Financial Time Series
Lecture 3: Seasonality, Regression, Long Memory

Seasonal Time Series: TS with periodic patterns and useful in
e predicting quarterly earnings
e pricing weather-related derivatives

e analysis of transactions data (high-frequency data), e.g., U-shaped
pattern in intraday trading intensity, volatility, etc.

Example 1. Monthly U.S. Housing Starts from January 1959 to
February 2017. The data are in thousand units. See Figure 1 and
compute the sample ACF of the series and its differenced data.

Example 2. Quarterly earnings of Johnson & Johnson

See the time plot, Figures 2 and 3, and sample ACFs

Example 3. Quarterly earning per share of Coca Cola from 1983
to 2009.

Multiplicative model: Consider the housing-starts series. Let 1
be the monthly data. Denoting 1959 as year 0, we can write the time
index as t = year + month, e.g, y1 = Yo.1, Y2 = Yo2, and Y14 = Y1 2,
etc. The multiplicative model is based on the following consideration:

Month
Year | Jan Feb Mar --- Oct Nov Dec
1959 | o1 Yo2 Y03 *** Yoi10 Yoi1 Yo,12
1960 | y11 w12 Y13 - 0 Y10 Y111 Y112
1961 | yo1 w22 Y23 -+ Y210 Y211 Y212
1962 | Y31 y32 933 *** Y310 Y311 Y312
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Figure 1: Time plot of monthly U.S. housing starts: 1959.1-2017.2. Data obtained from US
Bureau of the Census.
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Figure 2: Time plot of quarterly earnings of Johnson and Johnson: 1960-1980
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Figure 3: Time plot of quarterly logged earnings of Johnson and Johnson: 1960-1980
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Figure 4: Time plot of quarterly earnings per share of KO (Coca Cola) from 1983 to 2009.



The column dependence is the usual lag-1, lag-2, ... dependence.
That is, monthly dependence. We call them the regular dependence.
The row dependence is the year-to-year dependence. We call them
the seasonal dependence.

Multiplicative model says that the regular and seasonal dependence
are orthogonal to each other.

Airline model for quarterly series
e Form:
Tt —Ti—1 — Ti—q + 15 = ap — Ohaz—1 — Oga_4 + 0101045

or

(1-B)1—BYr=01—-6,B)(1—0,BYa
e Define the differenced series w; as
Wy =174 — T4 — T+ 15 = (14 —74-1) — (Ty—4 — T1_5).
[t is called regular and seasonal differenced series.

e ACF of w; has a nice symmetric structure (see the text), i.e.
Ps—1 = Psi1 = p1ps- Also, py =0for £ > s+ 1.

e This model is widely applicable to many many seasonal time
series.

e Multiplicative model means that the regular and seasonal depen-
dences are roughly orthogonal to each other.

e Forecasts: exhibit the same pattern as the observed series. See
Figure 5.

e Fxponential Smoothing method
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Figure 5: Forecast plot for the quarterly earnings of Johnson and Johnson. Data: 1960-1980,
Forecasts: 1981-82.

Example: Analysis of J&J earnings.
R Demonstration: output edited.

x=ts(scan("qg-earn-jnj.txt"),frequency=4,start=c(1960,1)) % create a time series object.
plot(x) % Plot data with calendar time

y=log(x) % Natural log transformation

plot(y) % plot data

cl=paste(c(1:4)) % create plotting symbols
points(y,pch=cl) % put circles on data points.
par(mfcol=c(2,1)) % two plots per page
acf(y,lag.max=16)

yl=as.vector(y) J Creates a sequence of data in R
acf(yl,lag.max=16)

dyl=diff(yl) 7% regular difference
acf(dyl,lag.max=16)

sdyl=diff(dyl,4) % seasonal difference
acf(sdyl,lag.max=12)
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> ml=arima(yl,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4)) ¥% Airline
% model in R.
> ml
Call:arima(x = yl1, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 4))



Coefficients:
mal smal
-0.6809 -0.3146 Y% The fitted model is (1-B"4) (1-B)R(t)
s.e. 0.0982 0.1070 % (1-0.68B) (1-0.31B"4)a(t), varl[a(t)]

0.00793.

sigma”2 estimated as 0.00793: log likelihood = 78.38, aic = -150.75
> par(mfcol=c(1,1)) % One plot per page

> tsdiag(ml) % Model checking

> fl=predict(m1,8) % prediction

> names (f1)

[1] "pred" "se"

> f1

$pred % Point forecasts

Time Series:

Start = 85

End = 92

Frequency = 1

[1] 2.905343 2.823891 2.912148 2.581085 3.036450 2.954999 3.043255 2.712193
$se % standard errors of point forecasts

Time Series:

Start = 85

End = 92

Frequency = 1

[1] 0.08905414 0.09347895 0.09770358 0.10175295 0.13548765 0.14370550
[7] 0.15147817 0.15887102

# You can use ‘‘foreplot’’ to obtain plot of forecasts.

For monthly data, the Airline model becomes
(1—B)(1—=B%r,=(1—-6,B)(1—6028"%a,.
What is the pattern of ACFEF?

Regression Models with Time Series Errors

e Has many applications

e Impact of serial correlations in regression is often overlooked.

[t may introduce biases in estimates and in standard errors, re-
sulting in unreliable t-ratios.
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Figure 6: Time plots of U.S. weekly interest rates: 1-year constant maturity rate (solid line)
and 3-year rate (dashed line).

e Detecting residual serial correlation: Use Q-stat instead of DW-
statistic, which is not sufficient!

e Joint estimation of all parameters is preferred.
e Avoid the problem of spurious regression.

e Proper analysis: see the illustration below.

A related issue:

Question: Why don’t we use R-square in this course?
R-square can be misleading!!!

Example. U.S. weekly interest rate data: 1-year and 3-year con-
stant maturity rates. Data are shown in Figure 6.

R Demonstration: output edited.



da=read.table("w-gsin36299.txt") % load the data
ri=dal[,1] % 1l-year rate

r3=dal,2] % 3-year rate

plot(rl,type=’1’) 7% Plot the data
lines(1:1967,r3,1ty=2)

plot(rl,r3) % scatter plot of the two series

V V V V VvV V

> m1=Im(r3"r1) % Fit a regression model with likelihood method.
> summary (ml1)
Call: 1m(formula = r3 ~ ril)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.910687 0.032250 28.24 <2e-16 *xx*x
ril 0.923854 0.004389 210.51 <2e-16 *xx*x

Signif. codes: O ’*%%’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1

Residual standard error: 0.538 on 1965 degrees of freedom
Multiple R-Squared: 0.9575, Adjusted R-squared: 0.9575
F-statistic: 4.431e+04 on 1 and 1965 DF, p-value: < 2.2e-16

acf (m1$residuals)
c3=diff (r3)
cl=diff(r1)
plot(cl,c3)

vV V V V

> m2=1m(c3"cl) % Fit a regression with likelihood method.
> summary (m2)

Call:

Im(formula = c3 ~ cl)

Residuals:
Min 1Q Median 3Q Max
-0.3806040 -0.0333840 -0.0005428 0.0343681 0.4741822

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 0.0002475 0.0015380 0.161 0.872
cl 0.7810590 0.0074651 104.628  <2e-16 **x*
Residual standard error: 0.06819 on 1964 degrees of freedom
Multiple R-Squared: 0.8479, Adjusted R-squared: 0.8478
F-statistic: 1.095e+04 on 1 and 1964 DF, p-value: < 2.2e-16

> acf (m2$residuals)



> plot(m2$residuals,type=’1’)

> m3=arima(c3,xreg=cl,order=c(0,0,1)) 7% Residuals follow an MA(1) model
> m3
Call: arima(x = c¢3, order = c(0, 0, 1), xreg = cl)

Coefficients:
mal intercept cl % Fitted model is
0.2115 0.0002 0.7824 % c3 = 0.0002+0.782cl + a(t)+0.212a(t-1)
s.e. 0.0224 0.0018 0.0077 % with var[a(t)] = 0.00446.

sigma”2 estimated as 0.004456: log likelihood = 2531.84, aic = -5055.69
> acf (m3$residuals)
> tsdiag(m3)

> m4=arima(c3,xreg=cl,order=c(1,0,0)) 7% Residuals follow an AR(1) model.
> mé

Call:

arima(x = c3, order = c(1, 0, 0), xreg = cl)

Coefficients:
arl intercept cl % Fitted model is
0.1922 0.0003 0.7829 % c3 = 0.0003 + 0.783c1 + a(t),
s.e. 0.0221 0.0019 0.0077 % a(t) = 0.192a(t-1)+e(t).

sigma”2 estimated as 0.004474: log likelihood = 2527.86, aic = -5047.72

Parameterization in R. With additional explanatory variable X in

ARIMA model, R uses the model

Wt = ¢1Wt_1 + -+ gprt_p + a; + (91&15_1 + -+ Qqat_q,

where W, = Y; — By — £1X;. This is the proper way to handle
regression model with time series errors, because W;_; is not subject

to the effect of X;_;.
[t 1s different from the model

Yi=08+8Xe+oYea+- -+ +ar +0a1+- -+ 0,00,

for which the Y;_; contains the effect of X;_;.



Long-memory processes
e Meaning? ACEF decays to zero very slowly!

e Example: ACF of squared or absolute log returns

ACFs are small, but decay very slowly.

e How to model long memory? Use “fractional” difference: namely,
(1 — B)%r;, where —0.5 < d < 0.5.

e Importance? In theory, Yes. In practice, yet to be determined.

e In R, the package rugarch may be used to estimate the frac-
tionally integrated ARMA models. The package can also be used

for GARCH modeling.
Summary of the chapter

e Sample ACF = MA order
e Sample PACF = AR order

e Some packages have “automatic” procedure to select a simple
model for “conditional mean” of a F'T'S, e.g., R uses “ar” for AR
models.

e Check a fitted model before forecasting, e.g. residual ACF and
hetroscedasticity (chapter 3)
e Interpretation of a model, e.g. constant term &

For an AR(1) with coefficient ¢, the speed of mean reverting as
measured by half-life is

In(0.5)
In(|¢r])

For an MA(q) model, forecasts revert to the mean in g+ 1 steps.

k‘:
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e Make proper use of regression models with time series errors, e.g.
regression with AR(1) residuals

Perform a joint estimation instead of using any two-step proce-
dure, e.g. Cochrane-Orcutt (1949).

e Basic properties of a random-walk model

e Multiplicative seasonal models, especially the so-called airline
model.
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