
Financial Time Series Lecture 7:
Simple Nonlinear Models & Market Micro-structure

Does nonlinearity exist in financial TS?

Yes, especially in volatility modeling & high-frequency data analysis

We focus on simple nonlinear models & neural networks

What is a linear time series?

xt = µ +
∞∑
i=0
ψiat−i

where µ is a constant, ψi are real numbers with ψ0 = 1, and {at} is

an iid (0, σ2a).

General concept: Let Ft−1 denote the information available at

time t− 1.

Conditional mean:

µt = E(xt|Ft−1) ≡ g(Ft−1),

Conditional variance:

σ2t = Var(xt|Ft−1) ≡ h(Ft−1)

where g(.) and h(.) are well-defined functions with h(.) > 0.

For a linear series, g(.) is a linear function of Ft−1 and h(.) = σ2a.

Statistics literature: focuses on g(.)

See the book by Tong (Oxford University Press, 1990)

Financial econometrics literature: focuses on h(.)

Some specific models

TAR model: a piecewise linear model in the space of a threshold 
variable.
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TAR(2;1,1) series

Figure 1: A simulated two-regime TAR process

Example: 2-regime AR(1) model

xt =

 −1.5xt−1 + at if xt−1 < 0,

0.5xt−1 + at if xt−1 ≥ 0,

where at’s are iid N(0, 1).

Here the delay is 1 time period, xt−1 is the threshold variable, and

the threshold is 0. The threshold divides the range (or space) of xt−1
into two regimes with Regime 1 denoting xt−1 < 0.

What is so special about this model? See the time plot.

Special features of the model: (a) asymmetry in rising and declining

patterns, (more data points are positive than negative) (b) the mean

of xt is not zero even though there is no constant term in the model,

(c) the lag-1 coefficient may be greater than 1 in absolute value.

Financial applications:

(A) Nonlinear Market Model: Consider monthly log returns of GM

stock and S&P composite index from 1967 to 2008. The Market

model is

rt = α + βrm,t + εt.
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A simple nonlinear model:

rt =

 α1 + β1rm,t + εt, if rm,t ≤ 0

α2 + β2rm,t + εt, if rm,t > 0.

> da=read.table("m-gmsp6708.txt",header=T)

> head(da)

Date GM SP

1 19670331 0.053541 0.039410

.....

6 19670831 -0.004720 -0.011715

> gm=log(da$GM+1)

> sp=log(da$SP+1)

> m1=lm(gm~sp) % Market model

> summary(m1)

Call: lm(formula = gm ~ sp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.004861 0.003434 -1.415 0.158

sp 1.072508 0.077177 13.897 <2e-16 ***

---

Residual standard error: 0.07652 on 500 degrees of freedom

Multiple R-squared: 0.2786, Adjusted R-squared: 0.2772

> length(gm)

[1] 502

> idx=c(1:502)[sp <= 0] % Locate all non-positive market returns

> nsp=rep(0,502) % Create the variable of non-positive market returns

> nsp[idx]=sp[idx]

> c1=rep(0,502) % Create a variable for intercept of non-positive market returns.

> c1[idx]=1

> xx=cbind(gm,sp,c1,nsp) % Show the resulting variables

> head(xx)

gm sp c1 nsp

[1,] 0.052156871 0.03865324 0 0.00000000

[2,] 0.126126796 0.04137128 0 0.00000000

[3,] -0.083130553 -0.05386607 1 -0.05386607

[4,] -0.024098039 0.01736043 0 0.00000000

[5,] 0.097524998 0.04434602 0 0.00000000

[6,] -0.004731174 -0.01178416 1 -0.01178416

> m2=lm(gm~c1+sp) % with different intercepts

> summary(m2)

Call: lm(formula = gm ~ c1 + sp)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.014971 0.005931 -2.524 0.0119 *

c1 0.021994 0.010538 2.087 0.0374 *

sp 1.258037 0.117556 10.702 <2e-16 ***

---

Residual standard error: 0.07626 on 499 degrees of freedom

Multiple R-squared: 0.2849, Adjusted R-squared: 0.282

> m3=lm(gm~sp+nsp)

> summary(m3)

Call: lm(formula = gm ~ sp + nsp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.002329 0.005288 0.440 0.6598

sp 0.848133 0.147421 5.753 1.53e-08 ***

nsp 0.421989 0.236424 1.785 0.0749 .

---

Residual standard error: 0.07635 on 499 degrees of freedom

Multiple R-squared: 0.2832, Adjusted R-squared: 0.2803

> m4=lm(gm~sp+c1+nsp)

> summary(m4)

Call: lm(formula = gm ~ sp + c1 + nsp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.007778 0.007369 -1.055 0.2917

sp 1.041129 0.176838 5.887 7.21e-09 ***

c1 0.020713 0.010550 1.963 0.0502 .

nsp 0.387630 0.236399 1.640 0.1017

---

Residual standard error: 0.07613 on 498 degrees of freedom

Multiple R-squared: 0.2887, Adjusted R-squared: 0.2844

(B) Modeling the leverage effect in volatility: Recall EGARCH, GJR,

TGARCH, and APARCH models.

Markov Switching models
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Two-state MS model:

xt =


c1 +

∑p
i=1 φ1,ixt−i + a1t if st = 1,

c2 +
∑p
i=1 φ2,ixt−i + a2t if st = 2,

where st assumes values in {1,2} and is a first-order Markov chain

with trans. prob.

P (st = 2|st−1 = 1) = w1, P (st = 1|st−1 = 2) = w2,

where 0 ≤ w1 ≤ 1 is the probability of switching out State 1 from

time t− 1 to time t. A large w1 means that it is easy to switch out

State 1, i.e. cannot stay in State 1 for long. The inverse, 1/w1, is

the expected duration (number of time periods) to stay in State 1.

Similar idea applies to w2.

Example: Growth rate of US quarterly real GNP 47-91.

See Figure 4.4 of the textbook (p.188).

State 1

Par ci φ1 φ2 φ3 φ4 σi wi
Est 0.909 0.265 0.029 −0.126 −0.110 0.816 0.118

S.E 0.202 0.113 0.126 0.103 0.109 0.125 0.053

State 2

Est −0.420 0.216 0.628 −0.073 −0.097 1.017 0.286

S.E 0.324 0.347 0.377 0.364 0.404 0.293 0.064

Discussion

• Regime 2, which has a negative expectation (or growth), denotes

“recession” periods. The S.E. of the estimates are large due to

the small number of data in the regime.
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• The expected durations for Regime 1 and 2 are 8.5 and 3.5 quar-

ters, respectively. (1/wi)

Discussion: Threshold model vs Markov switching model. Deter-

ministic switching vs stochastic switching. They are basically trying

to handle similar nonlinearity in a time series.

Empirical analysis

1. You may use the R package TSA to fit TAR models. The sub-

command is tar. Commodity prices tend to be nonlinear. For

instance, I use TAR models to study the annual price of copper

from 1800 to 1996. A two-regime TAR(1,2) model with delay d

= 1 fits the data better than an AR(12) model.

2. You may use the R package MSwM to fit Markov switching models.

The command is msmFit. The package uses EM-algorithm to

perform estimation and simulation to produce forecasts. I use

the package to model the U.S. GDP growth rate. (Quarterly

data.)

Neural networks and Deep learning

• a semi-parametric approach to data analysis 

• Structure of a network:
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– Output layer

– Input layer

– Hidden layer

– Nodes

• Activation function:

– Logistic function:

`(z) =
exp(z)

1 + exp(z)

– Heaviside (or threshold) function:

H(z) =

 1 if z > 0

0 if z ≤ 0

• Use `(z) for the hidden layer

Feed-forward neural network:

Hidden node:

xj = fj(αj +
∑
i→j

wijxi)

where fj(.) is an activation function which is typically taken to be

the logistic function

fj(z) =
exp(z)

1 + exp(z)
,

αj is called the bias, the summation i→ j means summing over all

input nodes feeding to j, and wij are the weights.

Output node:

y = fo(αo +
∑
j→o

wjoxj),
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where the activation function fo(.) is either linear or a Heaviside

function. By a Heaviside function, we mean fo(z) = 1 if z > 0

and fo(z) = 0, otherwise.

General form:

y = fo

αo +
∑
j→o

wjofj

αj +
∑
i→j

wijxi


 .

With direct connections from the input layer to the output layer:

y = fo

αo +
∑
i→o

wioxi +
∑
j→o

wjofj

αj +
∑
i→j

wijxi


 ,

Training and forecasting

Divide the data into training and forecasting subsamples. 
Training: build a few network systems

Forecasting: based on the accuracy of out-of-sample forecasts to 
select the “best” network.

Example: Monthly log returns of IBM stock 26-99.

See text for details.

Some R commands: with nnet package

library(nnet)

x=scan(‘‘m-ibmln2699.txt’’)

y=x[4:864] % select the output: r(t)

# obtain the input variables: r(t-1), r(t-2), and r(t-3)

ibm.x=cbind(x[3:863],x[2:862],x[1:861])

# build a 3-2-1 network with skip layer connections

# and linear output.

ibm.nn=nnet(ibm.x,y,size=2,linout=T,skip=T,maxit=10000,

decay=1e-2,reltol=1e-7,abstol=1e-7,range=1.0)

# print the summary results of the network

summary(ibm.nn)

# compute \& print the residual sum of squares.

sse=sum((y-predict(ibm.nn,ibm.x))^2)

print(sse)

# setup the input variables in the forecasting subsample
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ibm.p=cbind(x[864:887],x[863:886],x[862:885])

# compute the forecasts

yh=predict(ibm.nn,ibm.p)

# The observed returns in the forecasting subsample

yo=x[865:888]

# compute \& print the sum of squares of forecast errors

ssfe=sum((yo-yh)^2)

print(ssfe)

Remark: One-step ahead Out-of-sample-forecasts using nnet com-

mand. A R script, backnnet.R, is developed to carry out the eval-

uation of 1-step ahead out-of-sample forecasts. For illustration,

> source(‘‘backnnet.R’’)

> m3=backnnet(x,y,nsize,orig,nl,nsk,miter)

A reference book: Neural Networks in Finance: Gaining Predic-

tive Edge in the Market by Paul D. McNelis (2005, Elsevier). It

uses Matlab.

Analysis of High-Frequency Financial Data & Market

Microstructure

Market microstructure: Why is it important?

1. Important in market design & operation, e.g. to compare differ-

ent markets (NYSE vs NASDAQ)

2. To study price discovery, liquidity, volatility, etc.

3. To understand costs of trading

4. Important in learning the consequences of institutional arrange-

ments on observed processes, e.g.

• Nonsynchronous trading
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