Financial Time Series Lecture 4: Univariate Volatility Models ### Conditional Heteroscedastic Models What is the volatility of an asset? Answer: Conditional standard deviation of the asset return (price) Why is volatility important? Has many important applications: - Option (derivative) pricing, e.g., Black-Scholes formula - Risk management, e.g. value at risk (VaR) - Asset allocation, e.g., minimum-variance portfolio; see pages 184-185 of Campbell, Lo and MacKinlay (1997). - Interval forecasts A key characteristic: Not directly observable!! ### How to calculate volatility? There are several versions of sample volatility, the conditional standard deviation being the most commonly used. - 1. Use high-frequency data: French, Schwert & Stambaugh (1987); see Section 3.15. - Realized volatility of daily log returns: use intraday high-frequency log returns. - Use daily high, low, and closing (log) prices, e.g. range = daily high daily low. - 2. Implied volatility of options data, e.g, VIX of CBOE. Figure 1. 3. Econometric modeling: use daily or monthly returns We focus on the econometric modeling first. Use of high frequency data to compute realized volatility will be discussed later. **Note:** In most applications, volatility is annualized. This can easily be done by taking care of the data frequency. For instance, if we use daily returns in econometric modeling, then the annualized volatility (in the U.S.) is $$\sigma_t^* = \sqrt{252}\sigma_t,$$ where σ_t is the estimated volatility derived from an employed model. If we use monthly returns, then the annualized volatility is $$\sigma_t^* = \sqrt{12}\sigma_t,$$ where σ_t is the estimated volatility derived from the employed model for the monthly returns. Our discussion, however, continues to use σ_t for simplicity. Basic idea of econometric modeling: Shocks of asset returns are NOT serially correlated, but dependent, implying that the serial dependence in asset returns is nonlinear. As shown by the ACF of returns and absolute returns of some assets we discussed so far. ### Basic structure $$r_t = \mu_t + a_t, \quad \mu_t = \phi_0 + \sum_{i=1}^p \phi_i r_{t-i} - \sum_{i=1}^q \theta_i a_{t-i},$$ Volatility models are concerned with time-evolution of $$\sigma_t^2 = \operatorname{Var}(r_t|F_{t-1}) = \operatorname{Var}(a_t|F_{t-1}),$$ the conditional variance of the return r_t . Figure 1: Time plot of the daily VIX index from January 2, 1990 to April 6,2017. Consider the daily closing index of the S&P500 index from January 03, 2007 to April 06, 2017. The log returns follow approximately an MA(2) model $$r_t = 0.0002 + a_t - 0.109a_{t-1} - 0.053a_{t-2}, \quad \sigma^2 = 0.00017.$$ The residuals show no strong serial correlations. [plot not shown.] **R Demonstration** ``` > require(quantmod) > getSymbols("^GSPC",from="2007-01-03",to="2017-04-06") [1] "GSPC" > dim(GSPC) [1] 2584 > head(GSPC) GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted 2007-01-03 1418.03 1429.42 1407.86 1416.60 3429160000 1416.60 2007-01-10 1408.70 1415.99 1405.32 1414.85 2764660000 1414.85 > spc <- log(as.numeric(GSPC[,6]))</pre> > rtn <- diff(spc)</pre> > acf(rtn) ``` Figure 2: Time plot of residuals of an MA(2) model fitted to daily log returns of the S&P 500 index from January 3, 2007 to April 06, 2017. Figure 3: Sample ACF of the squared residuals of an MA(2) model fitted to daily log returns of the S&P 500 index from January 3, 2007 to April 06, 2017. The residuals are shown in Figure 2. Is volatility constant over time? NO! Figure 2 shows a special feature, which is referred to as the volatility clustering. How to model the evolving volatility? See the ACF of the squared residuals in Figure 3. ### Two general categories - "Fixed function" and - Stochastic function of the available information. ### Univariate volatility models discussed: - 1. Autoregressive conditional heteroscedastic (ARCH) model of Engle (1982), - 2. Generalized ARCH (GARCH) model of Bollerslev (1986), - 3. GARCH-M models, - 4. IGARCH models (used by RiskMetrics), - 5. Exponential GARCH (EGARCH) model of Nelson (1991), - 6. Threshold GARCH model of Zakoian (1994) or GJR model of Glosten, Jagannathan, and Runkle (1993), - 7. Asymmetric power ARCH (APARCH) models of Ding, Granger and Engle (1994), [TGARCH and GJR models are special cases of APARCH models.] - 8. Stochastic volatility (SV) models of Melino and Turnbull (1990), Harvey, Ruiz and Shephard (1994), and Jacquier, Polson and Rossi (1994). ### ARCH model $$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2,$$ where $\{\epsilon_t\}$ is a sequence of iid r.v. with mean 0 and variance 1, $\alpha_0 > 0$ and $\alpha_i \ge 0$ for i > 0. Distribution of ϵ_t : Standard normal, standardized Student-t, generalized error dist (ged), or their skewed counterparts. ### Properties of ARCH models Consider an ARCH(1) model $$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2,$$ where $\alpha_0 > 0$ and $\alpha_1 \geq 0$. - 1. $E(a_t) = 0$ - 2. $Var(a_t) = \alpha_0/(1 \alpha_1)$ if $0 < \alpha_1 < 1$ - 3. Under normality, $$m_4 = \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)},$$ provided $0 < \alpha_1^2 < 1/3$. The 3rd property implies heavy tails. ### Advantages - Simplicity - Generates volatility clustering - Heavy tails (high kurtosis) ### Weaknesses - Symmetric between positive & negative prior returns - Restrictive - Provides no explanation - Not sufficiently adaptive in prediction ### Building an ARCH Model 1. Modeling the mean effect and testing for ARCH effects H_o : no ARCH effects versus H_a : ARCH effects Use Q-statistics of squared residuals; McLeod and Li (1983) & Engle (1982) 2. Order determination Use PACF of the squared residuals. (In practice, simply try some reasonable order). - 3. Estimation: Conditional MLE - 4. Model checking: Q-stat of standardized residuals and squared standardized residuals. Skewness & Kurtosis of standardized residuals. R provides many plots for model checking and for presenting the results. 5. Software: We use R with the package fGarch. (Other software available). Estimation: Conditional MLE or Quasi MLE **Special Note**: In this course, we estimate volatility models using the R package **fGarch** with **garchFit** command. The program is easy to use and allows for several types of innovational distributions: The default is Gaussian (**norm**), standardized Student-t distribution (**std**), generalized error distribution (**ged**), skew normal distribution (**snorm**), skew Student-t (**sstd**), skew generalized error distribution (**sged**), and standardized inverse normal distribution (**snig**). Except for the inverse normal distribution, other distribution functions are discussed in the textbook. Readers should check the book for details about the density functions and their parameters. **Example**: Monthly log returns of Intel stock R demonstration: The fGarch package. Output edited. ``` > m1=garchFit(~garch(3,0),data=intc,trace=F) <== trace=F reduces the amount of output. > summary(m1) Title: GARCH Modelling Call: garchFit(formula = ~garch(3, 0), data = intc, trace = F) Mean and Variance Equation: data ~ garch(3, 0) [data = intc] Conditional Distribution: norm Coefficient(s): alpha1 alpha2 alpha3 mu omega 0.016572 \quad 0.012043 \quad 0.208649 \quad 0.071837 \quad 0.049045 Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(>|t|) 0.006423 2.580 0.00988 ** mu 0.016572 7.627 2.4e-14 *** omega 0.012043 0.001579 alpha1 0.208649 0.129177 1.615 0.10626 alpha2 0.071837 0.048551 1.480 0.13897 alpha3 0.049045 1.004 0.31536 0.048847 Standardised Residuals Tests: Statistic p-Value Jarque-Bera Test Chi^2 169.7731 0 R Shapiro-Wilk Test R W 0.9606957 1.970413e-08 Ljung-Box Test Q(10) 10.97025 0.3598405 R Ljung-Box Test R Q(15) 19.59024 0.1882211 Ljung-Box Test R Q(20) 20.82192 0.40768 R^2 Q(10) 5.376602 0.864644 Ljung-Box Test Ljung-Box Test R² Q(15) 22.73460 0.08993976 Ljung-Box Test R² Q(20) 23.70577 0.255481 LM Arch Test TR^2 R. 20.48506 0.05844884 Information Criterion Statistics: BIC SIC HQIC -1.228111 -1.175437 -1.228466 -1.207193 > m1=garchFit(~garch(1,0),data=intc,trace=F) > summary(m1) ``` Title: GARCH Modelling ``` Call: garchFit(formula = ~garch(1, 0), data = intc, trace = F) Mean and Variance Equation: data ~ garch(1, 0) [data = intc] Conditional Distribution: norm Coefficient(s): omega alpha1 mu 0.016570 0.012490 0.363447 Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(>|t|) 0.006161 2.689 0.00716 ** mu 0.016570 omega 0.012490 0.001549 8.061 6.66e-16 *** alpha1 0.363447 0.131598 2.762 0.00575 ** Log Likelihood: 230.2423 normalized: 0.6189309 Standardised Residuals Tests: Statistic p-Value Chi^2 122.4040 0 Jarque-Bera Test R Shapiro-Wilk Test R W 0.9647629 8.274158e-08 Q(10) 13.72604 0.1858587 Ljung-Box Test <=== Meaning? R Ljung-Box Test R Q(15) 22.31714 0.09975386 <==== implication?</pre> Ljung-Box Test Q(20) 23.88257 0.2475594 R Ljung-Box Test R² Q(10) 12.50025 0.2529700 Ljung-Box Test R² Q(15) 30.11276 0.01152131 Ljung-Box Test R² Q(20) 31.46404 0.04935483 LM Arch Test TR^2 22.036 0.0371183 Information Criterion Statistics: AIC BIC SIC HQIC -1.221733 -1.190129 -1.221861 -1.209182 > plot(m1) Make a plot selection (or 0 to exit): Time Series 1: ``` 2: 3: Conditional SD Series with 2 Conditional SD Superimposed - 4: ACF of Observations - 5: ACF of Squared Observations - 6: Cross Correlation - 7: Residuals - 8: Conditional SDs - 9: Standardized Residuals - 10: ACF of Standardized Residuals - 11: ACF of Squared Standardized Residuals - 12: Cross Correlation between r^2 and r - 13: QQ-Plot of Standardized Residuals Selection: 13 Make a plot selection (or 0 to exit): - 1: Time Series - 2: Conditional SD - 3: Series with 2 Conditional SD Superimposed - 4: ACF of Observations - 5: ACF of Squared Observations - 6: Cross Correlation - 7: Residuals - 8: Conditional SDs - 9: Standardized Residuals - 10: ACF of Standardized Residuals - 11: ACF of Squared Standardized Residuals - 12: Cross Correlation between r^2 and r - 13: QQ-Plot of Standardized Residuals Selection: 0 The fitted ARCH(1) model is $$r_t = 0.0176 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0, 1)$$ $\sigma_t^2 = 0.0125 + 0.363\sigma_{t-1}^2.$ Model checking statistics indicate that there are some higher order dependence in the volatility, e.g., see Q(15) for the squared standardized residuals. It turns out that a GARCH(1,1) model fares better for the data. Next, consider Student-t innovations. ### R demonstration Figure 4: QQ-plot for standardized residuals of an ARCH(1) model with Gaussian innovations for monthly log returns of INTC stock: 1973 to 2003. ``` > m2=garchFit(~garch(1,0),data=intc,cond.dist="std",trace=F) > summary(m2) Title: GARCH Modelling Call: garchFit(formula = ~garch(1, 0), data = intc, cond.dist = "std", trace = F) Mean and Variance Equation: data ~ garch(1, 0) [data = intc] Conditional Distribution: std <===== Standardized Student-t. Coefficient(s): omega alpha1 shape 0.021571 0.013424 0.259867 5.985979 Error Analysis: Estimate Std. Error t value Pr(>|t|) 0.021571 0.006054 3.563 0.000366 *** mu 0.013424 0.001968 6.820 9.09e-12 *** omega alpha1 0.259867 2.167 0.030209 * 0.119901 ``` ``` shape 5.985979 Log Likelihood: 242.9678 normalized: 0.6531391 Standardised Residuals Tests: Statistic p-Value Jarque-Bera Test Chi^2 130.8931 0 R Shapiro-Wilk Test 0.9637529 5.744026e-08 R W Q(10) 14.31288 0.1591926 Ljung-Box Test R Q(15) 23.34043 0.07717449 Ljung-Box Test R Ljung-Box Test Q(20) 24.87286 0.2063387 R Ljung-Box Test R^2 Q(10) 15.35917 0.1195054 Ljung-Box Test R² Q(15) 33.96318 0.003446127 Ljung-Box Test R^2 Q(20) 35.46828 0.01774746 LM Arch Test R TR^2 24.11517 0.01961957 Information Criterion Statistics: BIC SIC HQIC -1.284773 -1.242634 -1.285001 -1.268039 > plot(m2) Make a plot selection (or 0 to exit): Time Series 1: 2: Conditional SD Series with 2 Conditional SD Superimposed 4: ACF of Observations ACF of Squared Observations 5: 6: Cross Correlation 7: Residuals 8: Conditional SDs Standardized Residuals 9: ACF of Standardized Residuals 10: 11: ACF of Squared Standardized Residuals 12: Cross Correlation between r^2 and r 13: QQ-Plot of Standardized Residuals <== The plot shows that the model needs further improvements. Selection: 13 > predict(m2,5) <===== Prediction meanForecast meanError standardDeviation 0.02157100 0.1207911 0.1207911 2 0.02157100 0.1312069 0.1312069 ``` 0.1337810 0.1344418 0.02157100 0.1337810 0.02157100 0.1344418 The fitted model with Student-t innovations is $$r_t = 0.0216 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon \sim t_{5.99}$$ $\sigma_t^2 = 0.0134 + 0.260a_{t-1}^2.$ We use $t_{5.99}$ to denote the standardized Student-t distribution with 5.99 d.f. Comparison with normal innovations: - Using a heavy-tailed dist for ϵ_t reduces the ARCH effect. - The difference between the models is small for this particular instance. You may try other distributions for ϵ_t . ### **GARCH Model** $$a_t = \sigma_t \epsilon_t,$$ $$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$ where $\{\epsilon_t\}$ is defined as before, $\alpha_0 > 0$, $\alpha_i \geq 0$, $\beta_j \geq 0$, and $\sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1$. Re-parameterization: Let $\eta_t = a_t^2 - \sigma_t^2$. $\{\eta_t\}$ un-correlated series. The GARCH model becomes $$a_t^2 = \alpha_0 + \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) a_{t-i}^2 + \eta_t - \sum_{j=1}^s \beta_j \eta_{t-j}.$$ This is an ARMA form for the squared series a_t^2 . Use it to understand properties of GARCH models, e.g. moment equations, forecasting, etc. Focus on a GARCH(1,1) model $$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2,$$ - Weak stationarity: $0 \le \alpha_1, \beta_1 \le 1, (\alpha_1 + \beta_1) < 1$. - Volatility clusters - Heavy tails: if $1 2\alpha_1^2 (\alpha_1 + \beta_1)^2 > 0$, then $$\frac{E(a_t^4)}{[E(a_t^2)]^2} = \frac{3[1 - (\alpha_1 + \beta_1)^2]}{1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2} > 3.$$ • For 1-step ahead forecast, $$\sigma_h^2(1) = \alpha_0 + \alpha_1 a_h^2 + \beta_1 \sigma_h^2.$$ For multi-step ahead forecasts, use $a_t^2 = \sigma_t^2 \epsilon_t^2$ and rewrite the model as $$\sigma_{t+1}^2 = \alpha_0 + (\alpha_1 + \beta_1)\sigma_t^2 + \alpha_1\sigma_t^2(\epsilon_t^2 - 1).$$ 2-step ahead volatility forecast $$\sigma_h^2(2) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(1).$$ In general, we have $$\sigma_h^2(\ell) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(\ell - 1), \quad \ell > 1.$$ This result is exactly the same as that of an ARMA(1,1) model with AR polynomial $1 - (\alpha_1 + \beta_1)B$. **Example**: Monthly excess returns of S&P 500 index starting from 1926 for 792 observations. The fitted of a Gaussian AR(3) model $$\tilde{r}_t = r_t - 0.0062$$ $$\tilde{r}_t = .089\tilde{r}_{t-1} - .024\tilde{r}_{t-2} - .123\tilde{r}_{t-3} + .007 + a_t,$$ $$\hat{\sigma}_a^2 = 0.00333.$$ For the GARCH effects, use a GARCH(1,1) model, we have A joint estimation: $$r_t = 0.032r_{t-1} - 0.030r_{t-2} - 0.011r_{t-3} + 0.0077 + a_t$$ $\sigma_t^2 = 7.98 \times 10^{-5} + .853\sigma_{t-1}^2 + 0.124a_{t-1}^2.$ Implied unconditional variance of a_t is $$\frac{0.0000798}{1 - 0.853 - 0.1243} = 0.00352$$ close to the expected value. All AR coefficients are statistically insignificant. A simplified model: $$r_t = 0.00745 + a_t, \sigma_t^2 = 8.06 \times 10^{-5} + .854\sigma_{t-1}^2 + .122a_{t-1}^2.$$ Model checking: For \tilde{a}_t : Q(10) = 11.22(0.34) and Q(20) = 24.30(0.23). For \tilde{a}_t^2 : Q(10) = 9.92(0.45) and Q(20) = 16.75(0.67). Forecast: 1-step ahead forecast: $$\sigma_h^2(1) = 0.00008 + 0.854\sigma_h^2 + 0.122a_h^2$$ | Horizon | 1 | 2 | 3 | 4 | 5 | ∞ | |------------|-------|-------|-------|-------|-------|----------| | Return | .0074 | .0074 | .0074 | .0074 | .0074 | .0074 | | Volatility | .054 | .054 | .054 | .054 | .054 | .059 | ### R demonstration: ``` > sp5=scan("sp500.txt") Read 792 items > pacf(sp5) > m1=arima(sp5,order=c(3,0,0)) Call: arima(x = sp5, order = c(3, 0, 0)) Coefficients: ar1 ar2 intercept ar3 0.0890 -0.0238 -0.1229 0.0062 s.e. 0.0353 0.0355 0.0353 0.0019 sigma^2 estimated as 0.00333: log likelihood = 1135.25, aic=-2260.5 > m2=garchFit(~arma(3,0)+garch(1,1),data=sp5,trace=F) > summary(m2) Title: GARCH Modelling Call: garchFit(formula = ~arma(3,0)+garch(1, 1), data = sp5, trace = F) Mean and Variance Equation: data \tilde{a} arma(3, 0) + garch(1, 1) [data = sp5] Conditional Distribution: norm Error Analysis: Estimate Std. Error t value Pr(>|t|) mu 7.708e-03 1.607e-03 4.798 1.61e-06 *** 3.197e-02 3.837e-02 0.833 0.40473 ar1 -3.026e-02 3.841e-02 -0.788 0.43076 ar2 3.756e-02 -0.284 0.77677 ar3 -1.065e-02 7.975e-05 2.810e-05 2.838 0.00454 ** omega alpha1 1.242e-01 2.247e-02 5.529 3.22e-08 *** beta1 8.530e-01 2.183e-02 39.075 < 2e-16 *** --- Log Likelihood: 1272.179 normalized: 1.606287 Standardised Residuals Tests: Statistic p-Value Jarque-Bera Test R Chi^2 73.04842 1.110223e-16 Shapiro-Wilk Test R W 0.985797 5.961994e-07 Ljung-Box Test Q(10) 11.56744 0.315048 R Ljung-Box Test R Q(15) 17.78747 0.2740039 Ljung-Box Test R Q(20) 24.11916 0.2372256 Ljung-Box Test R² Q(10) 10.31614 0.4132089 ``` ``` Ljung-Box Test R² Q(15) 14.22819 0.5082978 Ljung-Box Test R^2 Q(20) 16.79404 0.6663038 LM Arch Test TR^2 13.34305 0.3446075 R Information Criterion Statistics: BIC SIC HQIC -3.194897 -3.153581 -3.195051 -3.179018 > m2=garchFit(~garch(1,1),data=sp5,trace=F) > summary(m2) Title: GARCH Modelling Call: garchFit(formula = ~garch(1, 1), data = sp5, trace = F) Mean and Variance Equation: data ~ garch(1, 1) [data = sp5] Conditional Distribution: norm Error Analysis: Estimate Std. Error t value Pr(>|t|) 7.450e-03 1.538e-03 4.845 1.27e-06 *** mu omega 8.061e-05 2.833e-05 2.845 0.00444 ** alpha1 1.220e-01 2.202e-02 5.540 3.02e-08 *** beta1 8.544e-01 2.175e-02 39.276 < 2e-16 *** Log Likelihood: 1269.455 normalized: 1.602848 Standardised Residuals Tests: Statistic p-Value Chi^2 80.32111 0 Jarque-Bera Test R Shapiro-Wilk Test R W 0.9850517 3.141228e-07 Ljung-Box Test Q(10) 11.22050 0.340599 R Ljung-Box Test R Q(15) 17.99703 0.262822 Ljung-Box Test R Q(20) 24.29896 0.2295768 Ljung-Box Test R² Q(10) 9.920157 0.4475259 Ljung-Box Test R^2 Q(15) 14.21124 0.509572 Ljung-Box Test R^2 Q(20) 16.75081 0.6690903 LM Arch Test R TR^2 13.04872 0.3655092 Information Criterion Statistics: BIC SIC HQIC -3.195594 -3.171985 -3.195645 -3.186520 ``` > plot(m2) #### Make a plot selection (or 0 to exit): - Time Series 1: - Conditional SD - 3: Series with 2 Conditional SD Superimposed - 4: ACF of Observations - 5: ACF of Squared Observations - 6: Cross Correlation - 7: Residuals - Conditional SDs - Standardized Residuals - ACF of Standardized Residuals - ACF of Squared Standardized Residuals - Cross Correlation between r^2 and r 12: - 13: QQ-Plot of Standardized Residuals #### Selection: 3 > predict(m2,6) meanForecast meanError standardDeviation - 0.05377242 1 0.007449721 0.05377242 2 0.007449721 0.05388567 0.05388567 3 0.007449721 0.05399601 0.05399601 4 0.007449721 0.05410353 0.05410353 5 0.007449721 0.05420829 0.05420829 6 0.007449721 0.05431038 - Turn to Student-t innovation. (R output omitted.) Estimation of degrees of freedom: $$r_t = 0.0085 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim t_7$$ $\sigma_t^2 = .000125 + .113a_{t-1}^2 + .842\sigma_{t-1}^2,$ 0.05431038 where the estimated degrees of freedom is 7.00. ### Forecasting evaluation Not easy to do; see Andersen and Bollerslev (1998). ### **IGARCH** model An IGARCH(1,1) model: $$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) a_{t-1}^2.$$ #### Series with 2 Conditional SD Superimposed Figure 5: Monthly S&P 500 excess returns and fitted volatility For the monthly excess returns of the S&P 500 index, we have $$r_t = .007 + a_t, \sigma_t^2 = .0001 + .806\sigma_{t-1}^2 + .194a_{t-1}^2$$ For an IGARCH(1,1) model, $$\sigma_h^2(\ell) = \sigma_h^2(1) + (\ell - 1)\alpha_0, \quad \ell \ge 1,$$ where h is the forecast origin. Effect of $\sigma_h^2(1)$ on future volatilities is persistent, and the volatility forecasts form a straight line with slope α_0 . See Nelson (1990) for more info. Special case: $\alpha_0 = 0$. Volatility forecasts become a constant. This property is used in RiskMetrics to VaR calculation. **Example**: An IGARCH(1,1) model for the monthly excess returns of S&P500 index from 1926 to 1991 is given below via R. $$r_t = 0.0069 + a_t, \quad a_t = \sigma_t \epsilon_t$$ ``` \sigma_t^2 = 0.099a_{t-1}^2 + .901\sigma_{t-1}^2. ``` ### R demonstration: Using R script Igarch.R. ``` > source("Igarch.R") ``` - > sp5=scan(file="sp500.txt") - > Igarch(sp5,include.mean=T) Estimates: 0.006874402 0.9007153 Maximized log-likehood: -1258.219 #### Coefficient(s): Estimate Std. Error t value Pr(>|t|) mu 0.0068744 0.0015402 4.46332 8.07e-06 *** beta 0.9007153 0.0158018 57.00082 < 2e-16 *** ## Another R package: rugarch can be used to fit volatility models too. ``` > sp5=scan("sp500.txt") ``` > require(rugarch) >spec1=ugarchspec(variance.model=list(model="iGARCH",garchOrder=c(1,1)), mean.model=list(armaOrder=c(0,0))) > mm=ugarchfit(data=sp5,spec=spec1) > mm *----* * GARCH Model Fit * *----* #### Conditional Variance Dynamics ----- GARCH Model : iGARCH(1,1) Mean Model : ARFIMA(0,0,0) Distribution : norm #### Optimal Parameters ----- | | Estimate | Std. Error | t value | Pr(> t) | |--------|----------|------------|---------|----------| | mu | 0.007417 | 0.001525 | 4.8621 | 0.000001 | | omega | 0.000051 | 0.000018 | 2.9238 | 0.003458 | | alpha1 | 0.142951 | 0.021443 | 6.6667 | 0.000000 | | beta1 | 0.857049 | NA | NA | NA | #### Robust Standard Errors: | | Estimate | Std. Error | t value | Pr(> t) | |--------|----------|------------|---------|----------| | mu | 0.007417 | 0.001587 | 4.6726 | 0.000003 | | omega | 0.000051 | 0.000019 | 2.6913 | 0.007118 | | alpha1 | 0.142951 | 0.024978 | 5.7230 | 0.000000 | | beta1 | 0.857049 | NA | NA | NA | LogLikelihood: 1268.238 #### Information Criteria ----- Akaike -3.1950 Bayes -3.1773 Shibata -3.1951 Hannan-Quinn -3.1882 #### Weighted Ljung-Box Test on Standardized Residuals _____ statistic p-value Lag[1] 0.5265 0.4681 Lag[2*(p+q)+(p+q)-1][2] 0.5304 0.6795 Lag[4*(p+q)+(p+q)-1][5] 2.5233 0.5009 d.o.f=0 HO : No serial correlation #### Weighted Ljung-Box Test on Standardized Squared Residuals ----- statistic p-value Lag[1] 1.166 0.2803 Lag[2*(p+q)+(p+q)-1][5] 2.672 0.4702 Lag[4*(p+q)+(p+q)-1][9] 4.506 0.5054 d.o.f=2