
Financial Time Series Lecture 9:

Value at Risk, Expected Shortfall & Risk Management

Packages used: The following R packages are used: evir (extreme

values in R), and quantreg (quantile regression). For interested

students, the package VaRES can be used to compute VaR and ES

for many statistical distributions.

Classification of Financial Risks (Basel Accord)

1. Credit risk: default risk

2. Market risk: risk due to changes in stock prices, interest rates,

FX and commodity prices

3. Operational risk: includes legal and political risks

We start with the market risk, because

• high-quality data are available

• easier to understand

• the idea applicable to other types of risk.

Risk measure and coherence:

Let Lt(`) be the loss variable of a financial position from time t

to time t + `. Here ` denotes a holding period. Financial loss is
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concerned with the distribution of Lt(`). All risk measures available

in the literature are summary statistics of Lt(`).

Coherence:

A risk measure η is coherent if for any two loss random variables X

and Y :

1. Subadditivity: η(X + Y ) ≤ η(X) + η(Y ).

2. Monotonicity: If X ≤ Y almost surely, then η(X) ≤ η(Y ).

3. Positive homogeneity: For c > 0, η(cX) = cη(X).

4. Translation invariance: For c > 0, η(X + c) = η(X) + c.

Subadditivity is related to diversification in finance.

What is Value at Risk (VaR)?

Simply put: An upper quantile of Lt(`) for a small tail probability.

• a measure of minimum loss of a financial position within a certain

period of time for a given (small) probability

• the amount a position could decline in a given period, associated

with a given probability (or confidence level)

Mathematically speaking: Let F`(x) be the CDF of Lt(`). [The

subscript of t is omitted from F .]

• VaR1−p = inf{x|F`(x) ≥ 1− p}

• Pr(Lt(`) ≤ VaR1−p) ≥ 1− p or Pr(Lt(`) > VaR1−p) ≤ p.
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Figure 1: Definition of Value at Risk (VaR) for a continuous loss random variable based on

the cumulative distribution function.

Quantile: xq is the 100qth quantile of the continuous distribution

F`(x) if

q = F`(xq), i.e., q = P (L ≤ xq).

In general, we have xq = min{x|P (L ≤ x) ≥ q}.

Discussion

First, VaR is commonly used. It is simple and some closed-form

solutions are available:

1. Normal distribution: Lt ∼ N(µt, σ
2
t ), then Zt = Lt−µt

σt
is stan-

dard normal and the VaR for Lt is

VaR1−p = µt + z1−pσt, (1)

where z1−p denotes the (1− p)th quantile of N(0, 1). In R, use

qnorm(0.95) and qnorm(0.99).
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Figure 2: Definition of Value at Risk (VaR) for a continuous loss random variable based on

the probability density function.

2. Student-t distribution: If Yt = (Lt − µt)/σt is a Student-t dis-

tribution with v degrees of freedom, then

VaR1−p = µt + t1−p,vσt, (2)

where t1−p,v is the (1−p)th quantile of tv. In R, use qt(0.95,5)

and qt(0.99,5).

3. Standardized tv distribution: Assume v > 2. If Yt = (Lt−µt)/σt
follows a standardized Student-t distribution with v degrees of

freedom, then

VaR1−p = µt + t∗1−p,vσt. (3)

In R with the fGarch package, this can be obtained by

qstd(1-p,mean=mu(t),sd=sigma(t),nu=v).

Second, VaR is coherent for a normally distributed loss. For instance,
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consider the subadditivity:

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

= σ2
x + σ2

y + 2ρσxσy

≤ σ2
x + σ2

y + 2σxσy

= (σx + σy)
2,

where ρ = cor(X, Y ). Therefore, σx+y ≤ σx + σy. This implies that

z1−pσx+y ≤ z1−pσx + z1−pσy, or equivalently, VaR of X + Y is less

than or equal to the sum of VaR of X and VaR of Y .

VaR, however, is not coherent in general. A simple counterexample;

see also Example 3.13 of Klugman, Panjer and Willmot (2008).

Example 1. Suppose the CDF F`(x) of a continuous loss random

variable X satisfies the following probabilities:

F`(80) = 0.9215, F`(90) = 0.95, F`(100) = 0.97.

For p = 0.05, the VaR of X is 90, because 90 is the 0.95th quantile

of X . We denote this by VaRx
0.95 = 90. Now, define two loss random

variables X1 and X2 by

X1 =


X, if X ≤ 100

0, if X > 100

and

X2 =


0, if X ≤ 100

X, if X > 100.
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These two loss variables are simply truncated versions of X and we

have X = X1 +X2. Since the total probability must be 1, the CDF

F 1
` (X) of X1 satisfies

F 1
` (80) = 0.9215/0.97 = 0.95

F 1
` (90) = 0.95/0.97 = 0.9794

F 1
` (100) = 0.97/0.97 = 1.

The 0.95th quantile of X1 is 80. Therefore, VaR1
0.95 = 80, where the

superscript 1 is used to denote X1. On the other hand, Pr(X2 ≤
0) = P (X ≤ 100) = 0.97. Therefore, the 0.95th quantile of X2 is

less than or equal to 0. We denote this by VaR2
0.95 ≤ 0. Taking the

sum, we have VaR1
0.95 + VaR2

0.95 ≤ 80.

In this particular instance, X = X1 + X2, yet VaRx
0.95 = 90 >

VaR1
0.95 + VaR2

0.95. Therefore, the subadditivity of VaR fails.

Finally, VaR does not describe the actual tail behavior of the loss

random variable. It is not a perfect risk measure.

Expected Shortfall (ES): also known as tail value at risk (TVaR)

and conditional VaR (CVaR).

Simply put, ES is the expected loss of a financial position after a

catastrophic event. ES of a loss variable X is defined as

ES1−p = E(X|X > VaR) =
∫∞
V aR xf (x)dx

Pr(X > VaR)
. (4)

From the definition, ES is the expected loss ofX given thatX exceeds

its VaR.
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Figure 3: Density functions of two loss random variables that have the same VaR, but

different loss implications.

Assume that X is continuous. Let u = F (x) for VaR ≤ x ≤ ∞.

Then, we have du = f (x)dx, F (VaR) = 1 − p, F (∞) = 1, and

x = F−1(u) = VaRu. Equation (4) becomes

ES1−p =

∫ 1
1−p VaRudu

p
.

Thus, ES can be seen to average all VaRu for 1 − p ≤ u ≤ 1.

This averaging leads to coherence of ES. For the two loss densities in

Figure 3, their ES are different with the dash line corresponding to

a higher value.

Closed-form solutions for ES are also available for some loss distri-

butions.

1. Normal distribution: If Lt ∼ N(µt, σ
2
t ), then

ES1−p = µt +
f (z1−p)

p
σt, (5)
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where f (z) is the pdf of N(0, 1) and z1−p is the (1−p)th quantile

of f (z).

2. Student-tv loss distribution: If (Lt − µt)/σt follows a Student-t

distribution with v degrees of freedom, then

ES1−p = µt + σt
fv(x1−p)

p

v + x2
1−p

v − 1

 , (6)

where fv(x) denotes the pdf of tv and x1−p is the (1 − p)th

quantile of fv(x).

3. Standardized Student-tv loss. Assume v > 2. If (Lt−µt)/[
√
v/(v − 2)σt]

follows a standardized Student-t distribution with v degrees of

freedom, then

ES1−p = µt + σt
√
v/(v − 2)

f ∗v (x∗1−p)

p

(v − 2) + [x∗1−p]
2

v − 1

 , (7)

where f ∗v (x) is the pdf a Standardized Student-tv and x∗1−p is the

(1− p)th quantile of f ∗v (x).

If (Lt − µt)/σt follows directly a standardized Student-t distri-

bution with v degrees of freedom, then

ES1−p = µt + σt
f ∗v (x∗1−p)

p

(v − 2) + [x∗1−p]
2

v − 1

 . (8)

Calculation of VaR involves several factors:

1. Tail probability p: p = 0.01 for risk management and p = 0.001

in stress testing.
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2. The time horizon `: 1 day or 10 days for market risk and 1 year

or 5 years for credit risk.

3. The CDF F`(x) or its quantiles of the loss random variable.

4. The amount of the financial position or the mark-to-market value

of the portfolio.

The CDF F`(x) is the focus of econometric modeling.

we define the loss random variable as

xt =


rt, if the position is short,

−rt, if the position is long.
(9)

The dollar amount of VaR is then the cash value of the financial

position times the VaR of the loss variable. That is, VaR = Value×
VaR(xt).

Methods for calculating financial risk

1. RiskMetrics

2. Econometric modeling

3. Quantile and quantile regression

4. Extreme value theory: traditional & Peaks over Thresholds

5. Serially correlated data: extremal index

Demonstration: To illustrate the various methods for assessing

financial risk, we consider the daily log returns of IBM stock from
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Figure 4: Daily log returns of IBM stock from January 2, 2001 to December 31, 2010.

January 2, 2001 to December 31, 2010 for 2515 observations. See

Figure 4 and we assume a long position of 1 million on the stock.

The loss xt = −rt.

RiskMetrics: Let xt denote the daily loss. RiskMetrics assumes

that xt|Ft−1 ∼ N(0, σ2
t ), where σ2

t follows the simple model:

σ2
t = ασ2

t−1 + (1− α)x2
t−1, 1 > α > 0. (10)

Therefore, the log price pt = ln(Pt) of a portfolio satisfies the differ-

ence equation pt − pt−1 = at, where at = σtεt is an IGARCH(1,1)

process without drift. The value of α is often in the interval (0.9, 1)

with a typical value of 0.94.

Example 2. Demonstration with IBM stock returns. We fit the

special IGARCH(1,1) model of Eq. (10) to obtain an estimate of the

parameter α and obtain α̂ = 0.943(0.007). In addition, using x2515 =

10



−0.061 and σ̂2515 = 0.734, we have σ̂2516 = 0.7133. Consequently,

using RiskMetrics, we have

VaR0.95 = 1.173, VaR0.99 = 1.659, ES0.95 = 1.471, ES0.99 = 1.901.

Therefore,

VaR0.95 = $1, 000, 000
1.173

100
= $11, 730, VaR0.99 = $16, 590.

Finally, for 15 days holding period, we have

VaR0.95(15) =
√

15× $11730 = $45, 430

ES0.95(15) =
√

15× $14710 = $56, 972.

Discussion: RiskMetrics has several advantages

1. Simplicity: Normal distribution, square-root of time rule, and

multiple assets (portfolio)

2. Transparency

It also has some serious weaknesses:

1. Assumed model is rejected by empirical data

2. The square-root of time rule fails if either of the model assump-

tions is rejected.

Consider multiple positions: For 2 assets, we have

VaR =
√

VaR2
1 + VaR2

2 + 2ρ12VaR1VaR2.
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The generalization of VaR to a position consisting of m instruments

is straightforward as

VaR =

√√√√√ m∑
i=1

VaR2
i + 2

m∑
i<j
ρijVaRiVaRj,

where ρij is the cross-correlation coefficient between returns of the

ith and jth instruments and VaRi is the VaR of the ith instrument.

A simple derivation for this formula for two assets

Basic setup: Two assets with log returns r1t and r2t. The port-

folio consists of w1 and w2 amounts invested in asset 1 and asset 2,

respectively.

Under RiskMetrics, we have

r1t|Ft−1 ∼ N(0, σ2
1t), σ2

1t = βσ2
1,t−1 + (1− β)r2

1,t−1

r2t|Ft−1 ∼ N(0, σ2
2t), σ2

2t = βσ2
2,t−1 + (1− β)r2

2,t−1.

VaR for the two assets are w1VaR1 and w2VaR2, respectively. For

instance, for tail probability 0.05, we have VaR for the two assets as

1.645w1σ1t and 1.645w2σ2t, respectively.

Let pt be the log return of the portfolio. Then, we have

pt ≈ wr1t + (1− w)r2t,

where w = w1
w1+w2

and 1 − w = w2
w1+w2

. The above approximation

becomes equality for simple returns.

Remark. (w1 + w2)w = w1 and (w1 + w2)(1 − w) = w2.
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Under RiskMetrics, we have

pt|Ft−1 ∼ N(0, σ2
pt),

where

σ2
pt = Var(rpt|Ft−1) = w2σ2

1t + (1− w)2σ2
2t + 2w(1− w)ρtσ1tσ2t.

The VaR for the portfolio is (w1 + w2)VaRp. For tail probability of

0.05, we have VaRp = 1.645(w1 + w2)σpt.

Therefore, the square of VaR for the portfolio with tail probability

0.05 is

(VaRp)
2 = (1.645)2(w1 + w2)2σ2

pt

= (1.645)2(w1 + w2)2

× [w2σ2
1t + (1− w)2σ2

2t + 2w(1− w)ρtσ1tσ2t]

= (1.645)2[w2
1σ

2
1t + w2

2σ
2
2t + 2w1w2ρtσ1tσ2t]

= VaR2
1 + VaR2

2 + 2ρtVAR1VaR2.

This is exactly similar to

Var(X + Y ) = Var(X) + Var(Y ) + 2ρ× std(X)std(Y ).

Remarks:

1. The result can be generalized to more than two assets.

2. The formula continues to hold for expected shortfall provided

that the mean returns of the two assets are zero. [Which is

assumed under RiskMetrics.] If the means are not zero, then

some adjustments are need for the portfolio.
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Example 3. Consider a simple portfolio consisting of 40% in AAA

bonds and 60% on IBM stock. The market value of the portfolio is

U.S. $ 1 million. To measure the bond returns, we employ the daily

log return of the Bank of America Merrill Lynch U.S. Corp AAA

total return index from January 2, 2001 to December 31, 2010. The

data of bond index are obtained from the Federal Reserve Bank at

St. Louis.

Figure 5 shows the log returns of the bond index. Like stock returns,

bond returns also exhibit the pattern of volatility clustering and weak

stationarity. For bond returns,

σ2
t = 0.9577σ2

t−1 + (1− 0.9577)r2
t−1,

from which we have

VaR0.95 = 0.00705, and VaR0.99 = 0.00997.

Recall, from Example 7.2, that for the daily log returns of IBM stock,

we have

VaR0.95 = 0.01173, and VaR0.99 = 0.01659.

The sample correlation coefficient of the log returns between IBM

stock and AAA bond index is −0.2215. Consequently, for the port-

folio we have

VaRe
0.95 = 0.01173×0.6 = 0.00704, VaRb

0.95 = 0.00705×0.4 = 0.00282,

where the superscripts e and b denote equity and bond returns, re-
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spectively. The VaR0.95 for the portfolio is then

VaR0.95 =
√

(VaRe
0.95)2 + (VaRb

0.95)2 + 2(−0.2215)VaRe
0.95VaRb

0.95

= 0.006978.

For this particular instance, we see that with tail probability p =

0.05, the VaR of the portfolio is less than the VaR of each component.

More specifically, with $1 million investment, we have

1. Equity market only: VaR0.95 = $11,730.

2. Bond market only: VaR0.95 = $7,050.

3. Portfolio (60-40): VaR0.95 = $6,978.

This result is expected because VaR is a coherent risk measure under

the normality assumption. The example, thus, demonstrates the

value of diversification.

Econometric Modeling:

1. Use a time-series model to predict the mean return, e.g. AR or 
cross-sectional

2. Use a volatility model to predict the volatility, e.g. GARCH with 
tv innovations.

The approach considers modeling seriously, but it requires human

intervention. Also, multiple-period risk measures become tedious.
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Figure 5: Daily log returns of bond index from January 2, 2001 to December 31, 2010. The

bond index is the Bank of America Merrill Lynch U.S. Corp AAA total return index.

Example 4. Consider again the daily log returns of IBM stock.

Model 1: a Gaussian GARCH(1,1) model. The fitted model is

xt = −6.01× 10−4 + at, at = σtεt, εt ∼ N(0, 1)

σ2
t = 4.378× 10−6 + 0.101a2

t−1 + 0.884σ2
t−1.

The 1-step ahead predictions at T = 2515 are −6.01 × 10−4 and

7.82× 10−3, respectively, for mean and volatility. Consequently, we

have

VaR0.95 = 0.01227, ES0.95 = 0.01555,

VaR0.99 = 0.01761, ES0.99 = 0.02027.

These results imply VaR0.95 = $12, 278 and ES095 = $15, 550 for the

next trading day.

Model 2: a GARCH(1,1) model with standardized Student-t innova-
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tions. The fitted model is

xt = −4.057× 10−4 + at, at = σtεt, εt ∼ t∗5.774

σ2
t = 1.976× 10−6 + 0.0655a2

t−1 + 0.9274σ2
t−1.

The 1-step ahead predictions of the model for the mean and volatility

at T = 2515 are −4.057×10−4 and 0.00809, respectively. Therefore,

the risk measures for the financial position are VaR0.95 = $12, 393

and ES0.95 = $17, 543.

Empirical quantile and quantile regression

Most statistical software provides empirical quantiles for a given data

set.

Example 5. Consider the daily log returns of IBM stock. Since

2515× 0.95 = 2389.25, we let `1 = 2389, `2 = 2390, p1 = 2389/2515

and p2 = 2390/2515. The empirical 95% quantile of the negative log

returns can be obtained as

x̂0.95 = 0.75x(2389) + 0.25x(2390) = 0.02621,

x(i) is the ith order statistic of the loss variable xt. In this particular

instance, x(2389) = 0.02652 and x(2390) = 0.02657. Finally, with p =

0.05, the sample expected shortfall is ÊS0.95 = $39,949 for the next

trading day.

Quantile Regression: see Koenker and Bassett (1978). 
Estimating the conditional quantile xq|Ft−1 of xt given Ft−1 as

x̂q|Ft−1 ≡ inf{β′oz|Rq(βo) = min}, (11)
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where “Rq(βo) = min” means that βo is obtained by

βo = argminβ
n∑
t=1

wq(xt − β′zt),

where wq(.) is defined as before.

Example 6. Again, consider the daily log returns of IBM stock. We

employ a quantile regression with two predictors. The first predictor

is the lag-1 daily volatility of the IBM stock and the second predictor

is the lag-1 VIX index of Chicago Board Options Exchange (CBOE).

More specifically, we consider the quantile regression

Q(q|zt) =
2515∑
t=2

wq(xt − β0 − β1st−1 − β2vt−1), (12)

where xt = −rt with rt being the daily log return of IBM stock,

st−1 is the lag-1 daily IBM stock volatility obtained from fitting a

Gaussian GARCH(1,1) model to xt, and vt−1 is the lag-1 VIX index

obtained from CBOE. Here we use the VIX index, not the percentage

VIX.

Applying the quantile regression in (12) with q = 0.95, we obtain

β̂0 = −0.001(0.003), β̂1 = 1.17724(0.22268), β̂2 = 0.02809(0.01615),

where the number in parentheses denotes standard error. As ex-

pected the 95th quantile of the IBM negative daily log returns de-

pends critically on the lag-1 IBM daily volatility and marginally on

the lag-1 VIX index. Based on the model, we have Q̂(0.95|z2515) =

0.013385. This implies that VaR0.95 = $13,385 for the financial po-

sition. Figure 6 shows the negative IBM log returns xt = −rt and
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Figure 6: Time plot of the negative daily log returns of IBM stock from January 3, 2001

to December 31, 2010. The upper line shows the 95th quantiles obtained by the quantile

regression of Equation (12)

the fitted values of the quantile regression with probability q = 0.95.

The plot also shows that VaR is time-varying and highlights the fact

that the actual loss may vary when the loss exceeds VaR.

Methods based on extreme value theory

Review of Extreme Value Theory (EVT): Let x(n) be the 
sample maximum of a loss variable. EVT is concerned with the 
limiting distribution of x(n), after some proper scaling and centering, 
as n → ∞.

For independent samples, the limiting distribution of the normalized
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maximum r∗(n) = [x(n) − µn]/σn is given by

F∗(x) =



exp[−(1 + ξx)−1/ξ] if ξ 6= 0

exp[− exp(−x)] if ξ = 0

(13)

for x < −1/ξ if ξ < 0 and for x > −1/ξ if ξ > 0, where the

subscript ∗ signifies the normalized maximum.

The parameter ξ is referred to as the shape parameter that governs

the tail behavior of the limiting distribution. The parameter α = 1/ξ

is called the tail index of the distribution.

The result encompasses the three types of limiting distribution of

Gnedenko (1943):

• Type I: ξ = 0, the Gumbel family. The CDF is

F∗(x) = exp[− exp(−x)], −∞ < x <∞. (14)

• Type II: ξ > 0, the Fréchet family. The CDF is

F∗(x) =


exp[−(1 + ξx)−1/ξ] if x > −1/ξ,

0 otherwise.
(15)

• Type III: ξ < 0, the Weibull family. The CDF here is

F∗(x) =


exp[−(1 + ξx)−1/ξ] if x < −1/ξ,

1 otherwise.

Two important implications of EVT.
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Figure 7: Probability density functions of extreme value distributions for normalized maxi-

mum. The solid line is for a Gumbel distribution, the dotted line is for the Weibull distri-

bution with ξ = −0.5, and the dashed line is for the Fréchet distribution with ξ = 0.9.

1. The tail behavior of the CDF F (x) of xt determines the limiting

distribution F∗(x) of the normalized maximum.

The sequences {µn} and {σn}, however, depend on the CDF

F (x). See McNeil, Frey and Embtrechts (2005, Chapter 7).

2. The tail index ξ does not depend on the time interval of xt. That

is, the tail index is invariant under time aggregation; handy in

the VaR calculation.

Empirical Estimation & Demonstration:

1. Block Maximum Method

2. Maximum Likelihood Method

3. The Nonparametric Approach: shape parameter ξ Hill estimator

or Pickands estimator.
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Figure 8: Block maximum of daily log returns of IBM stock, in percentages, when the sub-

period is 21 trading days. The data span is from January 2, 2001 to December 31, 2010

so that there are 120 blocks. The upper plot is for positive returns and the lower plot for

negative returns.

Table 1: Results of the Hill Estimator for Daily Log Returns of IBM Stock from July 3, 1962

to December 31, 1998. Standard errors are in parentheses.

q 110 130 150

rt 0.380(0.036) 0.399(0.035) 0.398(0.032)

−rt 0.356(0.034) 0.383(0.034) 0.405(0.033)

Application to risk measures: It requires a 2-step procedure 
because of block maxima.

For a given small upper tail probability p, the VaR of a financial

position with loss variable xt is

VaR =



µn − σn
ξn

{
1− [−n ln(1− p)]−ξn

}
if ξn 6= 0

µn − σn ln[−n ln(1− p)] if ξn = 0,

(16)
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Figure 9: Scatterplots of the Hill estimator for the daily log returns of IBM stock. The

sample period is from January 2, 2001 to December 31, 2010: the upper plot is for positive

returns and the lower plot for negative returns.

Table 2: Maximum Likelihood Estimates of the Extreme Value Distribution For Daily Log

Returns of IBM Stock, in percentages, from January 2, 2001 to December 31, 2010. Standard

errors are in parentheses.

Length of sub-period Shape Par. ξ Scale σ Location µ

Maximal positive returns

1 mon.(n = 21, g = 120) 0.278(0.087) 1.046(0.092) 2.046(0.111)

2 mon.(n = 42, g =60) 0.315(0.109) 1.168(0.145) 2.622(0.170)

Maximal negative returns

1 mon.(n = 21, g = 120) 0.251(0.088) 1.029(0.090) 1.966(0.109)

2 mon.(n = 42, g = 60) 0.287(0.142) 1.100(0.143) 2.489(0.170)
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Figure 10: Residual analysis of fitting a GEV distribution to the negative IBM daily log

returns, in percentages, from January 2, 2001 to December 31, 2010. The sub-period length

used is 21 days.

where n is the length of sub-periods.

Summary

We summarize the approach of applying the traditional extreme value

theory to VaR calculation as follows:

1. Select the length of the sub-period n and obtain sub-period max-

ima {xn,i}, i = 1, . . . , g, where g = [T/n].

2. Obtain the maximum likelihood estimates of µn, σn, and ξn.

3. Check the adequacy of the fitted extreme value model; see the

next section for some methods of model checking.

4. If the extreme value model is adequate, apply Eq. (16) to calcu-

late VaR.
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Multi-period VaR under EVT:

VaR(`) = `1/αVaR = `ξVaR,

Example 7. Consider the daily log returns, in percentage, of IBM

stock.

From Table 2, we have α̂n = 1.029, β̂n = 1.966, and ξ̂n = 0.251

for n = 21. Therefore, for the left-tail probability p = 0.05, the

corresponding VaR is

VaR = 1.966− 1.029

0.251

{
1− [−21 ln(1− 0.05)]−0.251

}
= 1.8902.

Thus, for negative daily log returns of the stock, the upper 1% quan-

tile is 1.8902%. Consequently, we have VaR0.95 = $1, 000, 000 ×
0.018902 = $18,902. If the probability is 0.01, then the correspond-

ing VaR is $39,242.

If we chose n = 42 (i.e., approximately 2 months), then α̂n = 1.1,

β̂n = 2.489, and ξ̂n = 0.287. The upper 1% quantile of the loss

variable based on the extreme value distribution is

VaR = 2.489− 1.1

0.287
{1− [−42 ln(1− 0.01)]−0.287} = 3.5655.

Therefore, for a long position of $1,000,000, the corresponding 1-day

horizon VaR is $35,655 at the 1% risk level. If the probability is 0.05,

then the corresponding VaR is $17,313. In this particular case, the

choice of n = 21 gives higher VaR values.
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Discussion: Applications using daily log returns of IBM stock from

2001 to 2010.

1. $11,730 for the RiskMetrics,

2. $12,278 for a Gaussian GARCH(1,1) model,

3. $12,393 for a GARCH(1,1) model with a standardized Student-t

distribution with 5.77 degrees of freedom,

4. $26,538 for using the empirical quantile,

5. $13,385 for using quantile regression, and

6. $18,901 for applying the traditional extreme value theory using

n = 21 for the length of sub-periods.

If the tail probability is 1%, then the VaR is

1. $16,590 for the RiskMetrics, a

2. $17,614 for a Gaussian GARCH(1,1) model,

3. $20,421 for a GARCH(1,1) model with a standardized Student-t

distribution with 5.77 degrees of freedom,

4. $50,132 for using the empirical quantile, and

5. $39,242 for applying the traditional extreme value theory using

n = 21.

Peaks Over Thresholds (POT): A two-dimensional framework

(exceedance and exceeding times)
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The basic theory of the POT approach is to consider the conditional

distribution of x = y+ η given x > η for the limiting distribution of

the maximum given in Eq. (13).

The conditional distribution of x ≤ y + η given x > η is

Pr(x ≤ y+η|x > η) =
Pr(η ≤ x ≤ y + η)

Pr(x > η)
=

Pr(x ≤ y + η)− Pr(x ≤ η)

1− Pr(x ≤ η)
.

(17)

Using the CDF F∗(.) of Eq. (13) and the approximation e−z ≈ 1−z
and after some algebra, we obtain that

Pr(x ≤ y + η|x > η) =
F∗(y + η)− F∗(η)

1− F∗(η)

=
exp

− (
1 + ξ(y+η−µ)

σ

)−1/ξ
− exp

− (
1 + ξ(η−µ)

σ

)−1/ξ


1− exp

− (
1 + ξ(η−µ)

σ

)−1/ξ


≈ 1−
1 +

ξy

σ + ξ(η − µ)


−1/ξ

, (18)

where y > 0 and 1 + ξ(η − µ)/σ > 0. The case of ξ = 0 is taken as

the limit of ξ → 0 so that

Pr(x ≤ y + η|x > η) ≈ 1− exp(−y/σ).

Generalized Pareto distribution:

The probability distribution with cumulative distribution function

Gξ,ψ(η)(y) =


1−

[
1 + ξy

ψ(η)

]−1/ξ
for ξ 6= 0,

1− exp[−y/ψ(η)] for ξ = 0,
(19)
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Table 3: Maximum Likelihood Estimates of the Generalized Pareto Distribution For Negative

Daily Log Returns of IBM Stock from January 2, 2001 to December 31, 2010. Standard errors

are in parentheses and n.exceed denotes the number of exceedances.

Thr. η n.exceed Shape ξ Scale σ Location µ ψ(η)

1 504 0.107(0.042) 0.009(0.001) −0.006(0.001) 0.011

1.2 410 0.075(0.044) 0.010(0.001) −0.007(0.002) 0.011

0.8 610 0.106(0.039) 0.009(0.001) −0.006(0.001) 0.010

where ψ(η) > 0, y ≥ 0 when ξ ≥ 0, and 0 ≤ y ≤ −ψ(η)/ξ when ξ < 0, 
is called the generalized Pareto distribution (GPD).

For GPD, suppose that the excess distribution of x given a threshold 
ηo is a GPD with shape parameter ξ and scale parameter ψ(ηo). 
Then, for an arbitrary threshold η > ηo, the excess distribution over 
the threshold η is also a GPD with shape parameter ξ and scale 
parameter ψ(η) = ψ(ηo) + ξ(η − ηo).

Mean Excess Function

eT (η) =
1

Nη

Nη∑
i=1

(xti − η), (20)

where Nη is the number of returns that exceed η and xti are the

values of the corresponding returns.

Estimation:

For a given high threshold, use GPD to obtain parameter estimates.

For the long position of $1 million on IBM stock, we have

VaR0.95 = $25, 855, ES0.95 = $39, 625,

for the first trading day of 2011 when the threshold of 1% is used. If
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Figure 11: Diagnostic plots for GPD fit to the daily negative log returns of IBM stock from

January 2, 2001 to December 31, 2010.

the threshold is 1.2%, we have

VaR0.95 = $26, 115, ES0.95 = $39, 603.

Finally, for threshold of 0.8%, we have

VaR0.95 = $25, 866, ES0.95 = $39, 620.

An Alternative Parameterization: Use ψ(η) = α+ ξ(η− β).

The parameter of GPD becomes (ξ, ψ(η)).
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R Demonstration for the lecture note

> da=read.table("d-ibm-0110.txt",header=T)

> head(da)

date return

1 20010102 -0.002206

.....

> ibm=log(da[,2]+1)*100

> source("Igarch.R")

> mm=Igarch(ibm)

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

alpha 0.942857 0.007172 131.464 < 2.22e-16 ***

--- ### You may use the result to calculate volatility forecast and VaR ###

> fvariance=m1$par*m1$volatility[2515]^2+(1-m1$par)*ibm[2515]^2

> fvol=sqrt(fvariance)

> fvol

beta

0.7133031

> VaR_0.95=qnorm(.95)*fvol

> VaR_0.95

beta

1.173279

> ### A summary of the calculation is given below

Risk measure based on RiskMetrics:

prob VaR ES

[1,] 0.950 1.173279 1.471339

[2,] 0.990 1.659391 1.901105

[3,] 0.999 2.204272 2.401756

#### GARCH

> xt=-log(da$return+1) % calculate negative log returns.

> library(fGarch)

> m1=garchFit(~garch(1,1),data=xt,trace=F)

> m1

Title: GARCH Modelling

Call: garchFit(formula = ~garch(1, 1), data = xt, trace = F)

Mean and Variance Equation:

data ~ garch(1, 1) [data = xt]

Conditional Distribution: norm
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Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu -6.010e-04 2.393e-04 -2.511 0.012044 *

omega 4.378e-06 1.160e-06 3.774 0.000161 ***

alpha1 1.011e-01 1.851e-02 5.463 4.67e-08 ***

beta1 8.841e-01 1.991e-02 44.413 < 2e-16 ***

---

> predict(m1,3)

meanForecast meanError standardDeviation

1 -0.0006009667 0.007824302 0.007824302

2 -0.0006009667 0.008043298 0.008043298

3 -0.0006009667 0.008253382 0.008253382

> source("RMeasure.R")

> m11=RMeasure(-.000601,.0078243)

Risk Measures for selected probabilities:

prob VaR ES

[1,] 0.950 0.01226883 0.01553828

[2,] 0.990 0.01760104 0.02025244

[3,] 0.999 0.02357790 0.02574412

>

> m2=garchFit(~garch(1,1),data=xt,trace=F,cond.dist="std")

> m2

Title: GARCH Modelling

Call: garchFit(formula =~garch(1,1), data=xt,cond.dist="std", trace=F)

Mean and Variance Equation:

data ~ garch(1, 1) [data = xt]

Conditional Distribution: std

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu -4.113e-04 2.254e-04 -1.824 0.06811 .

omega 1.922e-06 7.417e-07 2.592 0.00954 **

alpha1 6.448e-02 1.323e-02 4.874 1.09e-06 ***

beta1 9.286e-01 1.407e-02 65.993 < 2e-16 ***

shape 5.751e+00 6.080e-01 9.459 < 2e-16 ***

---

> predict(m2,3)

meanForecast meanError standardDeviation

1 -0.0004112738 0.008100872 0.008100872

2 -0.0004112738 0.008191119 0.008191119

3 -0.0004112738 0.008279772 0.008279772
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> m22=RMeasure(-.0004113,.0081009,cond.dist="std",df=5.751)

Risk Measures for selected probabilities:

prob VaR ES

[1,] 0.950 0.01545311 0.02184843

[2,] 0.990 0.02542061 0.03294803

[3,] 0.999 0.04289786 0.05332908

##### Empirical quantiles

> ibm=-log(da[,2]+1)

> prob1=c(0.9,0.95,0.99,0.999) % probabilities of interest

> quantile(ibm,prob1)

90% 95% 99% 99.9%

0.01736836 0.02653783 0.05013151 0.07198369

> sibm=sort(ibm) % Sorting into increasing order

> 0.95*2515

[1] 2389.25

> es=sum(sibm[2390:2515])/(2515-2389)

> es

[1] 0.03994857

### Quantile regression

> dd=read.table("d-ibm-rq.txt",header=T) % Load data

> head(dd)

nibm vol vix

1 -0.109478400 0.01700121 29.99

2 0.015308580 0.01614694 26.60

.....

6 -0.009408600 0.03211091 27.99

> dim(dd)

[1] 2514 3

> dd[,3]=dd[,3]/100

> library(quantreg)

> mm=rq(nibm~vol+vix,tau=0.95,data=dd) % Quantile regression

> summary(mm)

Call: rq(formula = nibm ~ vol + vix, tau = 0.95, data = dd)

tau: [1] 0.95 % probability

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.00104 0.00257 -0.40317 0.68686

vol 1.17724 0.22268 5.28660 0.00000

vix 0.02809 0.01615 1.73977 0.08202

> names(mm)
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[1] "coefficients" "x" "y" "residuals"

[5] "dual" "fitted.values" "formula" "terms"

[9] "xlevels" "call" "tau" "rho"

[13] "method" "model"

> fit=mm$fitted.values

> tdx=c(2:2515)/252+2001

> plot(tdx,dd$nibm,type=’l’,xlab=’year’,ylab=’neg-log-rtn’)

> lines(tdx,fit,col=’red’)

> v1[2515]

[1] 0.008018202

> vix[2515]

[1] 17.75

> vfit=-.00104+1.17724*v1[2515]+0.02809*vix[2515]/100

> vfit

[1] 0.01338532

> mm=rq(xt~vol+vix,tau=0.99,data=dd) % 99th quantile

> summary(mm)

Call: rq(formula = xt ~ vol + vix, tau = 0.99, data = dd)

tau: [1] 0.99

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.01182 0.00831 1.42190 0.15518

vol 1.03129 0.73125 1.41031 0.15857

vix 0.04409 0.05335 0.82641 0.40865

### Extreme value theory

> library(evir) % Load package

> par(mfcol=c(2,1))

> m1=gev(xt,block=21)

> m1

$n.all

[1] 2515

$n

[1] 120

$data

[1] 4.0335654 4.6038703 6.9818569 ......

$block

[1] 21

$par.ests

xi sigma mu

0.251353 1.028910 1.965850

$par.ses

xi sigma mu

0.08847742 0.09013351 0.10932034
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$varcov

[,1] [,2] [,3]

[1,] 0.007828254 -0.001080741 -0.003453668

[2,] -0.001080741 0.008124049 0.006145413

[3,] -0.003453668 0.006145413 0.011950936

$converged

[1] 0

> plot(m1)

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals

2: plot: QQplot of Residuals

Selection: 1

### POT method

> da=read.table("d-ibm-0110.txt",header=T)

> ibm=log(da[,2]+1)

> xt=-ibm

> m1=pot(xt,threshold=0.01)

> m1

$n

[1] 2515

$period

[1] 1 2515

$data

[1] 0.01530858 0.01074553 0.01139063 .....

attr(,"times")

[1] 3 6 10 .....

$span

[1] 2514

$threshold

[1] 0.01

$p.less.thresh

[1] 0.7996024

$n.exceed

[1] 504

$par.ests

xi sigma mu beta

0.107268254 0.008914461 -0.005634968 0.010591597

$par.ses

xi sigma mu

0.0415025597 0.0009052881 0.0012156539

$intensity

[1] 0.2004773
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$converged

[1] 0

> plot(m1)

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances

2: plot: Scatterplot of Gaps

3: plot: Qplot of Gaps

4: plot: ACF of Gaps

5: plot: Scatterplot of Residuals

6: plot: Qplot of Residuals

7: plot: ACF of Residuals

8: plot: Go to GPD Plots

Selection: 0

> riskmeasures(m1,c(0.95,0.99))

p quantile sfall

[1,] 0.950 0.02585540 0.03962479

[2,] 0.990 0.04744964 0.06381374

> riskmeasures(m2,c(0.95,0.99)) % Threshold=0.012

p quantile sfall

[1,] 0.950 0.02611524 0.03960353

[2,] 0.990 0.04745886 0.06267327

> riskmeasures(m3,c(0.95,0.99)) % Threshold=0.008

p quantile sfall

[1,] 0.950 0.02586561 0.03962012

[2,] 0.990 0.04744180 0.06376612

### Generalized Pareto distribution

> library(evir)

> da=read.table("d-ibm-0110.txt",header=T)

> ibm=log(da[,2]+1)

> xt=-ibm

> m1gpd=gpd(xt,threshold=0.01)

> m1gpd

$n

[1] 2515

$data

[1] 0.01530858 0.01074553 0.01139063 .....

$threshold

[1] 0.01

$p.less.thresh

[1] 0.7996024

$n.exceed
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[1] 504

$method

[1] "ml"

$par.ests

xi beta

0.10703752 0.01059601

$par.ses

xi beta

0.0544269528 0.0007255951

$converged

[1] 0

$nllh.final

[1] -1733.994

> names(m1gpd)

[1] "n" "data" "threshold" "p.less.thresh"

[5] "n.exceed" "method" "par.ests" "par.ses"

[9] "varcov" "information" "converged" "nllh.final"

> par(mfcol=c(2,2))

> plot(m1gpd)

Make a plot selection (or 0 to exit):

1: plot: Excess Distribution

2: plot: Tail of Underlying Distribution

3: plot: Scatterplot of Residuals

4: plot: QQplot of Residuals

Selection: 0

> riskmeasures(m1gpd,c(0.95,0.99))

p quantile sfall

[1,] 0.950 0.02585941 0.03962658

[2,] 0.990 0.04745161 0.06380699

Credit Risk:

Reference: Credit Risk Measurement: New Approaches to Value 
at Risk and Other Paradigms, 2nd Edition, by Anthony Saunders 
and Linda Allen, Wiley, 2002.

Some techniques for credit risk measurement

1. Long-term credit rating (High to Low)
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S&P Moody Fitch

AAA Aaa AAA

AA Aa AA

A A A

BBB Baa BBB

BB Ba BB

B B B

CCC Caa CCC

CC Ca CC

C C C

D D D

2. Credit quality over time (transition)

S&P One-year transition matrix

(Source: Standard & Poor’s, Feb. 1997)
Ini. Rating at year-end(%)

Rat. AAA AA A BBB BB B CCC Default

AAA 88.5 8.05 0.72 0.06 0.11 0.00 0.00 0.00

AA 0.76 88.3 7.47 0.56 0.05 0.13 0.02 0.00

A 0.08 2.32 87.6 5.02 0.65 0.22 0.01 0.05

BBB 0.03 0.29 5.54 82.5 4.68 1.02 0.11 0.17

BB 0.02 0.11 0.58 7.01 73.8 7.4 0.89 0.98

B 0.00 0.09 0.21 0.39 5.98 72.8 3.42 4.92

CCC 0.17 0.00 0.34 1.02 2.20 9.64 53.13 19.21

3. CreditMetrics (JP Morgan & other sponsors)

Now, there is a R package CreditMetrics available.
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4. Altman Z score (Mainly is U.S.)

Z = 3.3(Earnings before Interest and Taxes [EBIT]/Totl Assets)

+ 1.0(Sales/Total Assets)

+ 0.6(Market Value of Equity/Book Value of Debt)

+ 1.4(Retained Earnings/Total Assets)

+ 1.2(Working Capital/Total Assets)

5. KMV Corporation’s credit risk model (now merged with Moody)

CreditMetrics: developed by J.P. Morgan and other sponsors in

1997.

Simply put, CreditMetrics addresses the question:

“How much will one lose on his loans and loan portfolios next year

for a given confidence level?”

From the assessment of market risk, the current market value and

its volatility of a financial position play an imporant role in VaR

calculation. Application of VaR methodology to nontrabable loans

encounters some immediate problems:

1. The current market value of the loan is not directly observable,

because most loans are not traded.

2. No time-series data available to estimate the volatility.

To overcome the difficulties, we make use of

1. Available data on a borrower’s credit rating

2. The probability that the rating will change over the next year

(the rating transition matrix)

3. Recovery rates on deafulted loans
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4. Credit spreads and yields in the bond (or loan) market.

Example: Consider a five-year fixed-rate loan of $100 million made

at 6% annual interest, and the borrower is rated BBB.

Note: The numerical numbers used in this example are from Chap-

ter 6 of the reference book cited above.

Rating migration: One-year transition probabilities for BBB-

rated borrower

AAA AA A BBB BB B CCC Defaulty

0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18

Valuation Rating change (upgrades and downgrades) will affect

the required credit risk spreads or premiums on the loan’s remaining

cash flows and, hence, the implied market value of the loan.

Downgrade → credit spread premium rises → present value of the

loan should fall.

Upgrade has the opposite effect.

return to the example. (after one-year and a credit rating change)

P = 6+
6

1 + r1,1 + s1
+

6

(1 + r1,2 + s2)2
+

6

(1 + r1,3 + s3)3
+

106

(1 + r1,4 + s4)4
,

where r1,i are the risk-free rates on zero-coupon U.S. Treasury bonds

expected to exist one year into the future and si is the annual credit

spread on loans of a particular rating class of 1-year, 2-year, 3-year

and 4-year maturities (derived from observed spreads in the corporate

bond market over Treasuries).

One-year forward zero curves plus credit spreads by credit rating

category:
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Category Year 1 Year 2 Year 3 Year 4

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

Suppose that, during the first year, the borrower gets upgraded from

BBB to A. The present value of the loan is

P = 6 +
6

1.0372
+

6

(1.0432)2
+

6

(1.0493)3
+

106

(1.0532)4
= $108.66.

Value of the loan at the end of Year 1, under different rating changes

(including first-year coupon):

Rating AAA AA A BBB BB B CCC Defaulty

value 109.37 109.19 108.66 107.55 102.02 98.10 83.64 51.13

Calculation of VaR
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New Loan Difference

Value Plus Probability of Value Probability

Year-end Probability Coupon Weighted from Weighted

Rating of State(%) (millions) Value($) Mean ($) Diff. Squared

AAA 0.02 109.37 0.02 2.28 0.0010

AA 0.33 109.19 0.36 2.10 0.0146

A 5.95 108.66 6.47 1.57 0.1474

BBB 86.93 107.55 93.49 0.46 0.1853

BB 5.30 102.02 5.41 (5.06) 1.3592

B 1.17 98.10 1.15 (8.99) 0.9446

CCC 0.12 83.64 1.10 (23.45) 0.6598

Default 0.18 51.13 0.09 (55.96) 5.6358

Form the table, the mean value of the loan is $107.09 (sum of the

4-th column). The variance of the value is 8.9477 (sum of the last

column).

Consequently, the standard deviation is σ =
√

8.9477 = 2.99.

If normal distribution of the loan value is used,

• 5% VaR: 1.65× σ = $4.93

• 1% VaR: 2.33× σ = $6.97

If actual distribution is used,

• 6.77% VaR: $107.09-102.02 = $5.07

• 1.47% VaR: $107.09-98.10 = $8.99

• 1% VaR: $107.09-92.29 = $14.80.

The 1% number 92.29 is obtained by interpolation as (1.47%, 98.10)

and (0.3%, 83.64).
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VaR of a Portfolio

Basic setup: Two assets with log returns r1t and r2t.
The portfolio consists of w1 and w2 amounts invested in
asset 1 and asset 2, respectively.

Under RiskMetrics, we have

r1t|Ft−1 ∼ N(0, σ21t), σ21t = βσ21,t−1 + (1− β)r21,t−1
r2t|Ft−1 ∼ N(0, σ22t), σ22t = βσ22,t−1 + (1− β)r22,t−1.

VaR for the two assets are w1VaR1 and w2VaR2, respec-
tively. For instance, for tail probability 0.05, we have VaR
for the two assets as 1.645w1σ1t and 1.645w2σ2t, respec-
tively.
Let pt be the log return of the portfolio. Then, we have

pt = wr1t + (1− w)r2t,

where w = w1
w1+w2

and 1− w = w2
w1+w2

.

Remark. (w1+w2)w = w1 and (w1+w2)(1−w) = w2.

Under RiskMetrics, we have

pt|Ft−1 ∼ N(0, σ2pt),

where

σ2pt = Var(rpt|Ft−1) = w2σ21t+(1−w)2σ22t+2w(1−w)ρtσ1tσ2t.

1



The VaR for the portfolio is (w1 + w2)VaRp. For tail
probability of 0.05, we have VaRp = 1.645(w1 + w2)σpt.
Therefore, the square of VaR for the portfolio with tail
probability 0.05 is

(VaRp)
2 = (1.645)2(w1 + w2)

2σ2pt
= (1.645)2(w1 + w2)

2

× [w2σ21t + (1− w)2σ22t + 2w(1− w)ρtσ1tσ2t]
= (1.645)2[w2

1σ
2
1t + w2

2σ
2
2t + 2w1w2ρtσ1tσ2t]

= VaR2
1 + VaR2

2 + 2ρtVAR1VaR2.

This is exactly similar to

Var(X + Y ) = Var(X) + Var(Y ) + 2ρ× std(X)std(Y ).

The result can be generalized to more than two assets.
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