Financial Time Series Lecture 7:
Simple Nonlinear Models & Market Micro-structure

Does nonlinearity exist in financial T'S?
Yes, especially in volatility modeling & high-frequency data analysis

We focus on simple nonlinear models & neural networks
What is a linear time series?
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where p is a constant, 1; are real numbers with ¢y = 1, and {a;} is
an iid (0, 02).

General concept: Let F;_; denote the information available at
time ¢ — 1.

Conditional mean:

pe = Bz Fy 1) = g(Fi1),

Conditional variance:
o7 = Var(z;|Fy_1) = h(Fi_)

where g(.) and h(.) are well-defined functions with A(.) > 0.

For a linear series, g(.) is a linear function of F;_; and h(.) = o2

Statistics literature: focuses on g(.)
See the book by Tong (Oxford University Press, 1990)

Financial econometrics literature: focuses on h(.)

Some specific models
TAR model: a piccewise linear model in the space of a threshold
variable.



TAR(C2;1,1) series

time index

Figure 1: A simulated two-regime TAR process
Example: 2-regime AR(1) model
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where a;’s are iid N(0,1).
Here the delay is 1 time period, z;_1 is the threshold variable, and
the threshold is 0. The threshold divides the range (or space) of z;_;
into two regimes with Regime 1 denoting z;_1 < 0.
What is so special about this model? See the time plot.
Special features of the model: (a) asymmetry in rising and declining
patterns, (more data points are positive than negative) (b) the mean
of x; is not zero even though there is no constant term in the model,
(c) the lag-1 coefficient may be greater than 1 in absolute value.
Financial applications:
(A) Nonlinear Market Model: Consider monthly log returns of GM
stock and S&P composite index from 1967 to 2008. The Market
model is

re =+ Brop: + €.
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A simple nonlinear model:

oy + Birms €, iy <0
g + Barm s + €, i e > 0.

> da=read.table("m-gmsp6708.txt" ,header=T)
> head(da)
Date GM SP
1 19670331 0.053541 0.039410
19670831 -0.004720 -0.011715
gm=log(da$GM+1)
sp=log(da$SP+1)
mi=lm(gm~sp) % Market model
summary (m1)
Call: Im(formula = gm ~ sp)

vV V.V Vv O

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.004861  0.003434 -1.415 0.158
Sp 1.072508  0.077177 13.897 <2e-16 **x*
Residual standard error: 0.07652 on 500 degrees of freedom
Multiple R-squared: 0.2786, Adjusted R-squared: 0.2772

> length(gm)

(1] 502

idx=c(1:502) [sp <= 0] % Locate all non-positive market returns

nsp=rep(0,502) ¥ Create the variable of non-positive market returns
nsp[idx]=sp[idx]

cl=rep(0,502) % Create a variable for intercept of non-positive market returns.
cl[idx]=1

xx=cbind(gm,sp,cl,nsp) % Show the resulting variables

head (xx)

V V V V V Vv V

gm sp cl nsp
[1,] 0.052156871 0.03865324 0.00000000
[2,] 0.126126796 0.04137128 0.00000000
[3,] -0.083130553 -0.05386607 .05386607
[4,]1 -0.024098039 0.01736043 0.00000000
[5,]1 0.097524998 0.04434602 0.00000000
[6,] -0.004731174 -0.01178416 -0.01178416

=, O O+ O O
|
o

> m2=1m(gm~cl+sp) % with different intercepts
> summary (m2)
Call: 1m(formula = gm ~ cl + sp)



Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.014971 0.005931 -2.524 0.0119 =*
cl 0.021994 0.010538 2.087 0.0374 *
sp 1.258037 0.117556 10.702  <2e-16 ***
Residual standard error: 0.07626 on 499 degrees of freedom
Multiple R-squared: 0.2849, Adjusted R-squared: 0.282

> m3=1m(gm~sp+nsp)
> summary (m3)
Call: lm(formula = gm ~ sp + nsp)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.002329 0.005288 0.440 0.6598
sp 0.848133 0.147421 5.753 1.53e-08 *xx
nsp 0.421989  0.236424 1.785 0.0749 .
Residual standard error: 0.07635 on 499 degrees of freedom
Multiple R-squared: 0.2832, Adjusted R-squared: 0.2803

> m4=1m(gm~sp+cl+nsp)
> summary (m4)
Call: 1m(formula = gm ~ sp + cl + nsp)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.007778 0.007369 -1.055 0.2917

sp 1.041129 0.176838 5.887 7.21e-09 x*x*
cl 0.020713  0.010550 1.963 0.0502 .
nsp 0.387630  0.236399 1.640 0.1017

Residual standard error: 0.07613 on 498 degrees of freedom
Multiple R-squared: 0.2887, Adjusted R-squared: 0.2844

(B) Modeling the leverage effect in volatility: Recall EGARCH, GJR,
TGARCH, and APARCH models.

Markov Switching models



Two-state MS model:

p ; _
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where s; assumes values in {1,2} and is a first-order Markov chain
with trans. prob.

P(s;=2|s;-1=1)=wy, P(st=1]s;-1=2) = wo,

where 0 < w; < 1 is the probability of switching out State 1 from
time t — 1 to time ¢. A large w; means that it is easy to switch out
State 1, i.e. cannot stay in State 1 for long. The inverse, 1/wy, is
the expected duration (number of time periods) to stay in State 1.
Similar idea applies to ws.

Example: Growth rate of US quarterly real GNP 47-91.
See Figure 4.4 of the textbook (p.188).

State 1
Par Ci b1 P2 ®3 Gy| O; w;
Est | 0.909 0.265 0.029 —0.126 —0.110]0.816|0.118
SE| 0202 0113 0.126 0.103  0.1090.125 | 0.053
State 2
Est | —0.420 0.216 0.628 —0.073 —0.097|1.017 | 0.286
SE| 0324 0347 0377 0364  0.4040.293 | 0.064

Discussion

e Regime 2, which has a negative expectation (or growth), denotes
“recession” periods. The S.E. of the estimates are large due to
the small number of data in the regime.
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e The expected durations for Regime 1 and 2 are 8.5 and 3.5 quar-
ters, respectively. (1/w;)

Discussion: Threshold model vs Markov switching model. Deter-
ministic switching vs stochastic switching. They are basically trying
to handle similar nonlinearity in a time series.

Empirical analysis

1. You may use the R package TSA to fit TAR models. The sub-
command is tar. Commodity prices tend to be nonlinear. For
instance, I use TAR models to study the annual price of copper
from 1800 to 1996. A two-regime TAR(1,2) model with delay d
= 1 fits the data better than an AR(12) model.

2. You may use the R package MSwM to fit Markov switching models.
The command is msmFit. The package uses EM-algorithm to
perform estimation and simulation to produce forecasts. I use
the package to model the U.S. GDP growth rate. (Quarterly
data.)

Neural networks and Deep learning
e a semi-parametric approach to data analysis

e Structure of a network:



— Output layer
— Input layer
— Hidden layer
— Nodes

e Activation function:

— Logistic function:

exp(2)

Uz) = 1 4 exp(z)

— Heaviside (or threshold) function:

1 ifz>0
}ﬂ@_{Oﬁzgo

e Use /(z) for the hidden layer

Feed-forward neural network:
Hidden node:

zj = fila;+ ¥ wijz;)

1—]
where f;(.) is an activation function which is typically taken to be
the logistic function

exp(2)

filz) = 1 +exp(z)’

o is called the bias, the summation ¢ — j means summing over all
input nodes feeding to j, and wj;; are the weights.
Output node:

Yy = fo(ao + Z wjoxj)a

Jj—o0
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where the activation function f,(.) is either linear or a Heaviside
function. By a Heaviside function, we mean f,(z) = 1if z > 0
and f,(z) = 0, otherwise.

General form:

Yy = fo Qo Z wjofj Q; + waazl
j—o 1—)
With direct connections from the input layer to the output layer:
Y= Jfo|O+ X Wi + > wjof; |+ X wiz ||,
1—0 j—o 11—

Training and forecasting

Divide the data into training and forecasting subsamples.
Training: build a few network systems

Forecasting: based on the accuracy of out-of-sample forecasts to
select the “best” network.

Example: Monthly log returns of IBM stock 26-99.
See text for details.

Some R commands: with nnet package

library(nnet)

x=scan(‘ ‘m-ibmln2699.txt’’)

y=x[4:864] 7, select the output: r(t)

# obtain the input variables: r(t-1), r(t-2), and r(t-3)
ibm.x=cbind (x[3:863],x[2:862] ,x[1:861])

# build a 3-2-1 network with skip layer connections

# and linear output.
ibm.nn=nnet(ibm.x,y,size=2,linout=T,skip=T,maxit=10000,
decay=1e-2,reltol=1e-7,abstol=1e-7,range=1.0)

# print the summary results of the network

summary (ibm.nn)

# compute \& print the residual sum of squares.
sse=sum((y-predict(ibm.nn,ibm.x))~2)

print(sse)

# setup the input variables in the forecasting subsample
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ibm.p=cbind(x [864:887] ,x[863:886] ,x[862:885])

# compute the forecasts

yh=predict(ibm.nn,ibm.p)

# The observed returns in the forecasting subsample

yo=x[865:888]

# compute \& print the sum of squares of forecast errors

ssfe=sum((yo-yh) ~2)

print(ssfe)

Remark: One-step ahead Out-of-sample-forecasts using nnet com-
mand. A R script, backnnet.R, is developed to carry out the eval-

uation of 1-step ahead out-of-sample forecasts. For illustration,

> source (¢ ‘backnnet.R’’)
> m3=backnnet(x,y,nsize,orig,nl,nsk,miter)

A reference book: Neural Networks in Finance: Gaining Predic-
tive FEdge in the Market by Paul D. McNelis (2005, Elsevier). It

uses Matlab.

Analysis of High-Frequency Financial Data & Market
Microstructure

Market microstructure: Why is it important?

1. Important in market design & operation, e.g. to compare differ-

ent markets (NYSE vs NASDAQ)
2. To study price discovery, liquidity, volatility, etc.
3. To understand costs of trading

4. Important in learning the consequences of institutional arrange-
ments on observed processes, e.g.

e Nonsynchronous trading



