
Financial Time Series 
Lecture 3: Seasonality, Regression, Long Memory

Seasonal Time Series: TS with periodic patterns and useful in

• predicting quarterly earnings

• pricing weather-related derivatives

• analysis of transactions data (high-frequency data), e.g., U-shaped

pattern in intraday trading intensity, volatility, etc.

Example 1. Monthly U.S. Housing Starts from January 1959 to

February 2017. The data are in thousand units. See Figure 1 and

compute the sample ACF of the series and its differenced data.

Example 2. Quarterly earnings of Johnson & Johnson

See the time plot, Figures 2 and 3, and sample ACFs

Example 3. Quarterly earning per share of Coca Cola from 1983

to 2009.

Multiplicative model: Consider the housing-starts series. Let yt
be the monthly data. Denoting 1959 as year 0, we can write the time

index as t = year + month, e.g, y1 = y0,1, y2 = y0,2, and y14 = y1,2,

etc. The multiplicative model is based on the following consideration:

Month

Year Jan Feb Mar · · · Oct Nov Dec

1959 y0,1 y0,2 y0,3 · · · y0,10 y0,11 y0,12
1960 y1,1 y1,2 y1,3 · · · y1,10 y1,11 y1,12
1961 y2,1 y2,2 y2,3 · · · y2,10 y2,11 y2,12
1962 y3,1 y3,2 y3,3 · · · y3,10 y3,11 y3,12

... ... ... ... ... ... ...
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Figure 1: Time plot of monthly U.S. housing starts: 1959.1-2017.2. Data obtained from US
Bureau of the Census.
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Figure 2: Time plot of quarterly earnings of Johnson and Johnson: 1960-1980
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Figure 3: Time plot of quarterly logged earnings of Johnson and Johnson: 1960-1980
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Figure 4: Time plot of quarterly earnings per share of KO (Coca Cola) from 1983 to 2009.

3



The column dependence is the usual lag-1, lag-2, ... dependence.

That is, monthly dependence. We call them the regular dependence.

The row dependence is the year-to-year dependence. We call them

the seasonal dependence.

Multiplicative model says that the regular and seasonal dependence

are orthogonal to each other.

Airline model for quarterly series

• Form:

rt − rt−1 − rt−4 + rt−5 = at − θ1at−1 − θ4at−4 + θ1θ4at−5

or

(1−B)(1−B4)rt = (1− θ1B)(1− θ4B4)at

• Define the differenced series wt as

wt = rt − rt−1 − rt−4 + rt−5 = (rt − rt−1)− (rt−4 − rt−5).

It is called regular and seasonal differenced series.

• ACF of wt has a nice symmetric structure (see the text), i.e.

ρs−1 = ρs+1 = ρ1ρs. Also, ρ` = 0 for ` > s + 1.

• This model is widely applicable to many many seasonal time

series.

• Multiplicative model means that the regular and seasonal depen-

dences are roughly orthogonal to each other.

• Forecasts: exhibit the same pattern as the observed series. See

Figure 5.

• Exponential Smoothing method
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Figure 5: Forecast plot for the quarterly earnings of Johnson and Johnson. Data: 1960-1980,
Forecasts: 1981-82.

Example: Analysis of J&J earnings.
R Demonstration: output edited.

> x=ts(scan("q-earn-jnj.txt"),frequency=4,start=c(1960,1)) % create a time series object.

> plot(x) % Plot data with calendar time

> y=log(x) % Natural log transformation

> plot(y) % plot data

> c1=paste(c(1:4)) % create plotting symbols

> points(y,pch=c1) % put circles on data points.

> par(mfcol=c(2,1)) % two plots per page

> acf(y,lag.max=16)

> y1=as.vector(y) % Creates a sequence of data in R

> acf(y1,lag.max=16)

> dy1=diff(y1) % regular difference

> acf(dy1,lag.max=16)

> sdy1=diff(dy1,4) % seasonal difference

> acf(sdy1,lag.max=12)

> m1=arima(y1,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4)) % Airline

% model in R.

> m1

Call:arima(x = y1, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 4))
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Coefficients:

ma1 sma1

-0.6809 -0.3146 % The fitted model is (1-B^4)(1-B)R(t) =

s.e. 0.0982 0.1070 % (1-0.68B)(1-0.31B^4)a(t), var[a(t)] = 0.00793.

sigma^2 estimated as 0.00793: log likelihood = 78.38, aic = -150.75

> par(mfcol=c(1,1)) % One plot per page

> tsdiag(m1) % Model checking

> f1=predict(m1,8) % prediction

> names(f1)

[1] "pred" "se"

> f1

$pred % Point forecasts

Time Series:

Start = 85

End = 92

Frequency = 1

[1] 2.905343 2.823891 2.912148 2.581085 3.036450 2.954999 3.043255 2.712193

$se % standard errors of point forecasts

Time Series:

Start = 85

End = 92

Frequency = 1

[1] 0.08905414 0.09347895 0.09770358 0.10175295 0.13548765 0.14370550

[7] 0.15147817 0.15887102

# You can use ‘‘foreplot’’ to obtain plot of forecasts.

For monthly data, the Airline model becomes

(1−B)(1−B12)rt = (1− θ1B)(1− θ12B12)at.

What is the pattern of ACF?

Regression Models with Time Series Errors

• Has many applications

• Impact of serial correlations in regression is often overlooked.

It may introduce biases in estimates and in standard errors, re-

sulting in unreliable t-ratios.
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Figure 6: Time plots of U.S. weekly interest rates: 1-year constant maturity rate (solid line)
and 3-year rate (dashed line).

• Detecting residual serial correlation: Use Q-stat instead of DW-

statistic, which is not sufficient!

• Joint estimation of all parameters is preferred.

• Avoid the problem of spurious regression.

• Proper analysis: see the illustration below.

A related issue:

Question: Why don’t we use R-square in this course?

R-square can be misleading!!!

Example. U.S. weekly interest rate data: 1-year and 3-year con-

stant maturity rates. Data are shown in Figure 6.

R Demonstration: output edited.
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> da=read.table("w-gs1n36299.txt") % load the data

> r1=da[,1] % 1-year rate

> r3=da[,2] % 3-year rate

> plot(r1,type=’l’) % Plot the data

> lines(1:1967,r3,lty=2)

> plot(r1,r3) % scatter plot of the two series

> m1=lm(r3~r1) % Fit a regression model with likelihood method.

> summary(m1)

Call: lm(formula = r3 ~ r1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.910687 0.032250 28.24 <2e-16 ***

r1 0.923854 0.004389 210.51 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.538 on 1965 degrees of freedom

Multiple R-Squared: 0.9575, Adjusted R-squared: 0.9575

F-statistic: 4.431e+04 on 1 and 1965 DF, p-value: < 2.2e-16

> acf(m1$residuals)

> c3=diff(r3)

> c1=diff(r1)

> plot(c1,c3)

> m2=lm(c3~c1) % Fit a regression with likelihood method.

> summary(m2)

Call:

lm(formula = c3 ~ c1)

Residuals:

Min 1Q Median 3Q Max

-0.3806040 -0.0333840 -0.0005428 0.0343681 0.4741822

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0002475 0.0015380 0.161 0.872

c1 0.7810590 0.0074651 104.628 <2e-16 ***

---

Residual standard error: 0.06819 on 1964 degrees of freedom

Multiple R-Squared: 0.8479, Adjusted R-squared: 0.8478

F-statistic: 1.095e+04 on 1 and 1964 DF, p-value: < 2.2e-16

> acf(m2$residuals)
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> plot(m2$residuals,type=’l’)

> m3=arima(c3,xreg=c1,order=c(0,0,1)) % Residuals follow an MA(1) model

> m3

Call: arima(x = c3, order = c(0, 0, 1), xreg = c1)

Coefficients:

ma1 intercept c1 % Fitted model is

0.2115 0.0002 0.7824 % c3 = 0.0002+0.782c1 + a(t)+0.212a(t-1)

s.e. 0.0224 0.0018 0.0077 % with var[a(t)] = 0.00446.

sigma^2 estimated as 0.004456: log likelihood = 2531.84, aic = -5055.69

> acf(m3$residuals)

> tsdiag(m3)

> m4=arima(c3,xreg=c1,order=c(1,0,0)) % Residuals follow an AR(1) model.

> m4

Call:

arima(x = c3, order = c(1, 0, 0), xreg = c1)

Coefficients:

ar1 intercept c1 % Fitted model is

0.1922 0.0003 0.7829 % c3 = 0.0003 + 0.783c1 + a(t),

s.e. 0.0221 0.0019 0.0077 % a(t) = 0.192a(t-1)+e(t).

sigma^2 estimated as 0.004474: log likelihood = 2527.86, aic = -5047.72

Parameterization in R. With additional explanatory variable X in

ARIMA model, R uses the model

Wt = φ1Wt−1 + · · · + φpWt−p + at + θ1at−1 + · · · + θqat−q,

where Wt = Yt − β0 − β1Xt. This is the proper way to handle

regression model with time series errors, because Wt−1 is not subject

to the effect of Xt−1.

It is different from the model

Yt = β∗0 +β∗1Xt +φ1Yt−1 + · · ·+φpYt−p + at + θ1at−1 + · · ·+ θqat−q,

for which the Yt−1 contains the effect of Xt−1.
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Long-memory processes

• Meaning? ACF decays to zero very slowly!

• Example: ACF of squared or absolute log returns

ACFs are small, but decay very slowly.

• How to model long memory? Use “fractional” difference: namely,

(1−B)drt, where −0.5 < d < 0.5.

• Importance? In theory, Yes. In practice, yet to be determined.

• In R, the package rugarch may be used to estimate the frac-

tionally integrated ARMA models. The package can also be used

for GARCH modeling.

Summary of the chapter

• Sample ACF ⇒ MA order

• Sample PACF ⇒ AR order

• Some packages have “automatic” procedure to select a simple

model for “conditional mean” of a FTS, e.g., R uses “ar” for AR

models.

• Check a fitted model before forecasting, e.g. residual ACF and

hetroscedasticity (chapter 3)

• Interpretation of a model, e.g. constant term &

For an AR(1) with coefficient φ1, the speed of mean reverting as

measured by half-life is

k =
ln(0.5)

ln(|φ1|)
.

For an MA(q) model, forecasts revert to the mean in q+ 1 steps.
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• Make proper use of regression models with time series errors, e.g.

regression with AR(1) residuals

Perform a joint estimation instead of using any two-step proce-

dure, e.g. Cochrane-Orcutt (1949).

• Basic properties of a random-walk model

• Multiplicative seasonal models, especially the so-called airline

model.
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