Financial Time Series
Lecture 4: Univariate Volatility Models

Conditional Heteroscedastic Models

What is the volatility of an asset?
Answer: Conditional standard deviation of the asset return (price)

Why is volatility important?
Has many important applications:
e Option (derivative) pricing, e.g., Black-Scholes formula

e Risk management, e.g. value at risk (VaR)

e Asset allocation, e.g., minimum-variance portfolio; see pages 184-
185 of Campbell, Lo and MacKinlay (1997).

e Interval forecasts

A key characteristic: Not directly observable!!

How to calculate volatility?
There are several versions of sample volatility, the conditional
standard deviation being the most commonly used.

1. Use high-frequency data: French, Schwert & Stambaugh (1987);
see Section 3.15.

e Realized volatility of daily log returns: use intraday high-
frequency log returns.

e Use daily high, low, and closing (log) prices, e.g. range =
daily high - daily low.

2. Implied volatility of options data, e.g, VIX of CBOE. Figure 1.
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3. Econometric modeling: use daily or monthly returns

We focus on the econometric modeling first. Use of high frequency
data to compute realized volatility will be discussed later.

Note: In most applications, volatility is annualized. This can easily
be done by taking care of the data frequency. For instance, if we use
daily returns in econometric modeling, then the annualized volatility

(in the U.S.) is
o = /2520,

where oy is the estimated volatility derived from an employed model.
If we use monthly returns, then the annualized volaitlity is

of =120,

where oy is the estimated volatility derived from the employed model
for the monthly returns. Our discussion, however, continues to use
o, for simplicity.

Basic idea of econometric modeling:

Shocks of asset returns are NO'T' serially correlated, but dependent,
implying that the serial dependence in asset returns is nonlinear.
As shown by the ACF of returns and absolute returns of some assets
we discussed so far.

Basic structure
re =t +ay, pe= ¢+ é:l OiTt—i — é:l Oiar—i,
Volatility models are concerned with time-evolution of
o = Var(r;|F,_,) = Var(a,|F,_1),

the conditional variance of the return r;.
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Figure 1: Time plot of the daily VIX index from January 2, 1990 to April 6,2017.

Consider the daily closing index of the S&P500 index from January
03, 2007 to April 06, 2017. The log returns follow approximately an
MA(2) model

ry = 0.0002 + a; — 0.109a;_1 — 0.053a;_2, o> = 0.00017.

The residuals show no strong serial correlations. [plot not shown.|
R Demonstration

> require(quantmod)
> getSymbols(""GSPC",from="2007-01-03",t0="2017-04-06")
[1] "GSpC"
> dim(GSPC)
[1] 2584 6
> head (GSPC)
GSPC.0Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted
2007-01-03  1418.03  1429.42 1407.86 1416.60 3429160000 1416.60

2007-01-10 1408.70 1415.99 1405.32 1414.85 2764660000 1414.85
> spc <- log(as.numeric(GSPC[,6]))

> rtn <- diff(spc)

> acf(rtn)
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Figure 2: Time plot of residuals of an MA(2) model fitted to daily log returns of the S&P
500 index from January 3, 2007 to April 06, 2017.
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Figure 3: Sample ACF of the squared residuals of an MA(2) model fitted to daily log returns
of the S&P 500 index from January 3, 2007 to April 06, 2017.



> ml <- arima(rtn,order=c(0,0,2))
> ml
Call: arima(x = rtn, order = c(0, 0, 2))

Coefficients:
mal ma2 intercept
-0.1088 -0.0530 2e-04
s.e. 0.0198 0.0205 2e-04

sigma”2 estimated as 0.0001676: 1log likelihood = 7562.82, aic = -15117.65
> acf(ml$residuals)
> acf(ml$residuals”2)

The residuals are shown in Figure 2.

Is volatility constant over time?

NO! Figure 2 shows a special feature, which is referred to as the
volatility clustering.

How to model the evolving volatility? See the ACF of the squared
residuals in Figure 3.

Two general categories

e “Fixed function” and
e Stochastic function

of the available information.

Univariate volatility models discussed:

1. Autoregressive conditional heteroscedastic (ARCH) model of En-
gle (1982),

Generalized ARCH (GARCH) model of Bollerslev (1986),
GARCH-M models,

IGARCH models (used by RiskMetrics),

Exponential GARCH (EGARCH) model of Nelson (1991),

A
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6. Threshold GARCH model of Zakoian (1994) or GJR model of
Glosten, Jagannathan, and Runkle (1993),

7. Asymmetric power ARCH (APARCH) models of Ding, Granger
and Engle (1994), [TGARCH and GJR models are special cases
of APARCH models]

8. Stochastic volatility (SV) models of Melino and Turnbull (1990),
Harvey, Ruiz and Shephard (1994), and Jacquier, Polson and
Rossi (1994).

ARCH model

2 2 2
ay = O0€t, Op = O + x1ay_q + e Oy s

where {¢;} is a sequence of iid r.v. with mean 0 and variance 1,
ap > 0 and a; > 0 for ¢ > 0.
Distribution of €;: Standard normal, standardized Student-t, gener-

alized error dist (ged), or their skewed counterparts.
Properties of ARCH models
Consider an ARCH(1) model

a; = O€¢, Uf = Qo+ oqaf_l,
where ag > 0 and oy > 0.
1. E(at) =0
2. Var(a;) = ap/(1 —aq) if 0 <y < 1
3. Under normality,

303(1 + ay)
(1 —aq)(1 —3a3)

my —

provided 0 < a? < 1/3.



The 3rd property implies heavy tails.

Advantages
e Simplicity
e Generates volatility clustering
e Heavy tails (high kurtosis)
Weaknesses
e Symmetric between positive & negative prior returns
e Restrictive
e Provides no explanation
e Not sufficiently adaptive in prediction
Building an ARCH Model

1. Modeling the mean effect and testing for ARCH effects
H,: no ARCH effects versus H, : ARCH effects
Use Q-statistics of squared residuals; McLeod and Li (1983) &
Engle (1982)

2. Order determination
Use PACF of the squared residuals. (In practice, simply try some
reasonable order).

3. Estimation: Conditional MLE

4. Model checking: Q-stat of standardized residuals and squared
standardized residuals. Skewness & Kurtosis of standardized
residuals.



R provides many plots for model checking and for presenting the
results.

5. Software: We use R with the package fGarch. (Other software
available).

Estimation: Conditional MLE or Quasi MLE

Special Note: In this course, we estimate volatility models using
the R package fGarch with garchFit command. The program is
easy to use and allows for several types of innovational distributions:
The default is Gaussian (norm), standardized Student-¢ distribution
(std), generalized error distribution (ged), skew normal distribution
(snorm), skew Student-t (sstd), skew generalized error distribution
(sged), and standardized inverse normal distribution (snig). Except
for the inverse normal distribution, other distribution functions are
discussed in the textbook. Readers should check the book for details
about the density functions and their parameters.

Example: Monthly log returns of Intel stock

R demonstration: The fGarch package. Output edited.

> library(fGarch)
> da=read.table("m-intc7303.txt" ,header=T)
> head(da)
date rtn
1 19730131 0.01005
6 19730629 0.13333
> intc=log(da$rtn+l) <== log returns
> acf (intc)
> acf(intc~2)
> pacf (intc~2)
> Box.test(intc"2,lag=10,type="Ljung’)
Box-Ljung test

data: intc”2
X-squared = 59.7216, df = 10, p-value = 4.091e-09



> ml=garchFit(~“garch(3,0) ,data=intc,trace=F) <== trace=F reduces the amount of output.
> summary (m1)

Title: GARCH Modelling

Call: garchFit(formula = ~“garch(3, 0), data = intc, trace = F)

Mean and Variance Equation:
data ~ garch(3, 0)
[data = intc]

Conditional Distribution: norm

Coefficient(s):
mu omega alphal alpha2 alpha3
0.016572 0.012043 0.208649 0.071837 0.049045

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)
mu 0.016572 .006423 2.580 0.00988 *x
omega 0.012043 .001579 7.627 2.4e-14 x*x
alphal 0.208649 .129177 1.615 0.10626
alpha2 0.071837 .048551 1.480 0.13897
alpha3 0.049045 .048847 1.004 0.31536

O O O O O

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi®2 169.7731 O
Shapiro-Wilk Test R W 0.9606957 1.970413e-08
Ljung-Box Test R Q(10) 10.97025 0.3598405
Ljung-Box Test R Q(15) 19.59024 0.1882211
Ljung-Box Test R Q(20) 20.82192 0.40768
Ljung-Box Test R"2 Q(10) 5.376602 0.864644
Ljung-Box Test R™2 Q(15) 22.73460 0.08993976
Ljung-Box Test R"2 Q(20) 23.70577 0.255481

LM Arch Test R TR"2  20.48506 0.05844884

Information Criterion Statistics:
AIC BIC SIC HQIC
-1.228111 -1.175437 -1.228466 -1.207193

> ml=garchFit(“garch(1,0),data=intc,trace=F)
> summary (ml)
Title: GARCH Modelling



Call: garchFit(formula = ~“garch(1l, 0), data

Mean and Variance Equation:
data ~ garch(1l, 0)
[data = intc]

Conditional Distribution: mnorm
Coefficient(s):
mu omega alphal

0.016570 0.012490 0.363447

Std. Errors:
based on Hessian

Error Analysis:

= intc, trace = F)

Estimate Std. Error t value Pr(>|tl)

2.689 0.00716 *x*
8.061 6.66e-16 *x*x
2.762 0.00575 **

mu 0.016570 0.006161
omega  0.012490 0.001549
alphal 0.363447 0.131598

Log Likelihood:

230.2423 normalized: 0.6189309

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi"2 122.4040 O
Shapiro-Wilk Test R W 0.9647629 8.274158e-08
Ljung-Box Test R Q(10) 13.72604 0.1858587
Ljung-Box Test R Q(15) 22.31714 0.09975386
Ljung-Box Test R Q(20) 23.88257 0.2475594
Ljung-Box Test R"2 Q(10) 12.50025 0.2529700
Ljung-Box Test R"2 Q(15) 30.11276 0.01152131
Ljung-Box Test R"2 Q(20) 31.46404 0.04935483
LM Arch Test R TR"2  22.036 0.0371183
Information Criterion Statistics:
AIC BIC SIC HQIC

-1.221733 -1.190129 -1.221861 -1.209182

> plot(ml)
Make a plot selection (or O to exit):

1: Time Series

2: Conditional SD

3: Series with 2 Conditional SD Superimposed
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ACF of Observations

ACF of Squared Observations

Cross Correlation

Residuals

Conditional SDs

Standardized Residuals

10: ACF of Standardized Residuals

11: ACF of Squared Standardized Residuals
12: Cross Correlation between r°2 and r
13: QQ-Plot of Standardized Residuals
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Selection: 13
Make a plot selection (or 0 to exit):

Time Series

Conditional SD

Series with 2 Conditional SD Superimposed
ACF of Observations

ACF of Squared Observations

Cross Correlation

Residuals

Conditional SDs

Standardized Residuals

ACF of Standardized Residuals

ACF of Squared Standardized Residuals
Cross Correlation between r°2 and r
QQ-Plot of Standardized Residuals
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Selection: O

The fitted ARCH(1) model is

ry = 0.0176 + at, Ay = O€yy, € ™~ N(O, 1)

ol = 0.01254 0.36307 ;.
Model checking statistics indicate that there are some higher order
dependence in the volatility, e.g., see Q(15) for the squared standard-

ized residuals. It turns out that a GARCH(1,1) model fares better
for the data.

Next, consider Student-t innovations.
R demonstration
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Figure 4: QQ-plot for standardized residuals of an ARCH(1) model with Gaussian innova-
tions for monthly log returns of INTC stock: 1973 to 2003.

> m2=garchFit(~“garch(1,0) ,data=intc,cond.dist="std",trace=F)
> summary (m2)
Title: GARCH Modelling

Call: garchFit(formula = ~“garch(1l, 0), data = intc, cond.dist = "std",
trace = F)

Mean and Variance Equation:
data ~ garch(1l, 0)
[data = intc]

Conditional Distribution: std <====== Standardized Student-t.

Coefficient(s):
mu omega alphal shape
0.021571 0.013424 0.259867 5.985979

Error Analysis:

Estimate Std. Error t value Pr(>ltl)
mu 0.021571 0.006054 3.563 0.000366 *x*x
omega 0.013424 0.001968 6.820 9.09e-12 *x*x
alphal 0.259867 0.119901 2.167 0.030209 *
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shape  5.985979 1.660030 3.606 0.000311 ***x <== Estimate of degrees of freedom

Log Likelihood:
242 .9678 normalized: 0.6531391

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi®2 130.8931 O
Shapiro-Wilk Test R W 0.9637529 5.744026e-08
Ljung-Box Test R Q(10) 14.31288 0.1591926
Ljung-Box Test R Q(15) 23.34043 0.07717449
Ljung-Box Test R Q(20) 24.87286 0.2063387
Ljung-Box Test R"2 Q(10) 15.35917 0.1195054
Ljung-Box Test R"2 Q(15) 33.96318 0.003446127
Ljung-Box Test R™2 Q(20) 35.46828 0.01774746
LM Arch Test R TR"2  24.11517 0.01961957

Information Criterion Statistics:
AIC BIC SIC HQIC
-1.284773 -1.242634 -1.285001 -1.268039

> plot(m2)
Make a plot selection (or O to exit):

Time Series

Conditional SD

Series with 2 Conditional SD Superimposed
ACF of Observations

ACF of Squared Observations

Cross Correlation

Residuals

Conditional SDs

Standardized Residuals

ACF of Standardized Residuals

ACF of Squared Standardized Residuals
Cross Correlation between r°2 and r
QQ-Plot of Standardized Residuals
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Selection: 13  <== The plot shows that the model needs further improvements.

> predict(m2,5) <===== Prediction
meanForecast meanError standardDeviation

1 0.02157100 0.1207911 0.1207911

2 0.02157100 0.1312069 0.1312069

3 0.02157100 0.1337810 0.1337810

4 0.02157100 0.1344418 0.1344418
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5 0.02157100 0.1346130 0.1346130

The fitted model with Student-t innovations is

Tt = 0.0216 + at, Ay = O¢€y, €~ t5.99
of = 0.0134 + 0.260a;_,.

We use 1599 to denote the standardized Student-t distribution with
5.99 d.f.

Comparison with normal innovations:
e Using a heavy-tailed dist for ¢; reduces the ARCH effect.

e The difference between the models is small for this particular
instance.

You may try other distributions for ;.

GARCH Model
At = Oy,
2 _ &9 5 5 2
1= j=
where {¢} is defined as before, ag > 0, a; > 0, §; > 0, and
) (L ay <
Re-parameterization:

Let n; = a? — 0. {m:} un-correlated series.

The GARCH model becomes

S
a; =ap+ X (o + @)be_i + N — Zl Bimi—j-
J=

This is an ARMA form for the squared series a?.
Use it to understand properties of GARCH models, e.g. moment

equations, forecasting, etc.
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Focus on a GARCH(1,1) model

9 9 9
o; = ag+ aqa;_ + fio;_q,

e Weak stationarity: 0 < ay, 51 < 1,(aq + 1) < 1.
e Volatility clusters
e Heavy tails: if 1 — 2af — (a1 + 51)? > 0, then

E(a;) 31— (aq+ 1)

Ea) 1= (L AR —2a "

e For 1-step ahead forecast,

o (1) = ag + auaj, + Bio;j.

For multi-step ahead forecasts, use a? = o2¢? and rewrite the

model as

071 =g+ (a1 + B1)o; + ayop(ef — 1),
2-step ahead volatility forecast

03(2) = o + (a1 + B1)oi(1).

In general, we have

U%(Z) = o+ (a1 + 51)0%(6 —1), ¢>1.
This result is exactly the same as that of an ARMA(1,1) model
with AR polynomial 1 — (o + 1) B.

Example: Monthly excess returns of S&P 500 index starting from
1926 for 792 observations.
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The fitted of a Gaussian AR(3) model

ft = T — 0.0062

ry = 08971 — .0247r;_9 — .1237;_3 + .007 + a4,
52 = 0.00333.
For the GARCH effects, use a GARCH(1,1) model, we have

A joint estimation:

rt = O-OSQTt—l — 0.0307“15_2 — 0.0117}_3 + 0.0077 + at
of = 7.98 x 107" + .85307 | + 0.124a; ;.

Implied unconditional variance of a; is

0.0000798
1 —0.853 —0.1243

close to the expected value. All AR coefficients are statistically in-

= (0.00352

significant.
A simplified model:

ry = 0.00745 4 ay, 07 = 8.06 x 107° + 85402 | + .122a7 ;.

Model checking:

For a;: Q(10) = 11.22(0.34) and Q(20) = 24.30(0.23).
For a: Q(10) = 9.92(0.45) and Q(20) = 16.75(0.67).
Forecast: 1-step ahead forecast:

o7 (1) = 0.00008 + 0.85407 + 0.122a;,

Horizon 1 2 3 4 5 00
Return 0074 1.0074 1.0074 | .0074 | .0074 | .0074
Volatility | .054 | .054 | .054 | .054 | .054 | .059

R demonstration:
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> spb=scan("sp500.txt")

Read 792 items

> pacf (spb)

> ml=arima(sp5,order=c(3,0,0))

> ml

Call: arima(x = sp5, order = c(3, 0, 0))

Coefficients:
arl ar2 ar3 intercept
0.0890 -0.0238 -0.1229 0.0062
s.e. 0.0353 0.0355 0.0353 0.0019

sigma”2 estimated as 0.00333: 1log likelihood = 1135.25, aic=-2260.5
> m2=garchFit(~arma(3,0)+garch(1,1) ,data=sp5,trace=F)

> summary (m2)

Title: GARCH Modelling

Call:

garchFit(formula = “arma(3,0)+garch(1l, 1), data = sp5, trace = F)

Mean and Variance Equation:
data ~ arma(3, 0) + garch(i, 1)
[data = sp5]

Conditional Distribution: norm
Error Analysis:

Estimate Std. Error t value Pr(>|t])
mu 7.708e-03 1.607e-03 4.798 1.61e-06 *xx

arl 3.197e-02  3.837e-02 0.833 0.40473
ar2 -3.026e-02 3.841e-02 -0.788 0.43076
ar3 -1.065e-02 3.756e-02 -0.284 0.77677
omega 7.975e-05 2.810e-05 2.838 0.00454 *x
alphal 1.242e-01 2.247e-02 5.529 3.22e-08 *xxx*
betal 8.530e-01 2.183e-02 39.075 < 2e-16 *xxx*

Log Likelihood:
1272.179 normalized: 1.606287

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi®2 73.04842 1.110223e-16
Shapiro-Wilk Test R W 0.985797 5.961994e-07
Ljung-Box Test R Q(10) 11.56744 0.315048
Ljung-Box Test R Q(15) 17.78747 0.2740039
Ljung-Box Test R Q(20) 24.11916 0.2372256
Ljung-Box Test R"2 Q(10) 10.31614 0.4132089

17



Ljung-Box Test R"2 Q(15) 14.22819 0.5082978
Ljung-Box Test R"2 Q(20) 16.79404 0.6663038
LM Arch Test R TR"2  13.34305 0.3446075

Information Criterion Statistics:
AIC BIC SIC HQIC
-3.194897 -3.153581 -3.195051 -3.179018

> m2=garchFit(“garch(1,1) ,data=sp5,trace=F)

> summary (m2)

Title: GARCH Modelling

Call: garchFit(formula = “garch(l, 1), data = sp5, trace = F)

Mean and Variance Equation:
data ~ garch(1, 1)
[data = sp5]

Conditional Distribution: norm

Error Analysis:
Estimate Std. Error t value Pr(>|tl|)
mu 7.450e-03  1.538e-03 4.845 1.27e-06 *xx
omega 8.061e-05 2.833e-05 2.845 0.00444 *x
alphal 1.220e-01  2.202e-02 5.540 3.02e-08 *x*x*
betal 8.544e-01 2.175e-02 39.276 < 2e-16 **x
Log Likelihood:
1269.455 normalized: 1.602848

*

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test Chi®2 80.32111 O

R
Shapiro-Wilk Test R W 0.9850517 3.141228e-07
Ljung-Box Test R Q(10) 11.22050 0.340599
Ljung-Box Test R Q(15) 17.99703 0.262822
Ljung-Box Test R Q(20) 24.29896 0.2295768
Ljung-Box Test R"2 Q(10) 9.920157 0.4475259
Ljung-Box Test R"2 Q(15) 14.21124 0.509572
Ljung-Box Test R"2 Q(20) 16.75081 0.6690903
LM Arch Test R TR"2  13.04872 0.3655092

Information Criterion Statistics:
AIC BIC SIC HQIC
-3.195594 -3.171985 -3.195645 -3.186520

> plot(m2)
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Make a plot selection (or O to exit):

Time Series

Conditional SD

Series with 2 Conditional SD Superimposed
ACF of Observations

ACF of Squared Observations

Cross Correlation

Residuals

Conditional SDs

Standardized Residuals

ACF of Standardized Residuals

ACF of Squared Standardized Residuals
Cross Correlation between r“2 and r
QQ-Plot of Standardized Residuals

O© 00 NO O d WN -

e e
W N - O

Selection: 3

> predict(m2,6)
meanForecast meanError standardDeviation

1 0.007449721 0.05377242 0.05377242
2 0.007449721 0.05388567 0.05388567
3 0.007449721 0.05399601 0.05399601
4 0.007449721 0.05410353 0.05410353
5 0.007449721 0.05420829 0.05420829
6 0.007449721 0.05431038 0.05431038

Turn to Student-¢ innovation. (R output omitted.)
Estimation of degrees of freedom:

ry = 0.0085 + Ay, QA = Ot€ry, € 7~ t7
o? = 000125+ .113a?_, + .84207 |,

where the estimated degrees of freedom is 7.00.
Forecasting evaluation
Not easy to do; see Andersen and Bollerslev (1998).

IGARCH model
An IGARCH(1,1) model:

At = Ot€yq, Ut2 = Q) + 610'752_1 + (1 — Bl)a?_l.
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Series with 2 Conditional SD Superimposed
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Figure 5: Monthly S&P 500 excess returns and fitted volatility
For the monthly excess returns of the S&P 500 index, we have
ry = .007 + a;, 02 = .0001 + .8060>_, + .194a’ ,
For an IGARCH(1,1) model,
or(l) =i (1) + (0 — Day, £>1,

where h is the forecast origin.

Effect of o7(1) on future volatilities is persistent, and the volatility
forecasts form a straight line with slope ag. See Nelson (1990) for
more info.

Special case: ay = 0. Volatility forecasts become a constant.

This property is used in RiskMetrics to VaR calculation.
Example: An IGARCH(1,1) model for the monthly excess returns
of S&P500 index from 1926 to 1991 is given below via R.

Ty = 0.0069 + ay, At = O¢€¢
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or = 0.099a; | + .90107 .
R demonstration: Using R script Igarch.R.

> source("Igarch.R")

> spb=scan(file="sp500.txt")

> Igarch(sp5,include.mean=T)
Estimates: 0.006874402 0.9007153
Maximized log-likehood: -1258.219

Coefficient(s):

Estimate Std. Error t value Pr(>ltl)
mu 0.0068744 0.0015402 4.46332 8.07e-06 x*x*x
beta 0.9007153 0.0158018 57.00082 < 2e-16 *x**

Another R package: rugarch can be used to fit volatility models
too.

> spb=scan("sp500.txt")

> require(rugarch)

>specl=ugarchspec(variance.model=1ist (model="iGARCH" ,garchOrder=c(1,1)),
mean.model=1ist (armaOrder=c(0,0)))

> mm=ugarchfit(data=sp5,spec=specl)

> mm

T it e *
* GARCH Model Fit *
Mo mm *

GARCH Model : iGARCH(1,1)
Mean Model : ARFIMA(0,0,0)
Distribution : norm

Optimal Parameters

Estimate Std. Error t value Pr(>|t|)
mu 0.007417 0.001525 4.8621 0.000001
omega  0.000051 0.000018 2.9238 0.003458
alphal 0.142951 0.021443 6.6667 0.000000
betal 0.857049 NA NA NA

Robust Standard Errors:

Estimate Std. Error t value Pr(>ltl)
mu 0.007417 0.001587 4.6726 0.000003
omega  0.000051 0.000019 2.6913 0.007118
alphal 0.142951 0.024978 5.7230 0.000000
betal 0.857049 NA NA NA
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LogLikelihood : 1268.238

Information Criteria

Akaike -3.1950
Bayes -3.1773
Shibata -3.1951

Hannan-Quinn -3.1882

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lagl[1] 0.5265 0.4681

Lag[2*(p+q)+(p+q)-1] [2] 0.5304 0.6795

Lag[4* (p+q)+(p+q)-1] [5] 2.5233 0.5009

d.o.f=0

HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

statistic p-value

Lag[1] 1.166 0.2803
Lag[2x (p+q) +(p+q)-1] [5] 2.672 0.4702
Lag[4* (p+q)+(p+q)-1][9] 4.506 0.5054
d.o.f=2
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