
Financial Time Series Lecture 6: lterative 
Approaches to Estimating Volatility

Some alternative methods: (Non-parametric methods)

• Moving window estimates

• Use of high-frequency financial data

• Use of daily open, high, low and closing prices (or log prices)

Moving window

A simple approach to capture time-varying feature of the volatility.

Hard to determine the size of the window.

Demonstration: Use the quantmod package to download the daily

trading information of SPDR S&P 500 from January 3, 2003 to April

30,2017. The tick symbol is SPY. Use the adjusted index value to com-

pute daily log returns of SPY. A R script, mvwindow.R, is available

on the course web.

Instructions:

1. Download the data and save it in your R working directory.

2. Compile the program using the command: source(“mvwindow.R”)

3. To run the program: mvol=mvwindow(rt,size), where “rt”

denotes the return series and “size” is the size of the moving

window.

4. The output is the volatility, i.e., σt, stored in sigma.t.

Demonstration shown in class.

Use of High-Frequency Data
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Suppose we like to estimate the monthly volatility of a stock return.

Data: Daily returns

Let rmt be the t-th month log return.

Let {rt,i}ni=1 be the daily log returns within the t-th month.

Using properties of log returns, we have

rmt =
n∑
i=1
rt,i.

Assuming that the conditional variance and covariance exist, we have

Var(rmt |Ft−1) =
n∑
i=1

Var(rt,i|Ft−1) + 2
∑
i<j

Cov[(rt,i, rt,j)|Ft−1],

where Ft−1 = the information available at month t− 1 (inclusive).

Further simplification is possible under additional assumptions.

If {rt,i} is a white noise series, then

Var(rmt |Ft−1) = nVar(rt,1),

where Var(rt,1) can be estimated from the daily returns {rt,i}ni=1 by

σ̂2 =
∑n
i=1(rt,i − r̄t)n

n− 1
,

where r̄t is the sample mean of the daily log returns in month t (i.e.,

r̄t =
∑n
i=1 rt,i/n).

The estimated monthly volatility is then

σ̂2m =
n

n− 1

n∑
i=1

(rt,i − r̄t)2 ≈
n∑
i=1

(rt,i − r̄t)2.

If {rt,i} follows an MA(1) model, then

Var(rmt |Ft−1) = nVar(rt,1) + 2(n− 1)Cov(rt,1, rt,2),

which can be estimated by

σ̂2m =
n

n− 1

n∑
i=1

(rt,i − r̄t)2 + 2
n−1∑
i=1

(rt,i − r̄t)(rt,i+1 − r̄t).
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(a) Based on daily returns - white noise
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(b) Based on daily returns - MA(1)
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(c) Based on a GARCH(1,1) model

Figure 1: Time plots of estimated monthly volatility for the log returns of S&P 500 index
from January 1980 to December 1999: (a) assumes that the daily log returns form a white
noise series, (b) assumes that the daily log returns follow an MA(1) model, and (c) uses
monthly returns from January 1962 to December 1999 and a GARCH(1,1) model.

Advantage: Simple 
Weaknesses:

• Models for daily returns {rt,i} are unknown.

• Typically, 21 or 22 trading days in a month, resulting in a small

sample size.

See Figure 1 for an illustration; Ex 3.6 of the text.

Realized integrated volatility

If the sample mean r̄t is zero, then σ̂2m ≈
∑n
i=1 r

2
t,i.

⇒ Use cumulative sum of squares of daily log returns within a month

as an estimate of monthly volatility.
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Consider tick-by-tick data: Apply the idea to intraday log returns

and obtain realized integrated volatility.

Assume daily log return rt =
∑n
i=1 rt,i. The quantity

RVt =
n∑
i=1
r2t,i,

is called the realized volatility of rt.

Advantages: simplicity and using intraday information 
Weaknesses:

• Effects of market micro-structure noises

• Overlook overnight volatilities.

Further discussion

1. In-filled asymptotic argument. Let ∆ be the sampling interval,

as ∆→ 0, the sample size goes to infinity.

Under the assumption that the ∆-interval log returns, e.g. 5-

minute returns, are independent and identically distributed, then∑n
j=1 r

2
t,j converges to the variance of the daily log return rt.

(Quadratic variation)

2. In practice, however, there are micro-structure noises that affect

the estimate such as the bid-ask bounce. In fact, it can be shown

that as ∆ goes to zero, the observed sum of squares of ∆-interval

returns goes to infinity.

What next? Two approaches have been proposed:

(a) Optimal sampling interval: Bandi and Russell (2006). Find

an optimal ∆. Or equivalently, the optimal sample size n∗
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= 6.5 hours/∆ can be chosen as

n∗ ≈
 Q

(σ̂2noise)2


1/3

,

where Q = M
3

∑M
j=1 r

4
t,j and σ̂2noise = 1

M

∑M
j=1 r

2
t,j, where M is

the number of daily quotes available for the underlying stock

and the returns rt,j are computed from the mid-point of the

bid and ask quotes.

(b) Sub-sampling: Zhang et al. (2006). Choose ∆ between 10

to 20 minutes. Compute integrated volatility for each of the

possible ∆-interval return series. Then, compute the average.

In fact, the authors propose a so-called two scales realized

volatility (TSRV) estimate. The form is

RV = an × ARVK − bn × ARVJ ,

where ARVi denotes the average realized volatility of time

interval i, an is a real number approaching 1 and bn = an ×
nK/nJ , and nK = (n−K + 1)/K with n is the number of

transactions within the day. J can be 1 or J << K. When

J = 1, the second term can be regarded as estimate of the

noise. When K is much larger than J , the second term is

typically small.

Use of Daily Open, High, Low and Close Prices

Figure 2 shows a time plot of price versus time for the tth trading

day. Define

• Ct = the closing price of the tth trading day;

• Ot = the opening price of the tth trading day;
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Figure 2: Time plot of price over time: scale for price is arbitrary.

• f = fraction of the day (in interval [0,1]) that trading is closed;

• Ht = the highest price of the tth trading period;

• Lt = the lowest price of the tth trading period;

• Ft−1 = public information available at time t− 1.

The conventional variance (or volatility) is σ2t = E[(Ct−Ct−1)2|Ft−1].
Some alternatives:

• σ̂20,t = (Ct − Ct−1)2;
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• σ̂21,t = (Ot−Ct−1)2

2f + (Ct−Ot)
2

2(1−f) , 0 < f < 1;

• σ̂22,t = (Ht−Lt)2
4 ln(2) ≈ 0.3607(Ht − Lt)2;

• σ̂23,t = 0.17(Ot−Ct−1)2

f + 0.83 (Ht−Lt)2
(1−f)4 ln(2), 0 < f < 1;

• σ̂25,t = 0.5(Ht − Lt)2 − [2 ln(2)− 1](Ct −Ot)
2,

which is ≈ 0.5(Ht − Lt)2 − 0.386(Ct −Ot)
2;

• σ̂26,t = 0.12(Ot−Ct−1)2

f + 0.88
σ̂25,t
1−f , 0 < f < 1.

A more precise, but complicated, estimator σ̂24,t was also considered.

But it is close to σ̂25,t.

Defining the efficiency factor of a volatility estimator as

Eff(σ̂2i,t) =
Var(σ̂20,t)

Var(σ̂2i,t)
,

Garman and Klass (1980) found that Eff(σ̂2i,t) is approximately 2,

5.2, 6.2, 7.4 and 8.4 for i = 1, 2, 3, 5 and 6, respectively, for the

simple diffusion model entertained.

For log-return volatility, one takes the logarithms of the Open, High,

Low and Close prices.

Define

• ot = ln(Ot)− ln(Ct−1) be the normalized open;

• ut = ln(Ht)− ln(Ot) be the normalized high;

• dt = ln(Lt)− ln(Ot) be the normalized low;

• ct = ln(Ct)− ln(Ot) be the normalized close.
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Suppose that there are n days of data available and the volatility is

constant over the period. Yang and Zhang (2000) recommend the

estimate

σ̂2yz = σ̂2o + kσ̂2c + (1− k)σ̂2rs

as a robust estimator of the volatility, where

σ̂2o =
1

n− 1

n∑
t=1

(ot − ō)2 with ō =
1

n

n∑
t=1

ot,

σ̂2c =
1

n− 1

n∑
t=1

(ct − c̄)2 with c̄ =
1

n

n∑
t=1

ct,

σ̂2rs =
1

n

n∑
t=1

[ut(ut − ct) + dt(dt − ct)],

k =
0.34

1.34 + (n + 1)/(n− 1)
.

This estimate seems to perform reasonably well.

Remark: One must consider the stock split in the above calculation.

Some work using daily range. For log returns, daily range is defined

as

rt = ln(Ht)− ln(Lt).

This is related to the duration models to be discussed later in

high-frequency data.

Takeaway

Some alternative approaches to volatility estimation are currently

under intensive study. It is rather early to assess the impact of

these methods. It is a good idea in general to use more information.

However, regulations and institutional effects need to be considered.
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