AG(a,b) < A,(a,b) foralla>0b>0

if and only if A\ < 0 andu > 1/2. The aim of this note is to discuss sharp inequalities that
parallel [1.1) for hypergeometric analogues of the arithmetic-geometric mean introduced in [5]
and described below.

A review of the above iterative process leading46' reveals that any two continuous strict
meansM, N can be used to construct a compound mean, provided comparable tdV (i.e.
M(a,b) > N(a,b) for a > b > 0). Moreover,M ® N inherits standard mean properties such
as homogeneity (i.eM(sa, sb) = sM(a,b) for s > 0) when possessed by batt and N (see
[3, p. 244]). While the definition of the compound mean as the limit of an iterative process is
pleasingly simple, it is natural to pursue a closed-form expression to facilitate further analysis.
Gauss engaged in this pursuit fdiG and his discovery yields the following elegant identity
(seell3.9]):

1
oF1(1/2,1/2;:1;1 — r2)’

where, F is the Gaussian hypergeometric function

2Fi(o, Biyi2) = ) %Z" 2| < 1,

n=0

(1.2) AG(1,7) =

and(a), =T'(a+n)/T(a) =ala+1)---(a+n—-1)forn e N, (o), = 1.
Using modular forms, Borwein et al. (se€ [5]) constructed quadratically convergent com-
pound means that can be expressed in closed form as

1
oF1(1/2 —5,1/2 4 s;1;1 — rP)a
Motivated by a comparison with (1.2), compound means satisfying (1.3) are described in [5] as
hypergeometric analogues AG. Sharp inequalities similar tp (1.1) for these “close relatives”

of AG can be obtained by applying the following theorem from [8] involvingllgpergeomet-
ric meanyFy(—a, b; ¢;r)"/* (discussed by Carlson ihl[6]) and the weighted power mean given

by

(1.3) MRN(1,r) =

Ar(w;a,b) = [wa* + (1 —w) b A (A#0)
and Ay (w; a,b) = a“b'~+, with weightsw, 1 — w > 0.
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Theorem 1.1([8]). Supposd > a, b > 0 andc > max{—a, b}. If ¢ > max{1 — 2a, 2b}, then
An(1=b/c;1,1 —7) < o Fy(—a,b; ;)Y Vre(0,1)

if and only ifA < ¢, If ¢ < min{1 — 2a, 20}, then
Ax(1=b/c;1,1 —71) > o F(—a, b; ;7)Y Vre (0,1)

if and only ifA > <.

2. MAIN RESULTS

The principal contribution of this note is the observation that Thegrein 1.1 can be used to
obtain sharp upper bounds for the hypergeometric analoguds;ofe also note that the cor-
responding lower bounds can be verified directly using elementary series techniques presented
here (or as a corollary to more involved developments &s in [7]). Simultaneous sharp bounds of
this type are of independent interest.

Proposition 2.1. Supposé® < « < 1/2. Then for allr € (0,1)
1

oFi (o, 1 —a;1;1 —r)

ifand only if A < O0andu > (1 — «)/(2a).

(2.1) Ar(o; 1,7%) <

< Au(a;1,7%)

Proof. By the monotonicity of\ — A,, it suffices to verify the first inequality iy (3.1) for the
elementary case that = 0. It follows easily by induction that*!'-2n > (Wl for 5|
n € N. Thus

u_@-aa-w:i_w—a»nrn

|
s n:
[eS)
>Z n'n' 'I"nIQFl(Oé,l—O{;l;T).

This implies
Ao 1, (1= 1)) = (1= r)207) <P (a,1— s 1;7) 7

The replacement of by (1 — ) completes a proof of the established first inequality in|(2.1)
for A < 0. Sharpness follows from the observation thak if- 0, then.4,(a;1,0) > 0 while
oFi(a,1 —a;1;7)" — 0asr — 1~ (seel[9, p. 111]). Thus, fox > 0 andr sufficiently close

to and less than 1, it follows that

Ax(a; 1, (1 — 1)) — o Fy(1/2,1/2; 1;7) 71 > 0.

That is,A < 0 is necessary and sufficient for the first inequality in}(2.1).
The proof of the second inequality is not as obvious. From Theprem lol=f—a > 0,
f=1—a>0andmax{a, f} <y < min{l + 2«, 23}, then for allr € (0,1)

il s Kl‘é%@(l_mo]i

g g

ZAU(l—é;l,l—r>
8
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for the sharp ordes = (v — a)/(1 + ). (By the proof of Theorerh 1]1 i [8], the above
inequality is strict unless = 1 + 2a = 2(3). The conditions for strict inequality are met for
0<a<1/2,=1—a,yv=1.Thus

oFi(a,1—a; 151 — 7)< Ay(a;1,7)* forallr € (0,1),
ifand only if o > (1 — «) /2. Noting thatA, (w; 1,7)* = A, /o (w; 1,7%), we obtain the second

inequality in [2.1) foru = o /a. O
Corollary 2.2. Suppos® < o < 1/2andp > 0. Then for allr € (0,1)

1
(2.2) Ay(a;1,7r) < — <A, (o;1,7)

oFi(a,1 —a;1;1 —rP)ar
ifand only if A < 0andu > p(1 — a)/2.
Proof. Propositiorj 2.]1 implies that for all€ (0,1) andg > 0

1

. 1 pQQ<
A/\(Oé, a ) 2F1<O(, 1— Q) 17 1— Tp)q

< Ap(a; 1,7P)1

ifand only if A < 0 andji > (1 — «)/(2a). Since
Aala; LrP) T = Apyq(a; 1,r799),
the result follows by setting = /g andu = ji/q for pgor = 1. O

Itis interesting to note that properties of the important clagead-balancedhypergeometric
functions of the form F (a, b; a+b; - ), which includes those appearingin (2.2), can be applied
(seel[2] 4]) to obtain inequalities directly relating these compound means.

3. APPLICATIONS

Borwein et al. (see [4,/5] and the references therein) used rather involved modular equations
to discover meang,,, \V,, that can be used to build hypergeometric analogdés = M,, ®
N,, converging quadratically to closed-form expressions involyifig1/2 — s,1/2 + s;1; -).
In particular, they demonstrated that such compound means existfar,1/6,1/4,1/3 (and
the trivial cases = 1/2). The resulting closed forms include

AGy(1,7) = 2F1(1/2,1/2; 11 — 1),
AGs(1,7) = oF1(1/3,2/3;1;1 — %)~ 1
AGy(L,7) = 2 F1(1/4,3/4 11 — 1) 7%,
AGs(1,7) = o F1(1/6,5/6;1;1 — )72,

Notice that each F; satisfies the form appearing in Corollary]2.2. It can be shown.#a,
AG3, and AG, are formed by compounding the following homogeneous means:

1

Mofab) =22 Nofa,b) = ab,

2 2
Mg(a,b)za—;%, Ng(a,b)E:\a/b(a +§a+b)7
Mifaty = 2 pa =D,
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(See[5] for the development of these and the more intriddte \s.) Applying Corollary[ 2.2
with o = 1/3, p = 3, and invoking homogeneity with= b/a, we find

1 1
Ay (5’ a, b) < AG3(a,b) < A, (g;a,b) foralla > b >0,
if and only if A < 0 andu > 1. In a similar fashion, withv = 1/4 andp = 2, (2.3) implies

4

if and only if A < 0 andp > 3/4. SinceAs/s(1/4;a,b) < Ai(1/4;a,b) = My(a,b), this
sharpens the known fact thaiz,(a, b) < My(a,b). Next, witha = 1/6 andp = 3, Corollary

27 yields

Ay (1, a, b) < AGy(a,b) < A, (i;a,b) foralla > b > 0,

1 1
Ay (6;%1)) < AGg(a,b) < A, (g;a,b) foralla > b > 0,

if and only if A < 0 andy > 5/4. Finally, we note that another proof of the sharpnes$ of (1.1)
can be obtained by applying Corolldry P.2 with= 1/2 andp = 2.
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