
Submitted exclusively to the London Mathematical Society
DOI: 10.1112/S0000000000000000

THE SHARP BOUND FOR THE DEFORMATION OF A DISC
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Abstract

We complete the determination of how far convex maps can deform discs in each of the three
classical geometries. The euclidean case was settled by Nehari in 1976, and the spherical case
by Mej́ıa and Pommerenke in 2000. We find the sharp bound on the Schwarzian derivative of
a hyperbolically convex function and thus complete the hyperbolic case. This problem was first
posed by Ma and Minda in a series of papers in the 1980’s. Mej́ıa and Pommerenke then produced
partial results and a conjecture as to the extremal function in 2000. Their function maps onto a
domain bounded by two proper geodesic sides, a “hyperbolic strip.” Applying a generalization of
the Julia variation and a critical Step Down Lemma, we show that there is an extremal function
mapping onto a domain with at most two geodesic sides. We then verify using special function
theory that among the remaining candidates, Mej́ıa and Pommerenke’s two-sided domain is in
fact extremal. This correlates nicely with the euclidean and spherically convex cases in which the
extremal is known to be a map onto a two-sided “strip.”

1. Introduction

Hyperbolic convexity is a natural generalization of euclidean convexity; a region
G in the Poincaré model D of the hyperbolic plane is hyperbolically convex if
for any two points in G, the hyperbolic geodesic segment between them lies entirely
in G. Such regions arise naturally in Teichmüller theory, for example, since the
fundamental domains of Fuchsian groups are hyperbolically convex [5,7].

A conformal map f : D → D is hyperbolically convex if its range is hyperboli-
cally convex. Hyperbolically convex functions have been extensively studied by Ma
and Minda [8, 9] and Mej́ıa and Pommerenke [10–14], as well as Beardon [5] and
Solynin [21, 22], among others. One frequently cited open problem is to find for
hyperbolically convex functions a sharp bound on the Schwarz norm

||Sf ||D = sup{|Sf (z)|η−2
D (z) : z ∈ D},

where ηD(z) = 1
1−|z|2 is the hyperbolic density of D and Sf is the Schwarzian

derivative

Sf =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarz norm of an analytic function f has long been a primary tool in
understanding its geometric behavior. For example, ||Sf ||D = 0 if and only if f
is a Möbius transformation. Thus ||Sf ||D is thought of as measuring how closely
the geometric behavior of f resembles that of a Möbius transformation. Since the
image of D under a Möbius transformation must be a disc, ||Sf ||D also measures
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Figure 1. The extremal domains for maximizing the Schwarz norm in euclidean (left),
spherical (center), and hyperbolic (right) geometry.

the difference between the conformal geometry of f(D) and that of a disc. Lehto
has used this idea to great effect, producing a pseudo-metric on the set of all simply
connected proper subdomains of C. See Lehto’s book [7], for example, for a detailed
discussion.

Nehari showed that if f(D) is convex (in the euclidean sense), then ||Sf ||D ≤ 2,
with equality if and only if f(D) is an “infinite strip” bounded by two parallel
lines [18]. Similarly, Mej́ıa and Pommerenke showed that the extremal domain for
spherically convex functions is a “spherical strip” [11].

The problem of finding a similar bound for the Schwarz norm of hyperbolically
convex functions has been intensely studied by a number of authors, including Ma,
Minda, Mej́ıa, Pommerenke and Vasilev [8–10,13–15]. Mej́ıa and Pommerenke [10]
found partial results on the bound and conjectured that the extremal value of ||Sf ||D
is attained by a map of the form

fα(z) = tan
(

α

∫z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
, (1.1)

where α = π
2K(cos θ) , and K is the elliptic integral of the first kind. The range of fα

is a “hyperbolic strip” bounded by two geodesics through ±i tanh
(

πK(sin θ)
4K(cos θ)

)
and

perpendicular to the imaginary axis. See Figure 1.
In this paper, we prove the following theorem, thus verifying Mej́ıa and Pom-

merenke’s conjecture and completing the classification of the extremal domains for
the Schwarzian in all three of the classical geometries.

Theorem 1.1. The maximal value of the Schwarz norm for hyperbolically con-
vex functions is Sfα

(0), where

fα(z) = tan
(

α

∫z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
, α =

π

2K(cos θ)
,

K is the elliptic integral of the first kind, and α is chosen so that cos θ is the unique
critical point of the function

g(s) = 4s2 − 2 +
π2

2K2(s)

on (0, 1).

A computer calculation produces a maximal value for the Schwarz norm for a
hyperbolically convex function of approximately 2.383635.
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Remark 1.1. Our variational techniques are used to argue that if an extremal
function exists, it must have certain properties. To guarantee the existence of an
extremal function, we restrict our attention to a dense collection of compact classes
(hyperbolically convex functions which map onto domains with at most a fixed num-
ber of (proper) sides) and argue that an extremal function exists for these classes.
Our methods show that the map fα defined in (1.1) is extremal in each such class for
a common value of α that is approximately equal to 0.5343598. Moreover, since the
classes are dense in the space of all hyperbolically convex functions, this fα must be
extremal for all hyperbolically convex functions. Indeed, up to disc automorphisms,
fα can be the only extremal function which maps onto a finite-sided hyperbolically
convex polygon. However, this does not rule out the possibility, that some function
onto a non-polygonal region could have the same Schwarz norm as fα. Thus our
methods do not guarantee uniqueness, but we conjecture that the extremal is in fact
unique.

In Section 2 we develop background material on hyperbolic convexity and the
Schwarzian derivative and discuss more of the history of the problem. In Section 3
we first show by an approximation argument that the problem can be reduced to
studying the value of the Schwarzian at the origin for those functions which map
onto finite-sided polygons.

We then give a generalization of the Julia Variational Formula that we will use
in Sections 4 and 5 to develop two variations which preserve hyperbolic convexity.
In Section 6 we apply these variations to show the extremal polygon has at most
two proper sides. Finally, in Section 7 we employ inequalities on elliptic integrals to
verify that the two-sided domain conjectured by Mej́ıa and Pommerenke [10,12,14]
is indeed extremal.

We would like to thank the Phillip Brown, the referee and the editor for their
very valuable suggestions.

2. Hyperbolic Convexity and Schwarzians

2.1. Hyperbolic Geometry

The unit disc D equipped with the metric

dh(z, w) = inf
{∫

γ

1
1− |z|2

|dz| : γ is a rectifiable curve joining z and w

}
forms a model for the hyperbolic plane [5]. Notice that the Poincaré density

ηD(z) =
1

1− |z|2

goes to infinity as z moves toward the boundary of the disc. Consequently, inte-
grating ηD over curves near the boundary produces large values of the integral. If
z and w do not lie on a ray through the origin, then the euclidean line segment
joining them will produce a larger integral than a curve which bends away from the
boundary. In fact, the infimum will be achieved by an arc of a circle perpendicular
to ∂D. Such curves are hyperbolic geodesics. Since disc automorphisms

M(z) = eiθ z − a

1− az
,
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where θ ∈ [0, 2π) and a ∈ D, preserve circles orthogonal to ∂D, they are precisely
the isometries of D.

Any region G conformally equivalent to D also carries a hyperbolic metric defined
in the same manner using the density

ηG(z) =
|f ′(z)|

1− |f(z)|2
,

where f is a conformal map of G onto D. Notice that it doesn’t matter which map
f is chosen as any two such maps must differ by a disc automorphism.

2.2. Convexity

The euclidean notion of convexity generalizes to hyperbolic regions in an obvious
manner.

Definition 2.1. A region Ω ⊂ D is hyperbolically convex if for any two
points z, w ∈ Ω, the hyperbolic geodesic segment joining z and w lies completely in
Ω.

Notice that since the disc automorphisms are the isometries of the hyperbolic
plane, the image M(Ω) of Ω under a disc automorphism M is hyperbolically convex
if and only if Ω is. The fundamental domains of discrete groups of disc automor-
phisms provide a great many useful examples of hyperbolically convex domains.
See Beardon [5] for an extensive discussion of these regions.

We will call a hyperbolically convex region Ω bounded by a finite number of either
geodesic arcs lying inside D or arcs of ∂D a hyperbolically convex polygon. We
call the bounding geodesic arcs proper sides and the arcs of ∂D improper sides.
For n ≥ 0, we let

Kn = {hyperbolically convex polygons containing 0
and having at most n proper sides} ∪ {0}.

Definition 2.2. A conformal map f : D → Ω is called a hyperbolically con-
vex function if its range is hyperbolically convex. We let H denote the class of all
hyperbolically convex functions that fix the origin and let Hn denote the subset of
functions whose range is in Kn.

2.3. Schwarzians

Much of the geometric behavior of an analytic function is described by its Schwarzian
derivative [6, 7].

Definition 2.3. The Schwarzian derivative (or just “Schwarzian”) of an
analytic function f is

Sf =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

.

Proposition 2.4. The Schwarzian of an analytic function is identically 0 if
and only if it is a Möbius transformation. Moreover, the Schwarzian satisfies the
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chain rule

Sf◦g = (Sf ◦ g) (g′)2 + Sg.

Thus, if M is Möbius, then

SM◦g = Sg.

and

Sf◦M = (Sf ◦M) (M ′)2 .

Hence the Schwarzian is unchanged by post-composition with a Möbius transfor-
mation, but pre-composition produces an extra quadratic factor.

Definition 2.5. Let f be defined on a simply connected region G ( C. The
Schwarz norm of f is given by

||Sf ||G = sup
z∈G

η−2
G (z)|Sf (z)|.

By taking into account the density of the hyperbolic metric, the Schwarz norm
is completely Möbius invariant. It is easy to show for any Möbius M that

ηM−1(G)(z) = ηG(M(z))|M ′(z)|,

and thus
|Sf◦M (z)|
η2

M−1(G)(z)
=
|Sf (M(z))| |M ′(z)|2

η2
G(M(z)) |M ′(z)|2

=
|Sf (w)|
η2

G(w)
.

where w = M(z). Thus

||Sf ||G = ||Sf◦M ||M−1(G)

and

||Sf ||G = ||SM◦f ||G.

In particular, notice that ||Sf ||D is unchanged by disc automorphisms.

2.4. Computing the Schwarz Norm of a Function

Because of the Möbius invariance of the Schwarz norm, we can change the domain
of a function so that the hyperbolic density or the expression of the function itself
is simpler.

Example 2.6. Consider the function

g(z) =
√

z − 1√
z + 1

from the upper half plane H onto the upper half-disc D+ = {z ∈ D : Im z > 0}.
Notice that any hyperbolically convex domain bounded by exactly one proper side can
be mapped onto D+ by a disc automorphism. Moreover, g could have been defined on
D by precomposition with a Möbius transformation; however, that would not change
the Schwarz norm. Consequently, the Schwarz norm for any hyperbolically convex
function whose image is bounded by exactly one proper side must be equal to ||Sg||H.

Next notice that g itself is the composition of h(z) =
√

z and another Möbius
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transformation. Thus ||Sg||H = ||Sh||H. It is now easy to compute

Sh(z) =
3

8z2
.

The hyperbolic density on H has an especially useful representation

ηH(z) =
1

2 Im z
.

Since both ηH and Sh are invariant under translations of the form x + iy → (x +
a) + iy,

||Sh||H = sup
z∈H

η−2(z)|Sh(z)| = sup
y>0

4y2

∣∣∣∣ 3
8(iy)2

∣∣∣∣ = 3
2
.

2.5. Geometry of the Schwarzian

Since ||Sf ||D = 0 if and only if f is Möbius, we can view ||Sf ||D as measuring
how close f is to being a Möbius transformation. Since any Möbius transformation
would send D to another disc or half plane, ||Sf ||D also measures the amount of
deformation between f(D) and a disc. This notion was formalized by Lehto [7] to
produce a pseudometric between regions conformally equivalent to a disc.

There are a number of results that show that if ||Sf ||D is small, then f(D) pos-
sesses disc-like properties. The two most important for our purposes are due to
Nehari [16,18].

Theorem 2.7. If ||Sf ||D < 2, then f is univalent and f(D) is a quasidisc.
Moreover, if f is univalent, then ||Sf ||D ≤ 6.

Theorem 2.8. If f(D) is convex (in the euclidean sense), then ||Sf ||D ≤ 2,
with equality if and only if f(D) is an infinite strip.

Mej́ıa and Pommerenke [11] proved a similar result for spherically convex regions.

Theorem 2.9. If f(D) is spherically convex, then

||Sf ||D ≤ 2(1− σ(f)2),

where

σ(f) = max
z∈D

(1− |z|2) |f ′|
1 + |f |2

.

For a fixed value of σ(f), this maximum value of ||Sf ||D is achieved by a map of
the form fφ(z) = i tanh

(
2φ
π Log

(
1+z
1−z

))
which takes D onto a “spherical strip,”

that is, a lune bounded by great circles through ±i and making an angle 2φ with the
imaginary axis.

Thus, convex and spherically convex regions cannot be deformed too far from
being a disc in the sense of the Lehto pseudometric, and the regions with the
greatest amount of deformation are strips. It has been conjectured by Mej́ıa and
Pommerenke [10,12,14] that the same must hold for hyperbolically convex regions.

In particular, Mej́ıa and Pommerenke conjectured that the maximum value of
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αf

Figure 2. The hyperbolically convex extremal function for maximizing the Schwarz
norm. The extremal domain consists of an odd symmetric polygon bounded by two proper

geodesic sides - a “hyperbolic strip.”

||Sf ||D over all hyperbolically convex maps f is achieved by

fα(z) = tan
(

α

∫z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
, α =

π

2K(cos θ)
, (2.1)

where K is the elliptic integral of the first kind. The range of fα is a “hyperbolic
strip” bounded by two geodesics through ±i tanh

(
πK(sin θ)
4K(cos θ)

)
. See Figure 2.

3. Preliminary Simplifications

3.1. Reduction to Polygonal Domains

As a first step toward verifying Mej́ıa and Pommerenke’s conjecture, we first
reduce the problem to hyperbolically convex polygons.

Lemma 3.1. To determine the extremal value of ||Sf ||D over H, it suffices to
determine the extremal value over each Hn. Moreover, each Hn is compact.

Proof.
From its definition as a supremum, it follows that the Schwarz norm is a lower

semi-continuous functional on H; that is, for any point f ∈ H, if {fn} is a sequence
in H which converges to f (locally uniformly on compacta), then lim inf||Sfn

||D ≥
||Sf ||D. To see this, let ε > 0. Then, for any compact subset K of D, there exists
an index N such that for n ≥ N we have ||Sfn|int K

||D ≥ ||Sf |int K
||D − ε. Hence, for

n ≥ N we have ||Sfn
||D ≥ ||Sfn|int K

||D ≥ ||Sf |int K
||D − ε. Hence, lim inf||Sfn

||D ≥
||Sf |int K

||D − ε. Since K was abritrary we must have, lim inf||Sfn
||D ≥ ||Sf ||D − ε.

Since ε was arbitrary, we have lim inf||Sfn ||D ≥ ||Sf ||D.
For a fixed n, a sequence Dk of hyperbolically convex polygonal domains with

at most n (proper) sides can converge in the sense of Carathéodory [20] only to
another polygonal domain D0, where D0 has at most n (proper) sides. This follows
because if D0 had more than n proper sides, then (from the boundary behavior) the
Carathéodory convergence [20] would imply, for k sufficiently large, that Dk would
have at least n + 1 proper sides. From Carathéodory ’s Convergence Theorem, this
carries over to hyperbolically convex functions in Hn. Thus, Hn is compact.

On the other hand, the boundary Γ of a hyperbolically convex domain D can
be approximated by geodesics lying in D by connecting points on Γ sufficiently
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close together with geodesics lying in D. It follows that we can find a sequence of
hyperbolically convex polygons that converge, in the sense of Carathéodory, to D.
Hence, the mapping functions onto these polygons converge locally uniformly to
the map onto D. As a result, ∪nHn is dense in H.

Thus any extremal function in H can be approximated by functions in Hn. As a
result, it suffices to determine the supremum of ||Sf ||D in each Hn.

3.2. Reduction to Sf (0)

Recall that the Schwarz norm was defined by taking the supremum of |Sf (z|
(
1− |z|2

)2
over all points z ∈ D. Since |Sf (z|

(
1− |z|2

)2 is invariant under disc automorphisms,
we need only consider |Sf (0)|.

Lemma 3.2. For each n ≥ 2,

sup
f∈Hn

||Sf ||D = max
f∈Hn

|Sf (0)|.

Proof. Recall that every f ∈ Hn is conjugate by a Möbius transformation to
a map g : H → H which is hyperbolically convex in the upper half plane model.
Suppose g maps H onto a curvilinear polygon with angles α1π, α2π, . . . , αnπ, and
the preimages of the vertices are a1, a2, . . . , an ∈ R. Then the Schwarzian of g has
the following very useful representation (see Nehari [17])

Sg(z) =
1
2

n∑
k=1

1− α2
k

(z − ak)2
+

n∑
k=1

βk

z − ak
, (3.1)

where β1, β2, . . . , βn are real constants determined by the angles. Thus

||Sg||H = sup
z∈H

4(Im z)2
∣∣∣∣∣12

n∑
k=1

1− α2
k

(z − ak)2
+

n∑
k=1

βk

z − ak

∣∣∣∣∣ .
Notice however, that

lim
z→a∈R
a6=ak

4(Im z)2
∣∣∣∣∣12

n∑
k=1

1− α2
k

(z − ak)2
+

n∑
k=1

βk

z − ak

∣∣∣∣∣ = 0

and

lim
z→ak

4(Im z)2
∣∣∣∣∣12

n∑
k=1

1− α2
k

(z − ak)2
+

n∑
k=1

βk

z − ak

∣∣∣∣∣ = 2(1− α2
k) < 2.

Applying the relationships between αi and βi given by Nehari [17], we can similarly
show

lim
z→∞

4(Im z)2
∣∣∣∣∣12

n∑
k=1

1− α2
k

(z − ak)2
+

n∑
k=1

βk

z − ak

∣∣∣∣∣
is also bounded by 2.

In view of the invariance of the Schwarz norm under Möbius transformations,
the same bounds must be true for mappings of D onto hyperbolic polygons in D.
It is not difficult [10] to construct mappings of D onto hyperbolic polygons with
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||Sf ||D ≥ 2. Thus if f maps D onto a hyperbolic polygon and f is extremal for
maximizing the Schwarz norm, then the supremum in the definition of the Schwarz
norm must in fact be attained at some interior point.

Suppose f is extremal in Hn for maximizing the Schwarz norm and

max
z∈D

(1− |z|2)2|Sf (z)| = (1− |z0|2)2|Sf (z0)|.

Since (1− |z|2)2|Sf (z)| is invariant under Möbius transformations, precomposing f
with a disc automorphism which sends zero to z0 will produce a map f0 which has
the same Schwarz norm as f but for which ||Sf0 || = |Sf0(0)|.

Notice by precomposing f with a disc automorphism, our new map f0 need not
fix 0 and thus need not remain in Hn. However, by postcomposing f0 with a disc
automorphism which sends f0(0) to 0 and then rotates so that Sf0(0) is real, we
can constuct an extremal function F ∈ Hn with

||Sf ||D = ||SF ||D = SF (0).

Since the functional Sf (0) is continuous on Hn and Hn is compact, then

sup
f∈Hn

||Sf ||D = sup
f∈Hn

Sf (0) = max
f∈Hn

Sf (0).

4. Variational Techniques

4.1. The Julia Variation and Extensions

Let Ω be a region bounded by a piecewise analytic curve Γ and φ(w) be a positive
piecewise C1 function on Γ, vanishing where Γ is not analytic. Denote the outward
pointing unit normal vector at each point w where Γ is smooth by n(w). For ε near
0, construct a new curve

Γε = {w + εφ(w)n(w) : w ∈ Γ}

and let Ωε be the new region bounded by Γε.
For our purposes, we may assume that Ω is simply connected. Thus if ε is suf-

ficiently small and ε > 0, then Γ is “pushed outside” the domain, while if ε < 0,
then Γ is “pushed inside” the domain. With the above notation, we state Julia’s
variational formula.

Julia Variational Formula. Let f be a conformal map from D onto Ω with
f(0) = 0, and suppose that f has a continuous extension to ∂D, which we also
denote by f . Then for ε sufficiently small, a similarly normalized conformal map
fε from D onto Ωε, with fε(0) = 0, is given by

fε(z) = f(z) +
εzf ′(z)

2π

∫
∂D

1 + ξz

1− ξz
dΨ + E(ε, z), (4.1)

where dΨ = φ(f(ξ))
|f ′(ξ)| dθ and ξ = eiθ and E(ε, z) is o(ε) for z on compact subsets of

D and is continuously differentiable in ε for each fixed z ∈ D.
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Γ

γ
f

f
ε

Γε

Figure 3. The variation produced by “pushing out” a side.

Notice the restriction that φ vanish at the points of non-smoothness of ∂Ω was a
strong one. It implies, for example, that while we could vary the (proper) sides of a
hyperbolic polygon, there is a difficulty at the vertices. However, it follows from the
work of the first author and J. Lewis [3] that such an extended version of the Julia
variation is possible (except at internal cusps, ie., where two proper sides meet at
an angle of measure 2π) which allows f ′ to vanish at the corners. Moreover, they
showed that the resulting function will agree with the Julia variational formula on
compact subsets up to o(ε) terms. This will allow us to create variations which
avoid any problems at the corners and preserve hyperbolic convexity.

4.2. Two Variations

We next describe in detail two variations for functions in Hn which preserve
hyperbolic convexity. First, if f maps onto a hyperbolically convex polygon Ω with
a proper side Γ, we can “push” Γ to a nearby geodesic Γε in such a way that the
varied function fε will still be hyperbolically convex. See Figure 3.

Lemma 4.1. Suppose f ∈ Hn and f is not constant nor the identity map. If
Γ = f(γ) is a proper side of Ω = f(D), then for ε sufficiently small there exists
a variation fε ∈ Hn which “pushes” Γ to a nearby geodesic Γε, where Γε → Γ as
ε → 0. This variation, fε, agrees with the Julia Variational Formula on compact
subsets up to o(ε) terms.

Proof.
Let Γ be a (proper) side of the boundary of Ω which lies on a circle Λ. Without

loss of generality we can assume that Ω has been rotated so that the center of Λ
lies on the positive real-axis. To define our variation first map Ω into the right half-
plane under the map h(z) = 1+z

1−z and let Υ = h(Γ) and ∆ = h(Ω). Let g = h ◦ f .
We note that ∆ = g(D).

Under h, the geodesics in D map to arcs in the right half-plane which lie on circles
whose centers are on the imaginary axis. We note that h(Λ) is a circle centered at
the origin. Let the arc ÂB denote Υ on the circle h(Λ) and let rΛ be the radius of
h(Λ).

Now, considering the case where ε > 0, i.e., the case where we “push out” a
(proper) side of the domain by a euclidean distance ε and thus enlarge the domain.
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A

0

D

σ

C

B

σ A

B

Figure 4. The geodesics in the right half plane produced by our variation.

Let the circle χ of radius r = rΛ − ε be obtained by multiplying h(Λ) by 1− ε/rΛ

and let ĈD be the arc of χ which connects the extensions of the circles defined
by the images of the Γ’s adjacent geodesics under h, when A and B are in the
right-half plane. If A or B is on the imaginary axis, then C or D will be the point
on the imaginary axis where χ intersects the imaginary axis, resp. In this case, the
interval [A,C] or [D,B] will be added to the boundary of our varied domain, resp.

Now recall in the original Julia variation formula, the function φ must be 0 at
the end points of ÂB. Thus at each end of ÂB, we construct approximating smooth
curves σA and σB which connect ÂB to ĈD such that σA and σB are orthogonal
to ÂB at the endpoints A and B and σA and σB intersect ĈD tangentially at
points C ′ and D′, resp. They can be chosen to be within ε2 of the arc they are
approximating. See Figure 4.

Now for w ∈ ÂB let n(w) be the outward unit normal to g(Λ) and define φ(w) =
|w∗ − w| where w∗ is the nearest point on σA ∪ Ĉ ′D′ ∪ σB along the normal n(w).
Let the domain ∆∗

ε be the variation of ∆ where the arc ÂB on the boundary of ∆
has been replaced by σA ∪ Ĉ ′D′ ∪ σB . To obtain a variation of ∆ which preserves
hyperbolic convexity, let the domain ∆ε be the variation of ∆ where the arc ÂB
has been replaced by ĈD and connecting intervals, if necessary. Let g∗ε and gε

be the corresponding mapping functions onto ∆∗
ε and ∆ε, resp. Let φ(w) = 0 for

w ∈ ∂∆ \ ÂB. Then, by the Julia Variational Formula, g∗ε satisfies

g∗ε (z) = g(z) +
εzg′(z)

2π

∫
∂D

1 + ξz

1− ξz
dΨ + o(ε),

on compact subsets, where dΨ = φ(g(ξ))
|g′(ξ)| dθ and ξ = eiθ. Rewriting g as h ◦ f , we

have
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z∗

z

z∗
ε

εΓ

∗
Γ

f
ε

f

0

Figure 5. The variation produced by pushing in one end of a side.

g∗ε (z) = h(f(z)) +
εzh′(f(z))f ′(z)

2π

∫
∂D

1 + ξz

1− ξz
dΨ + o(ε),

on compact subsets, where dΨ = φ(h(f(ξ)))
|h′f((ξ))f ′(ξ)| dθ and ξ = eiθ.

The function g∗ε was constructed so that it satisfies the requirements for repre-
sentation by the Julia Variational Formula. The function gε was constructed so that
image, gε(D), was hyperbolically convex. The arguments used in [3], pp 348-356,
show that g∗ε − gε = o(ε) on compact subsets. Then, defining fε = h−1 ◦ gε ≡ gε−1

gε+1 ,
a straightforward argument shows that

fε(z) = f(z) +
εzf ′(z)

2π

∫
∂D

1 + ξz

1− ξz
dΨ + o(ε)

on compact subsets, where Ψ is a real measure on ∂D and ξ = eiθ. Thus, fε maps
D onto a hyperbolically convex domain, i.e., fε ∈ Hn for ε sufficiently small.

A similar variation can be defined for ε < 0 that “pushes in” the (proper) side Γ
to a nearby geodesic.

If Γ intersects another side Γ∗ at z∗, and z0 ∈ Γ, then we can vary f so as to
replace the portion of Γ between z0 and z∗ with a new geodesic between z0 and
some z∗ε ∈ Γ∗. See Figure 5. A similar argument to the above then gives:

Lemma 4.2. Suppose f ∈ Hn and f is not constant nor the identity map, and
Γ = f(γ) is a proper side of f(D) meeting a side Γ∗. Then, there exists a variation
fε ∈ Hn+1 which adds a proper side to f(D) by pushing one end of Γ to a nearby
side Γε. That is, fε(D) is a hyperbolic polygon whose sides are the same as those
of f , except that one end of Γ has been replaced by Γε and Γ∗ has been shortened.
Moreover, fε agrees with the Julia Variational Formula on compact subsets up to
o(ε) terms.

Remark 4.3. Notice that in order to maintain hyperbolic convexity, we can
only push in the “end” of a side, that is, a subarc that ends at a vertex of the
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polygon. However, we can choose this subarc to be as long, or more importantly, as
short, as we wish.

5. The Effect of the Variations on the Schwarzian

Recall from Lemma 3.2, we can assume our extremal function satisfies ||Sf ||D =
Sf (0). In this case, the Schwarz norm has a simple representation in terms of power
series coefficients [7, 10].

Proposition 5.1. If f = α(z + a2z
2 + a3z

3 + . . . ), then

Sf (0) = 6(a3 − a2
2).

Proof.
Since f ′(0) = α, f ′′(0) = 2αa2, and f ′′′(0) = 6αa3,

d

dz

f ′′(z)
f ′(z)

∣∣∣∣
z=0

=
f ′(0)f ′′′(0)− (f ′′(0))2

(f ′(0))2

=
6α2a3 − 4α2a2

2

α2

= 6a3 − 4a2
2.

Also,
1
2

(
f ′′(0)
f ′(0)

)2

=
1
2

4α2a2
2

α2
= 2a2

2.

Consequently,

Sf (0) =

((
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
)

= 6(a3 − a2
2).

Now applying the representation for the variations provided by the Julia Formula,
we can calculate to first order in ε the Schwarzian of our varied functions.

Lemma 5.2. If f(z) = α(z+a2z
2+a3z

3+. . . ) ∈ Hn and either of the variations
described in Lemma 4.1 and Lemma 4.2 are applied to f , then the new function fε(z)
has Sfε(0) given by

6

((
a3 +

ε

2π

∫
Γ

(3a3 + 4a2ξ + 2ξ2) dΨ
)
−
(

a2 +
ε

2π

∫
Γ

(2a2 + 2ξ) dΨ
)2
)

+ o(ε).

Proof.
Let γ be the preimage in ∂D of the portion of the boundary we are varying.

Expanding 1+ξz
1−ξz as a series, we obtain on compact subsets

fε(z) = f(z) +
εzf ′(z)

2π

∫
γ

1 + ξz

1− ξz
dΨ + o(ε)

= f(z) +
εzf ′(z)

2π

∫
γ

(1 + 2ξz + 2ξ2z2 + 2ξ3z2 + . . . ) dΨ + o(ε).
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Now since zf ′(z) = α(z + 2a2z
2 + 3a3z

3 + . . . ), we have

fε(z) =f(z) +
εα

2π

∫
γ

[z + 2(a2 + ξ)z2 + (3a3 + 4a2ξ + 2ξ2)z3 + . . . ] dΨ + o(ε)

on compact subsets.
Finally, gathering the powers of z, we arrive at

fε(z) = α

((
1 +

ε

2π

∫
γ

dΨ
)

z +
(

a2 +
ε

2π

∫
γ

2(a2 + ξ) dΨ
)

z2 (5.1)

+
(

a3 +
ε

2π

∫
γ

(3a3 + 4a2ξ + 2ξ2) dΨ
)

z3 + . . .

)
+ o(ε)

on compact subsets.
Hence by Proposition 5.1,

1
6
Sfε

(0) =
(

a3 +
ε

2π

∫
γ

(3a3 + 4a2ξ + 2ξ2) dΨ
)
−(

a2 +
ε

2π

∫
γ

2(a2 + ξ) dΨ
)2

+ o(ε).

Taking the derivative of the new Schwarzian with respect to ε, we have

1
6

∂

∂ε
Sfε

(0) =
1
2π

∫
γ

(3a3 + 4a2ξ + 2ξ2) dΨ

− 2a2
1
2π

∫
γ

2(a2 + ξ) dΨ− 2ε

2π

(∫
γ

2(a2 + z) dΨ
)2

+ . . .

+ o(1).

When ε = 0, the derivative becomes

∂

∂ε
Sfε

(0)
∣∣∣∣
ε=0

=
6
2π

∫
γ

(3a3 − 4a2
2 + 2ξ2) dΨ. (5.2)

6. Reduction to at Most Two Proper Sides

With these computations, we can now show that any function mapping onto a
region with more than two disjoint proper sides cannot be extremal. We do this in
two steps, first reducing the extremal domain to one having at most four proper
sides, then employing our Step Down Lemma to further reduce the possibilities to
at most two proper sides.

Lemma 6.1. Suppose f ∈ Hn is a hyperbolic convex function onto a region with
more than four proper sides, then f cannot be extremal for maximizing the Schwarz
norm.

Proof. Suppose f ∈ Hn is extremal, that ||Sf ||D = Sf (0) and that f maps onto
a region with more than four proper sides. We will apply our variations to show
that f cannot be extremal.
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Recall from equation (5.2) that for either of our variations along a side Γ = f(γ)

∂

∂ε
Sfε(0)

∣∣∣∣
ε=0

=
6
2π

∫
γ

(
3a3 − 4a2

2 + 2ξ2
)
dΨ.

By composing fε with a rotation (which will not change Sfε), we may assume

∂

∂ε
Sfε(0)

∣∣∣∣
ε=0

=
6
2π

∫
γ

Re{3a3 − 4a2
2 + 2ξ2} dΨ.

But now notice that K(ξ) = 3a3 − 4a2
2 + 2ξ2 wraps {|ξ| = 1} twice around the

image circle C. If K(γ) lies completely in the right half plane, then we push the
(proper) side Γ out, with ε > 0 as in Lemma 4.1. Then, since ReK(γ) > 0 for
γ = f−1(Γ), we will have that

∫
γ

Re{3a3 − 4a2
2 + 2ξ2} dΨ > 0. Similarly, if K(γ)

lies completely in the left half plane, Γ can be pushed in so that
∫

γ
Re{3a3− 4a2

2 +
2ξ2} dΨ < 0.

On the other hand, if f is extremal, then ∂
∂εSfε

(0)|ε=0 must equal 0. Otherwise,

||Sf ||D = Sf (0) < Sfε
(0) ≤ ||Sfε

||D
for some ε sufficiently near 0. Thus K(ξ) must cross the imaginary axis at least once
for every proper side.

But as ξ travels along ∂D, K(ξ) crosses the imaginary axis at most 4 times.
Consequently, the range of our extremal function f can have at most 4 proper
sides.

Remark 6.2. We note that the technique employed thus far is fairly general
and can be used to show that an extremal domain for general extremal problems has
at most a small number of proper sides. But usually the number of parameters is
still too large to completely determine the extremal domain. The following critical
Step Down Lemma enables us to further reduce the number of proper sides to the
point that the actual maps are computable.

Step Down Lemma. A hyperbolically convex function f ∈ Hn onto a region
with more than two proper sides cannot be extremal for maximizing the Schwarz
norm.

Proof.
If f ∈ Hn is extremal, then by Lemma 6.1, f(D) can have at most four proper

sides. Thus f ∈ H4 ( H5.
If f(D) has exactly four proper sides, then an application of the pigeonhole prin-

ciple implies that one end point K(z∗) of one of the arcs K(γ) must lie in the left
half plane. Thus for some z0 sufficiently close to z∗, the image under K of the subarc
γ0 of γ joining z0 and z∗ lies completely in the left half plane. As a result,∫

γ0

Re{3a3 − 4a2
2 + 2ξ2} dΨ < 0.

Applying Lemma 4.2 to push the corresponding arc Γ0 = f(γ0) “in” (varying
by -ε), will then produce both an additional proper side and an increase in the
Schwarzian since −

∫
γ
K(ξ) dΨ > 0. This varied function fε will thus lie in H5 \H4

and have a larger Schwarz norm than any function in H4. But this contradicts
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Lemma 6.1, since the extremal function in H5 can have at most 4 proper sides. As
a result, the extremal domain for a map in H5 can have at most 3 proper sides.

However, if the extremal domain has exactly 3 proper sides, some endpoint must
again lie in the left half-plane. As before, we may add a proper side and increase
the Schwarz norm. Thus the extremal domain can have at most two proper sides.

7. Computing the Schwarz Norms for One- and Two-Sided Functions

Now we need only compute the Schwarz norm for the remaining possible extremal
functions to complete the proof of our theorem. First, however, we need a couple
of facts about the behavior of elliptic integrals [1, pp. 53-54].

Lemma 7.1. If K and E are the complete elliptic integrals of the first and
second kind, respectively, then

(i) For each c ∈ [1/2, 2], the function g(x) = (
√

1− x2)cK(x) is decreasing from
[0, 1) onto (0, π/2].

(ii) The function

h(t) =
E(t)− (1− t2)K(t)

t2

is increasing from (0, 1) onto (π/4, 1).

With this lemma, we can prove our main result:

Theorem 1.1. The maximal value of the Schwarz norm for hyperbolically con-
vex functions is Sfα(0), where

fα(z) = tan
(

α

∫z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
, α =

π

2K(cos θ)
,

K is the elliptic integral of the first kind, and α is chosen so that cos θ is the unique
critical point of the function

g(s) = 4s2 − 2 +
π2

2K2(s)

on (0, 1).

Numerical calculation indicates the extremal value of the Schwarz norm is ap-
proximately 2.383635 and is achieved by Sfα(0) with α ≈ 0.5343598.

Proof.
By Lemma 6.1 and the Step Down Lemma, the extremal function in Hn, n >

2, cannot map onto a region with more than 2 proper sides. Thus we need only
determine whether the extremal function has 0, 1, or 2 proper sides.

The only hyperbolically convex functions onto a region with no proper sides are
disc automorphisms which have Schwarz norm equal to 0.

Any hyperbolically convex function onto a region with exactly one proper side
differs from the function g of Example 2.6 by composition with Möbius transfor-
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mations, and hence has the same Schwarz norm, namely 3/2. Note that Mej́ıa and
Pommerenke [10] also explicitly computed these maps and their Schwarz norm.

Next notice that for two-sided domains whose proper sides intersect inside the
disc, the intersection point can be moved to the origin by a disc automorphism.
Moreover, domains bounded by two proper sides which do not intersect can be
mapped via a disc automorphism onto an odd symmetric domain, as in figure 2,
and domains whose two proper sides intersect on the boundary of the disc can be
approximated by domains whose (proper) sides do not intersect. Thus there are
two types of regions bounded by exactly two proper sides that we must consider:

(i) Domains in which the two proper sides intersect at the origin
(ii) Odd symmetric domains in which the proper sides do not intersect
For case ((i)), consider the family of maps

gα(z) =
(√

z − 1√
z + 1

)α

, 0 < α < 1

from the upper half plane onto a sector of D with an opening of angle απ at the
origin. Functions which map onto domains of the first type can be obtained from
one of the maps gα by composition with Möbius transformations, thus we may limit
our attention to this family.

Computation and simplification reveals

Sgα(z) =
3z2 − (2 + 4α2)z + 3

8z2(z − 1)2
.

Because both the Schwarzian and the hyperbolic density ηH(z) = 1/(2 Im z) are in-
variant under horizontal translation, we need only consider pure imaginary numbers
when computing the Schwarz norm. Thus

||Sgα
||H =sup

z∈H
4 (Im z)2

∣∣∣∣3z2 − (2 + 4α2)z + 3
8z2(z − 1)2

∣∣∣∣
= sup

y>0

1
2
|3y2 + (2 + 4α2)iy − 3|

y2 + 1
.

The derivative of the right hand side with respect to y is

−8(α2 − 1)(α2 + 2)(y3 − y)√
9y4 + (16α4 + 16α2 − 14)y2 + 9(y2 + 1)2

.

Clearly the denominator is positive for all y > 0, 0 < α < 1. Moreover, for all
0 < α < 1 the numerator is negative for 0 < y < 1 and positive for 1 < y < ∞.
Consequently, ηH(iy)|Sgα(iy)| is decreasing on 0 < y < 1 and increasing on 1 < y <
∞. Thus the supremum in the definition of ||Sgα ||H must occur as y approaches 0
or as y approaches ∞. See Figure 6.

In both directions, however,

lim
y→0+

ηH(iy)|Sgα
(iy)| = lim y → 0+ 1

2
|3y2 + (2 + 4α2)iy − 3|

y2 + 1
=

3
2

(7.1)

lim
y→∞

ηH(iy)|Sgα
|(iy) = lim y →∞1

2
|3y2 + (2 + 4α2)iy − 3|

y2 + 1
=

3
2
.

Notice that both limits are independent of α. Consequently, the Schwarz norm of
any hyperbolically convex function onto a domain bounded by exactly two proper
sides intersecting inside D must be 3/2.
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Figure 6. The graph of 4y2|Sgα(iy)| for α = 0.75.

The second case consisting of maps onto odd symmetric two-sided domains can
be handled using the family of maps fα constructed by Mej́ıa and Pommerenke [10].
Each hyperbolically convex function

fα(z) = tan
(

α

∫z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
,

maps onto a “hyperbolic strip” bounded by two geodesics through

±i tanh
(

πK(sin θ)
4K(cos θ)

)
,

where α = π
2K(cos θ) , 0 < θ < π/2, and K is the elliptic integral of the first kind.

See Figure 2.
For these functions fα, our problem is to compute

||Sfα ||D = sup
z∈D

(
1− |z|2

)2 |Sfα(z)|.

Using an extensive computational argument which considers several cases (various
interval ranges for |z|, arg z, and α) and uses properties of polynomials and K, one
can show that this problem can be reduced to computing

sup
0≤x<1

(
1− x2

)2 |Sfα(x)|.

Mej́ıa and Pommerenke [10] computed Sfα(x) to be

Sfα(x) =
2((cos(2θ) + α2) + (cos2(2θ)− 2α2 cos(2θ)− 3)x2 + (cos(2θ) + α2)x4)

(1− 2 cos(2θ)x2 + x4)2
,

where α = π
2K(cos θ) and conjectured that the maximum value of (1− x2)2|Sfα

(x)|
occurs at x = 0. (Note the typographical error on the second α in the original
statement in [10].)
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We claim that maximizing (1 − x2)2|Sf (x)| is equivalent to maximizing (1 −
x2)2Sf (x), i.e., we claim that max(1 − x2)2Sf (x) > −min(1 − x2)2Sf (x). We will
show that

min(1− x2)2Sf (x) ≥ −2 (7.2)

over 0 < x < 1 and 0 < θ < π/2. Then, as Mej́ıa and Pommerenke [10] noted (and
as we will show) that max(1− x2)2Sf (x) > 2, the claim will hold.

We simplify our algebraic computations by replacing x with
√

x in the above
expression and obtain

(1− x)2
2((cos(2θ) + α2) + (cos2(2θ)− 2α2 cos(2θ)− 3)x + (cos(2θ) + α2)x2)

(1− 2 cos(2θ)x + x2)2
(7.3)

where 0 ≤ x < 1 and 0 < θ < π/2.
To minimize (7.3), we note that the coefficient of α2 is 1− 2 cos(2θ)x + x2 which

is nonnegative. Hence, substituting α = 0 into (7.3), we have that (7.3) is bounded
below by

(1− x)2
2(cos(2θ) + (cos2(2θ)− 3)x + cos(2θ)x2)

(1− 2 cos(2θ)x + x2)2
(7.4)

We will show that (7.4) is bounded below by −2 by showing that

(1− x)2
2(cos(2θ) + (cos2(2θ)− 3)x + cos(2θ)x2)

(1− 2 cos(2θ)x + x2)2
+ 2

=
p(c, x)

(1− 2 cos(2θ)x + x2)2
> 0

where

p(c, x) = (2x+4x2+2x3)c2+(2−12x+4x2−12x3+2x4)c+(2−6x+16x2−6x3+2x4)

and c = cos(2θ) satistifies −1 < c < 1.
It is sufficient to show that p(c, x) > 0 for −1 < c < 1 and 0 < x < 1. We note

that p(c, x) is quadratic in c for each fixed x and the coefficent of c2 is positive. Let

c(x) = −2− 12x + 4x2 − 12x3 + 2x4

2(2x + 4x2 + 2x3)
,

then c(x) is the location of the vertex of the quadratic p(c, x) for each fixed x. We
claim that c(x) is an increasing function of x on (0, 1). To see this, we note that

c′(x) =
n(x)

2(x + 1)(1 + 2x + x2)x2

where n(x) = −x5 − 3x4 + 14x3 − 14x2 + 3x + 1. Clearly, n(0) = 1 and n(1) = 0.
A Sturm sequence argument shows that n(x) has exactly one zero on (0, 1]. Hence,
we have c′(x) > 0 on (0, 1) and c(x) is increasing on (0, 1).

Let x0 be the unique solution of c(x) = −1 for 0 < x < 1, x0 ≈ 0.1197. For
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0 < x < x0, the location c(x) of the vertex of p(c, x) satisfies c(x) < −1. Hence over
−1 < c < 1 and 0 < x < 1, we have min p(c, x) > p(−1, x) = 8x + 16x2 + 8x3 > 0.
For x0 < x < 1, we have −1 < c(x) < 1 and, hence,

min p(c, x) = p(c, x)|c=c(x) =
q(x)

2x(1 + 2x + x2)

where

q(x) = −x8 + 16x7 − 44x6 + 48x5 − 3xx4 + 48x3 − 44x2 + 16x− 1.

Clearly, q(1) = 0 and q(1/2) = 143
256 > 0. A Sturm sequence argument shows that

on the interval (x0, 1] that q has exactly one zero. Hence, on (0, 1), q(x) > 0.
Thus, p(c, x) > 0 for −1 < c < 1 and 0 < x < 1 and, consequently, min(1 −

x2)2Sf (x) ≥ −2.
To maximize (7.3), we substitute α = π

2K(cos(θ)) , take the derivative with respect
to x, and simplify to obtain

(x2 − 1)(cos(2θ)− 1)
K2(cos(θ))(x2 − 2 cos(2θ)x + 1)3

(K2(cos θ)(−10x2 cos(2θ) (7.5)

− 6x2 + 12x cos(2θ)− 4x cos2(2θ)

+ 24x− 10 cos(2θ)− 6)− π2(x2 − 2 cos(2θ) + 1))

Notice that the denominator of this expression is always positive. On the other
hand, the numerator changes sign as x varies. However, we will see that for fixed
θ, the numerator can change sign only once.

To justify this claim, fix θ and let

A(x) = K2(cos θ)(− 10x2 cos(2θ)− 6x2 + 12x cos(2θ)− 4x cos2(2θ)

+ 24x− 10 cos(2θ)− 6)− π2(x2 − 2 cos(2θ) + 1).

Notice that (x2 − 1)(cos(2θ) − 1) > 0 for 0 ≤ x < 1 and 0 < θ < π/2, so we need
only show that A(x) changes sign only once.

It follows from known properties [1] of K that K(cos(θ)) > π/2; thus, since the
coefficient of K(cos(θ)) in (7.6) is positive,

A′(x) = K2(cos(2θ))(−20x cos(2θ)− 12x + 12 cos(2θ)− 4 cos2(2θ) + 24)− 2π2(x− cos(2θ))

(7.6)

>
(π

2

)2

(−20x cos(2θ)− 12x + 12 cos(2θ)− 4 cos2(2θ) + 24)− 2π2(x− cos(2θ))

= (−10π2 cos2 θ)x + (14π2 cos2 θ − 4π2 cos4 θ)

The right hand side of the above inequality is linear in x and positive at both
x = 0 and x = 1. Thus A′(x) > 0 and A(x) is increasing for all 0 ≤ x < 1.
Consequently, A(x) can change sign at most once.

Notice
A(0) = −10 cos(2θ)K2(cos(2θ))− 6K2(cos(θ))− π2 < 0

for all 0 < θ < π/2.
Thus, as a consequence of the above argument, for each fixed θ, (1− x2)2Sfα

(x)
is decreasing at x = 0 and switches from decreasing to increasing at most once on
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Figure 7. The graph of (1− x2)2Sfα(x) for 0 ≤ x < 1 and α = 0.5343598
(θ = 0.218202).

the interval 0 ≤ x < 1. (Recall that to establish this fact, we replaced x by
√

x in
our calculations. We now return x to its original meaning.)

Clearly (1 − x2)2Sfα(x) equals 0 when x = 1. Thus even after (1 − x2)2Sfα(x)
begins increasing, it never becomes larger than 0.

On the other hand, when x = 0,

(1− x2)2Sfα
(x)|x=0 = 2 cos(2θ) +

π2

2K2(cos(θ))
.

Applying Lemma 7.1 with c = 1/2 we obtain

(1− x2)2Sfα
(x)|x=0 ≥ 2 cos(2θ) +

π2

π2

2
√

1−cos2(2θ)

= 2(1 + 2 sin(θ))(1− sin(θ)) > 0

for all 0 < θ < π/2. Thus, sup0≤x<1(1 − x2)2Sfα
(x) is indeed achieved for x = 0.

See Figure 7.
Now the only question is to determine for which value (or values) of θ

||Sfα
||D = Sfα

(0) = 4 cos2(θ)− 2 +
π2

2K2(cos(θ))
is maximized. To this end, let s = cos θ and let

g(s) = 4s2 − 2 +
π2

2K2(s)
.

Notice that
dg

dθ
=

dg

ds

ds

dθ
,

and ds
dθ = − sin(θ) < 0 for 0 < θ < π/2. Thus since cos(θ) is decreasing for
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0 < θ < π/2, if dg
ds switches signs at most once, then ||Sfα

||D will have a relative
maximum for at most one value of θ.

Computing this derivative and simplifying, we obtain

dg

ds
(s) = 8s− π2

s

E (s)− (1− s2)K(s))
(1− s2)K3(s)

. (7.7)

For 0 < s < 1, we rewrite(7.7) as

2s

(
4− π2

2
E(s)− (1− s2)K(s)

s2

1(
(
√

1− s2)2/3K(s)
)3
)

.

Applying the the first part of Lemma 7.1 with c = 2/3, we observe that
1(

(
√

1− s2)2/3K(s)
)3

is increasing for 0 < s < 1. Similarly, by the second part of Lemma 7.1,

E(s)− (1− s2)K(s)
s2

is increasing for 0 < s < 1.
Consequently, dg

ds can be written as a product of 2s, which is positive, and a
factor, which is 4 minus an increasing function. Thus, dg

ds has at most one zero.
Moreover, Lemma 7.1 also implies that

lim
s→0+

E(s)− (1− s2)K(s)
s2

=
π

4
(7.8)

lim
s→0+

(
(
√

1− s2)2/3K(s)
)3

=
(π

2

)3

.

Thus,

lim
s→0+

dg

ds
= 4− π2

2
π/4

(π/2)3
= 3.

On the other hand,

lim
s→1−

E(s)− (1− s2)K(s)
s2

= 1 (7.9)

lim
s→1−

(
(
√

1− s2)2/3K(s)
)3

= 0.

Hence,

lim
s→1−

dg

ds
= −∞.

Since dg
ds decreases from 3 to minus infinity as s increases from 0 to 1, we have

proven that ||Sfα ||D does have a unique maxiumum. A Maple computation shows
that this maximum is approximately 2.383635 and occurs for θ ≈ 0.218202, which
corresponds to α ≈ 0.5343598. See Figure 8.

Remark 7.2. Mej́ıa and Pommerenke [15] have recently determined the sharp
upper bound for |f ′(reiθ)|, 0 ≤ r < 1, for hyperbolically convex functions f . Ap-
plying the techniques of this paper we give another proof and extensively generalize
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Figure 8. The graph of ||Sfα ||D for 0 < θ < π/2.

this result [4]. We have also answered in [2] several other related conjectures of
Pommerenke [19].
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