
Lecture 8: High-Frequency Financial Data (HFFD) & Market
Microstructure
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8.1 Features of HFFD

8.2 Models for Price Changes: Ordered probit and ADS Models

8.3 Models for Inter-Trade Times (Duration Models): ACD Model

8.4 Realized Volatility

8.1 Features of HFFD

Market microstructure: Why is it important?

� Important in market design & operation, e.g. to compare different markets (NYSE vs NASDAQ)

� To study price discovery, liquidity, volatility, etc.

� To understand costs of trading

� Important in learning the consequences of institutional arrangements on observed processes, e.g.

– nonsynchronous trading

– bid-ask bounce

– impact of changes in tick size, after-hour trading, etc.

– impact of daily price limits (many foreign markets)

We will look at some of these specialized features of HFFD next: called F1–F8.

Def: HFFD is data for which observations are collected with time intervals of 24 hours or less
(intraday).

Some examples:

� Transaction (or tick-by-tick) data

� 5-minute returns in FX

� 1-minute returns on index futures and cash market
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F1: Nonsynchronous trading

Key implication: may induce serial correlations even when the underlying returns are iid.

Example 1. Stocks A and B are independent, but is A traded more frequently than B, if impactful news
arrives near closing time, this will affect A more than B (A traded more often), and will only affect B
the next day. This effect will show up as a lag 1 correlation between A and B, yet they are independent...

Example 2 (Lo & MacKinlay (1990)). Consider the following simplified setup:

� log returns, {rt} ∼ iid(µ, σ2)

� For each time index t, P (no trade) = π

� Cannot observe rt if there is no trade

A simple model for the observed log return series, rot , is given by:

rot =
ℓ∑

i=0

rt−i

where ℓ is the largest integer such that no trading occurred during period t− 1, . . . , t− ℓ.

rot =


0, ℓ = ∅, ⇔ no trade at t

rt, ℓ = 0, ⇔ trade at t and t− 1

rt + rt−1, ℓ = 1, ⇔ trade at t and t− 2 but not at t− 1
...

so that (using Law of Total Probability) the distribution of rot , is given by:

rot =



0, with prob π

rt, with prob (1− π)2

rt + rt−1, with prob (1− π)2π
...∑k

i=0 rt−i, with prob (1− π)2πk

...

Using the resulting geometric sums (and some tricks), not hard to show:

Cov(rot , r
o
t−h) =

{
σ2 + 2πµ2

1−π
, h = 0

−µ2πh, h ≥ 1

Thus: {rot } is negatively correlated, even though {rt} ∼ iid...
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F2: Bid-ask bounce

Key implication: may induce serial correlations even when the underlying returns are iid.

Background: Market makers facilitate transactions in some markets; make money by selling (Pa) at
a higher price than they buy (Pb). The difference:

0 < S = Pa − Pb = bid-ask spread.

The existence of S, although small in magnitude, has several important consequences in time series
of asset returns. One of the most notable is that bid and ask quotes introduce negative lag-1 serial
correlation in observed price changes, the so-called bid-ask bounce.

Example 3 (Roll (1984)). Assume true (unobserved) market price of an asset P ∗
t = S/2, is unchanged,

so that P ∗
t − P ∗

t−1 = 0.

Because of market “friction”, we observe the noisy version Pt, where:

Pt = P ∗
t +

S

2
It, {It} ∼ IID binary r.v.s with P (It = +1) =

1

2
= P (It = −1)

which implies the following time series model for price changes (returns)

∆Pt = (1−B)Pt = Pt − Pt−1 = (It − It−1)
S

2

Since E(It) = 0 and V(It) = 1, we can show E(∆Pt) = 0 and

Cov(∆Pt,∆Pt−h) =


S2/2, h = 0

−S2/4, h = 1

0, h ≥ 2

so that ∆Pt ∼ MA(1) with ACF

ρ(h) =

{
−0.5, h = 1

0, h ≥ 2

This result continues to hold if P ∗
t follows a random walk, so that P ∗

t − P ∗
t−1 ∼ white noise.

Example 4 (Tsay IAFD (2013) Fig. 6-1–6.2). See Figure 1. Fig. 6.1 gives the trading prices and log
returns of the intraday Caterpillar stock over 4 days in January 2010 (n = 3895), in 30-s intervals.
Fig. 6.2 shows the sample ACF: we see a significant spike of ρ̂1 = −0.052.
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Figure 1: Tsay IAFD (2013) Fig. 6-1–6.2.
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F3-F8: Empirical characteristics of HFFD

Let: ti be the calendar time (measured in seconds from midnight) at which the i-th trade of an asset
takes place. Most common features of HFFD:

F3: High-dimensional data. The collection of variables associated with ti are called transactions
data (e.g., price, volume, quotes, etc.); typified by large sample sizes; need multi-dimensional
dynamic models capable of handling many variables at once.

F4: Irregular time intervals. E.g., stock trades do not form an equally spaced time series (occur at
random times). Time duration between trades is important, may contain useful information about
market microstructure (e.g., trading intensity).

F5: Serial correlation, long-range dependence, leptokurtic/heavy tails. Apart from returns which
are typically WN, most HFFD is autocorrelated, with short as well as long-range dependence. Also
need to allow for heavier-than-Gaussian tails.

F6: Discrete and mixed values. E.g., price in multiples of tick size or of 1 cent; means we can treat
series as being discrete. A lot of HFFD also consists of mixed continuous and discrete values.

F7: Positive values. Most HFFD is restricted to positive values, calling for specialized models/techniques.

F8: Strong intraday periodicites. E.g., diurnal pattern on NYSE, transactions are heavier at start
and close of trading hours, thinner during lunch hour (U-shaped intensity). The effects are mirrored
in time durations between transactions, and in stock volatility.

Definitions/Notation

� ∆ti = time change from (i− 1)-th to i-th trade (measured in seconds from midnight)

� yi = price change from (i− 1)-th to i-th trade

� Let Fi−1 be the information set available at the (i − 1)-th transaction, and xi ∈ Fi−1, zi ∈ Fi−1,
and wi ∈ Fi−1 be different sets of vectors of covariates.
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Example 5 (Tsay IAFD (2013), Fig. 6.3–6.4). See Figure 2–3. Fig. 6.3 gives transaction-by-transaction
data of J&J stock: 418,855 intraday price changes over 10 days in October 2010.

R demonstration (Fig. 6.3 and Table 6.2)

> da=read.table("taq-jnj-t-oct4t152010.txt",header=T)

> head(da)

date hour minute second price volume

20101004 6 25 15 61.75 100

20101004 8 33 19 61.56 100

20101004 8 41 9 61.56 100

20101004 8 48 50 61.60 100

20101004 8 48 55 61.60 100

> source("hfchg.R") ### R script to compute price change

> m1=hfchg(da)

number of trading days: 10

> names(m1)

[1] "pchange" "duration" "size"

> par(mfcol=c(2,1)); idx=c(410000:418854)

> plot(m1$pchange,type=’l’,ylab=’change’) #plot(idx,m1$pchange[idx],type=’l’,ylab=’pch’)

> hist(m1$pchange, nclass=400, xlim=c(-0.04,0.04)) ### May use xlim=c(-0.06,0.06)

> source("hfntra.R") # R script to tabulate number of transactions in a given

time interval (measured in minutes).

> m1=hfntra(da,5)

> names(m1)

[1] "ntrad"

Main points from Fig. 6.3 and Table 6.2:

� The histogram indicates most transactions (73%) are without price change, and about 26% result
in a price change that is less than or equal to 1 cent.

� Only 0.83% of transactions were associated with a price change between (1, 2] cents.

� Only about 0.26% of the transactions resulted in price changes of 2 cents or more.

� The empirical distribution of price changes is approximately symmetric about zero.

Fig. 6.4 is a time plot of the first 3000 durations (in seconds) between successive trades. Fig. 6.5(a)
shows the number of transactions in 5-min contiguous intervals (the time gaps between trading days are
ignored). Fig. 6.5(a) shows the corresponding sample ACF of the series in Fig. 6.5(a). Main points:

� Fig. 6.4 confirms that trading did not occur at equally spaced intervals and there some zero durations
(multiple trades in a second).

� The time plot in Fig 6.5(a) exhibits roughly a cyclical U-shaped pattern with 10 cycles.

� The ACF in Fig 6.5(b) shows a clear diurnal pattern in trading intensity seasonal with periodicity
78 (there are ≈ 78 5-min periods in the length of a trading day).
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Figure 2: Tsay IAFD (2013) Fig. 6.3 and Table 6.2.
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Figure 3: Tsay IAFD (2013) Fig 6.4 & 6.5.
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8.2 Models for Price Changes

We consider models for yi and ∆ti, both individually and together, focusing on two models that use
explanatory variables to study the intraday price movements.

Ordered Probit Model: Hauseman et al. (1992)

The first model assumes:

� y∗t is continuous and follows the regression model

y∗t = xiβ + ϵi, ϵi|xi ∼ (0, σ2
i )

� A conditional Gaussian assumption is made where the conditional variance is a positive function
of another set of explanatory variables, wi, parametrized by θ

V(ϵi|xi) = σ2
i = σ2

i (wi) = g(θ,wi) > 0

� This implies ϵi|(xi,wi) ∼ N(0, σ2
i ) and therefore yi|(xi,wi) ∼ N(xiβ, σ

2
i )

� Relationship between y∗i and yi is that yi is a condensation of y∗i into k ordered categories

yi = sj ⇐⇒ αj−1 < y∗i < αj, j = 1, . . . , k

where
−∞ = α0 < α1 < · · · < αk−1 = αk = ∞

Under the conditional Gaussian assumption we have:

P (yi = sj|xi,wi) = P (αj−1 < xiβ + ϵi ≤ αj|xi, wi)

=


Φ
(

α1−xiβ
σi

)
, if j = 1

Φ
(

αj−xiβ

σi

)
− Φ

(
αj−1−xiβ

σi

)
, if j = 2, . . . , k − 1

1− Φ
(

αk−1−xiβ

σi

)
, if j = k

The entire set of parameters, {β,α,θ}, is estimated by maximizing the likelihood.
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Example 6 (Tsay IAFD, Ex 6.1). Consider the intraday price changes of Caterpillar on 4 January
2010 (37,715 price changes), using following 7 categories:

category 1 2 3 4 5 6 7
cents (−∞,−2) [−2,−1) [−1, 0) 0 (0, 1] (1, 2] (2,∞)
% of obs 0.61 1.70 15.2 64.98 15.04 1.83 0.66

To focus on dynamic dependence of intraday price changes, define dummy variables for ℓ lagged price
changes being in category j (only 12 such dummies are needed):

yℓ,j =

{
1, if price change ℓ steps back = sj

0, otherwise
, for j = 2, . . . , 7 and ℓ = 1, 2.

Also use the observed price changes from up to 3 lags back (yi−ℓ), and the lag-2 transaction volume
divided by 100 (vi−2), so that the regression model entertained here is:

xiβ = β1vi−2 +
3∑

ℓ=1

β1+ℓyi−ℓ +
7∑

j=2

(γ1,jy1,j + γ2,jy2,j), σ2
i = constant

Some remarks:

� polr allows for weighted regression to handle heteroscedasticity (option “weights”), but cannot
simultaneously estimate β and σ2

i (which defaults to 1).

� Estimates of boundary parameters αj not symmetric with respect to zero.

� Model implies that
P (y∗i ≤ sj|xi,wi) = Φ(αj − xiβ)

R demonstration (Fig. 6.8 and Table 6.4)

> da=read.table("taq-cat-t-jan042010.txt",header=T)

> head(da)

date hour minute second price size

1 20100104 9 30 0 57.65 3910

.....

6 20100104 9 30 1 57.65 462

> vol=da$size/100

> da1=read.table("taq-cat-cpch-jan042010.txt")

> cpch=da1[,1] % category of price change

> pch=da1[,2] % price change

> cf=as.factor(cpch) % create categories in R

> length(cf)

[1] 37715

> y=cf[4:37715]

> y1=cf[3:37714] % create indicator variables for lag-1 cpch

> y2=cf[2:37713] % create indicator variables for lag-2 cpch

> vol=vol[2:37716]

> v2=vol[2:37713] % create lag-2 volume
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> cp1=pch[3:37714] % select lagged price changes

> cp2=pch[2:37713]; cp3=pch[1:37712]

> library(MASS) % load package

> m1=polr(y~v2+cp1+cp2+cp3+y1+y2,method="probit")

> summary(m1)

Call:

polr(formula = y ~ v2 + cp1 + cp2 + cp3 + y1 + y2, method = "probit")

Coefficients:

Value Std. Error t value

v2 -0.003765 0.0009453 -3.983

cp1 -7.836883 1.4613047 -5.363

cp2 -10.864394 1.5306456 -7.098

cp3 -12.283682 0.7710955 -15.930

y12 -0.274407 0.0923566 -2.971

y13 -0.742792 0.0908854 -8.173

y14 -1.330665 0.0963540 -13.810

y15 -1.858199 0.1042257 -17.829

y16 -2.261587 0.1218013 -18.568

y17 -2.493321 0.1563177 -15.950

y22 -0.098542 0.0935908 -1.053

y23 -0.307034 0.0923725 -3.324

y24 -0.531115 0.0980150 -5.419

y25 -0.744706 0.1062435 -7.009

y26 -0.932655 0.1238918 -7.528

y27 -0.858858 0.1596219 -5.381

Intercepts:

Value Std.Error t value

1|2 -4.5941 0.1459 -31.4803

2|3 -4.0170 0.1445 -27.7989

3|4 -2.8599 0.1438 -19.8926

4|5 -0.8528 0.1435 -5.9437

5|6 0.2868 0.1434 1.9996

6|7 0.8882 0.1435 6.1883

Residual Deviance: 74802.56

AIC: 74846.56

> names(m1)

[1] "coefficients" "zeta" "deviance" "fitted.values"

[5] "lev" "terms" "df.residual" "edf"

[9] "n" "nobs" "call" "method"

[13] "convergence" "niter" "lp" "model"

[17] "contrasts" "xlevels"

> yhat=m1$fitted.values

> print(yhat[1:5,],digits=3)

1 2 3 4 5 6 7

1 1.11e-03 0.005420 0.08605 0.660 0.2134 0.0266 0.007696

2 1.55e-02 0.041461 0.27883 0.608 0.0535 0.0028 0.000444

3 8.99e-06 0.000094 0.00522 0.287 0.4311 0.1605 0.116298

4 1.87e-04 0.001251 0.03267 0.539 0.3343 0.0658 0.027144

5 6.41e-04 0.003470 0.06457 0.630 0.2527 0.0365 0.011836
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Figure 4: Tsay IAFD (2013) Table 6.4 & Fig 6.8.
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ADS Decomposition Model: McCulloch & Tsay (2000) and Rydberg & Shephard (2003)

Under the ADS model, the price change at i-th transaction is written as a product of 3 terms:

yi = AiDiSi

The evolution of price change can then be partitioned as

P (yi|Fi−1) = P (Si|Di, Ai, Fi−1)P (Di|Ai, Fi−1)P (Ai|Fi−1)

where:

� The term Ai ∼ Bernoulli(pi) is a binary indicator of price change with success probability modeled
via logistic regression:

Ai =

{
1, yi ̸= 0,

0, yi = 0
, pi = P (Ai = 1) =

exp{xT
i β}

1 + exp{xT
i β}

� The term Di|(Ai = 1) ∼ 2Bernoulli(δi)− 1 is a binary indicator of direction of price change, also
modeled via logistic regression:

Di|(Ai = 1) =

{
1, yi > 0,

−1, yi < 0
, δi = P (Di = 1|Ai = 1) =

exp{zT
i γ}

1 + exp{zT
i γ}

� The term Si ≥ 0 (conditional on Di and Ai = 1) is the absolute value of the size of the price
change, modeled via geometrics (≥ 1) with logistic regression varying rates (for j = u, d):

Si|(Di, Ai = 1) ∼

{
Geometric(λu,i), Di = 1, Ai = 1,

Geometric(λd,i), Di = −1, Ai = 1,
, λj,i =

exp{wT
i θj}

1 + exp{wT
i θj}

The resulting log-likelihood function

log{P (y1, . . . , yn|F0)} =
n∑

i=1

log{P (yi|Fi−1)}

is then maximized over the parameter vectors: (β,γ,θu,θd).
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Example 7 (Tsay IAFD, Ex 6.2). Model the 37,715 intraday price changes of Caterpillar stock during
the normal trading hours of 4 January 2010. A simple model uses the following covariates:

� xi = Ai−1: the action indicator of the previous trade

� zi = Di−1: the direction indicator of the previous trade

� wi = Si−1: the size of the previous trade

The respective logits are therefore:

log

(
pi

1− pi

)
= β0 + β1Ai−1

log

(
δi

1− δi

)
= γ0 + γ1Di−1

log

(
λu,i

1− λu,i

)
= θu,0 + θu,1Si−1

log

(
λd,i

1− λd,i

)
= θd,0 + θd,1Si−1

R demonstration (Table 6.5)

> da=read.table("taq-cat-cpch-jan042010.txt")

> dim(da)

[1] 37715 2

> pch=da[,2] % create Ai, Di, and Si and their lagged variables

> idx=c(1:37715)[pch > 0]

> jdx=c(1:37715)[pch < 0]

> A=rep(0,37715); A[idx]=1; A[jdx]=1

> D=rep(0,37715); D[idx]=1; D[jdx]=-1

> S=abs(da[,1]-4)

> Ai=A[2:37715]; Aim1=A[1:37714]

> Di=D[2:37715]; Dim1=D[1:37714]

> Si=S[2:37715]; Sim1=S[1:37714]

> m1=glm(Ai~Aim1,family="binomial")

> summary(m1)

Call: glm(formula = Ai ~ Aim1, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.07342 0.01466 -73.22 <2e-16 ***

Aim1 1.18316 0.02277 51.95 <2e-16 ***

---

Residual deviance: 46085 on 37712 degrees of freedom

AIC: 46089

> di=Di[Ai==1]

> dim1=Dim1[Ai==1]

> di=(di+abs(di))/2 % transform di to binary

> m2=glm(di~dim1,family="binomial")

> summary(m2)
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Call: glm(formula = di ~ dim1, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.009755 0.018994 -0.514 0.608

dim1 -1.241364 0.028731 -43.207 <2e-16 ***

This leads to the estimates on Table 6.5 (see Fig. 5).

Figure 5: Tsay IAFD (2013) Table 6.5

We obtain the following results:

� Probability of price change at i-th transaction:

P (Ai = 1|Ai−1 = 0) = 0.255 = P (price change at i given there wasn’t one at i− 1)

P (Ai = 1|Ai−1 = 1) = 0.527 = P (price change at i given there was one at i− 1)

� Probability of price increase at i-th transaction:

P (Di = 1|Ai−1 = 0) = 0.500 = P (price increase at i given there wasn’t a price change at i− 1)

P (Di = 1|Ai = 1, Di−1 = 1) = 0.223 = P (price increase at i given there was a price increase at i− 1)

P (Di = 1|Ai = 1, Di−1 = −1) = 0.774 = P (price increase at i given there was a price decrease at i− 1)

The fact that 0.223 < 0.774 supports the bid-ask bounce effect, and price reversals in HFFD.

� Size of price change at i-th transaction:

Si|(Di = 1) = size of price increase at i ∼ Geometric(λu,i = 1.649− 0.297Si−1)

Since E[Geometric(λ)] = λ−1, the prob of a large Si increases with Si−1.
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8.3 Models for Inter-Trade Times (Duration Models)

Duration models are concerned with time intervals (durations) between trades ∆ti (longer dura-
tions indicate lack of trading activities, which in turn signify a period of no new information).

Main Model: autoregressive conditional duration (ACD) proposed by Engle & Russell (1998):

� uses a GARCH-style model to capture the volatility of the conditional mean of the durations;

� extended by Zhang et al (2001) to account for nonlinearity and structural breaks;

� implemented in R package ACDm (function “acdFit”);

� assumes the data has been deseasonalized...

Deseasonalization step

For i = 1, . . . , n, let

xi = adjusted duration = deseasonalized ∆ti =
∆ti
d(ti)

where d(ti) is the estimated (deterministic) diurnal cyclical component of ∆ti.

� A common way to model cyclical component is via regression splines (after logging to ensure a
positive solution):

log[d(t)] = g(t), g(t) = β0 +
J∑

j=1

βjgj(t)

The appropriate formulation of the basis functions gj(·) can be very dataset-specific. Typical
functional forms are:

gj(t) =

(
t− aj
bj

)2

, and gj(t) =


(

t−aj
bj

)2

, if t ∈ (αj, βj)

0, otherwise

for some specified values of {aj, bj, αj, βj}.

� The coefficients {βj} are fitted by least squares minimization:∑
i

[zi − g(ti)]
2 , zi = log(∆ti)

In practice obtain the {xi} by exponentiating the residuals from this fit:

xi = exp{ε̂i}, ε̂i = zi − ĝ(ti)

� The default method in ACDm function “diurnalAdj” implements cubic splines, but several other
methods for obtaining the {xi} are available.
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ACD model step

The ACD model uses the GARCH idea to study the dynamic structure of xi via

µi = E(xi|Fi−1)

� The basic ACD(r, s) model is defined as:

xi = µiϵi

{ϵi} ∼ iid with E(ϵi) = 1 and ϵi > 0

µi = ω +
r∑

j=1

αjxi−j +
s∑

j=1

βjµi−j

� Defining ηi = xi − µi, which can be shown to be white noise, model can be written as:

xi =

max(r,s)∑
j=1

(αj + βj)xi−j +
s∑

j=1

βjηi−j + ηi

(where αj = 0 and βj = 0 for j > r and j > s, respectively).

� Can show that (under stationarity):

E(xi) =
ω

1−
∑m

j=1(αj + βj)
, m = max(r, s)

(Both numerator and denominator must be positive, since we need E(xi) > 0.)

� The {ϵi} must be modeled with a positive-valued distribution; common versions are:

EACD: ACD with {ϵi} iid standard exponential;

GACD: ACD with {ϵi} iid standard gamma (generalized);

WACD: ACD with {ϵi} iid standard weibull;

Estimation step

This is via the usual MLE since the likelihood of the data vector xn can be written as:

f(xn|θ) =

{
n∏

i=m+1

f(xi|Fi−1,θ)

}
f(xm|θ)

The marginal distribution of the first m observations, f(xm|θ), is usually ignored (implies QMLE).
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Example 8 (Tsay IAFD, Ex 6.3). Model the 37,674 positive durations of CAT stock during the 5 trading
days from 4 to 8 January, 2010. We convert the data to seconds.

� Reasoning that diurnal trading follows approx a quadratic trend peaking at noon, and the pattern
repeats daily, we use regression splines to deseasonalize with the functions:

g1(t) =
t− a

b
, and g2(t) = g21(t),

where a = 43, 200 denotes 12:00 noon, and b = 23, 400 is the number of trading hours (both
measured in seconds). The resulting adjusted durations can be seen in Fig 6. The “FFF” method
appears to be the best at detrending; the actual trends can be seen in Fig 7.

Figure 6: Raw and adjusted durations for CAT data.
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� The ACFs in Fig 8 exhibit substantial autocorrelation; less so for “FFF” and “supsmu”. Based
on these results we proceed with an ACM model for the FFF adjusted durations.
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Figure 7: Diurnal cycles for CAT durations estimated by “FFF”.
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Figure 8: ACFs for unadjusted and adjusted CAT durations.
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� Fitting an EACD(1,1) and a WACD(2,1) models leads to the following goodness of fit summaries:

Goodness of fit: EACD(1,1) WACD(2,1)

AIC 74694.515031 71607.34172

BIC 74720.125446 71650.02574

MSE 0.922094 0.92184

Q(5) res p-value 0.051237 0.30222

Q(10) res p-value 0.046969 0.41184

Q(15) res p-value 0.046969 0.41184

Q(5) res^2 p-value 0.886437 0.61705

Q(10) res^2 p-value 0.209134 0.11299

Q(15) res^2 p-value 0.209134 0.11299

The WACD has substantially lower AIC/BIC, and also easily passes tests for serial correlation in
the residuals and their squares.

� The fitted model is:

Parameter estimate:

Coef SE PV

omega 0.0296 0.00298 0

alpha1 0.0688 0.00529 0

alpha2 -0.0267 0.00562 0

beta1 0.9291 0.00483 0

gamma 1.2425 0.00454 0

Note: The p-value for the distribution parameter gamma is from the

2-tailed test H0: gamma = 1.

The fixed/unfree mean distribution parameter: theta: 0.9170524

From this output we see that:

xi = µiϵi

{ϵi} ∼ iid std. Weibull(γ)

µi = 0.0296 + 0.0688xi−1 − 0.0267xi−2 + 0.9291µi−1

The pdf of a std. Weibull(γ) is:

f(ϵ) = θγϵγ−1 exp{−θϵγ}, θ = [Γ(1 + 1/γ)]γ

and in this case we have the estimates: γ = 1.2425 and θ = 0.9170524.

� Fig 9 shows the ACF of residuals and their squares for the WACD model. The bottom panel
displays the estimates of the conditional mean series {µi} superimposed on the {xi}.

20



Figure 9: ACF of residuals and their squares for WACD model fitted to CAT durations. The bottom
panel displays the data and estimated conditional mean.
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