Financial Time Series

Lecture 2: ARMA Models \& Unit Roots

Simple AR models: (Regression with lagged variables.)

Motivating example: The growth rate of U.S. quarterly real GNP from 1947 to 1991. Recall that the model discussed before is

$$
r_{t}=0.005+0.35 r_{t-1}+0.18 r_{t-2}-0.14 r_{t-3}+a_{t}, \hat{\sigma}_{a}=0.01 .
$$

This is called an $\mathrm{AR}(3)$ model because the growth rate r_{t} depends on the growth rates of the past three quarters. How do we specify this model from the data? Is it adequate for the data? What are the implications of the model? These are the questions we shall address in this lecture.

Another example: U.S. monthly unemployment rate.
AR(1) model:

1. Form: $r_{t}=\phi_{0}+\phi_{1} r_{t-1}+a_{t}$, where ϕ_{0} and ϕ_{1} are real numbers, which are referred to as "parameters" (to be estimated from the data in an application). For example,

$$
r_{t}=0.05+0.4 r_{t-1}+a_{t}
$$

2. Stationarity: necessary and sufficient condition $\left|\phi_{1}\right|<1$. Why?
3. Mean: $E\left(r_{t}\right)=\frac{\phi_{0}}{1-\phi_{1}}$

Figure 1: U.S. quarterly growth rate of real GNP: 1947-1991

Figure 2: Various plots of U.S. quarterly growth rate of real GNP: 1947-1991

Figure 3: U.S. monthly unemployment rate (total civilian, 16 and older) from January 1948 to February, 2017.
4. Alternative representation: Let $E\left(r_{t}\right)=\mu$ be the mean of r_{t} so that $\mu=\phi_{0} /\left(1-\phi_{1}\right)$. Equivalently, $\phi_{0}=\mu\left(1-\phi_{1}\right)$. Plugging in the model, we have

$$
\begin{equation*}
\left(r_{t}-\mu\right)=\phi_{1}\left(r_{t-1}-\mu\right)+a_{t} . \tag{1}
\end{equation*}
$$

This model also has two parameters (μ and ϕ_{1}). It explicitly uses the mean of the series. It is less commonly used in the literature, but is the model representation used in R .
5. Variance: $\operatorname{Var}\left(r_{t}\right)=\frac{\sigma_{a}^{2}}{1-\phi_{1}^{2}}$.
6. Autocorrelations: $\rho_{1}=\phi_{1}, \rho_{2}=\phi_{1}^{2}$, etc. In general, $\rho_{k}=\phi_{1}^{k}$ and ACF ρ_{k} decays exponentially as k increases,
7. Forecast (minimum squared error): Suppose the forecast origin is n. For simplicity, we shall use the model representation in (1)
and write $x_{t}=r_{t}-\mu$. The model then becomes $x_{t}=\phi_{1} x_{t-1}+a_{t}$. Note that forecast of r_{t} is simply the forecast of x_{t} plus μ.
(a) 1-step ahead forecast at time n :

$$
\hat{x}_{n}(1)=\phi_{1} x_{n}
$$

(b) 1-step ahead forecast error:

$$
e_{n}(1)=x_{n+1}-\hat{x}_{n}(1)=a_{n+1}
$$

Thus, a_{n+1} is the $u n$-predictable part of x_{n+1}. It is the shock at time $n+1$!
(c) Variance of 1-step ahead forecast error:

$$
\operatorname{Var}\left[e_{n}(1)\right]=\operatorname{Var}\left(a_{n+1}\right)=\sigma_{a}^{2}
$$

(d) 2-step ahead forecast:

$$
\hat{x}_{n}(2)=\phi_{1} \hat{x}_{n}(1)=\phi_{1}^{2} x_{n} .
$$

(e) 2-step ahead forecast error:

$$
e_{n}(2)=x_{n+2}-\hat{x}_{n}(2)=a_{n+2}+\phi_{1} a_{n+1}
$$

(f) Variance of 2-step ahead forecast error:

$$
\operatorname{Var}\left[e_{n}(2)\right]=\left(1+\phi_{1}^{2}\right) \sigma_{a}^{2}
$$

which is greater than or equal to $\operatorname{Var}\left[e_{n}(1)\right]$, implying that uncertainty in forecasts increases as the number of steps increases.
(g) Behavior of multi-step ahead forecasts. In general, for the ℓ-step ahead forecast at n, we have

$$
\hat{x}_{n}(\ell)=\phi_{1}^{\ell} x_{n}
$$

the forecast error

$$
e_{n}(\ell)=a_{n+\ell}+\phi_{1} a_{n+\ell-1}+\cdots+\phi_{1}^{\ell-1} a_{n+1}
$$

and the variance of forecast error

$$
\operatorname{Var}\left[e_{n}(\ell)\right]=\left(1+\phi_{1}^{2}+\cdots+\phi_{1}^{2(\ell-1)}\right) \sigma_{a}^{2}
$$

In particular, as $\ell \rightarrow \infty$,

$$
\hat{x}_{n}(\ell) \rightarrow 0, \quad \text { i.e., } \quad \hat{r}_{n}(\ell) \rightarrow \mu .
$$

This is called the mean-reversion of the $A R(1)$ process. The variance of forecast error approaches

$$
\operatorname{Var}\left[e_{n}(\ell)\right]=\frac{1}{1-\phi_{1}^{2}} \sigma_{a}^{2}=\operatorname{Var}\left(r_{t}\right)
$$

In practice, it means that for the long-term forecasts serial dependence is not important. The forecast is just the sample mean and the uncertainty is simply the uncertainty about the series.
8. A compact form: $\left(1-\phi_{1} B\right) r_{t}=\phi_{0}+a_{t}$.

Half-life: A common way to quantify the speed of mean reversion is the half-life, which is defined as the number of periods needed so
that the magnitude of the forecast becomes half of that of the forecast origin. For an $\mathrm{AR}(1)$ model, this mean

$$
x_{n}(k)=\frac{1}{2} x_{n} .
$$

Thus, $\phi_{1}^{k} x_{n}=\frac{1}{2} x_{n}$. Consequently, the half-life of the $\operatorname{AR}(1)$ model is $k=\frac{\ln (0.5)}{\ln \left(\phi_{1} \mid\right)}$. For example, if $\phi_{1}=0.5$, the $k=1$. If $\phi_{1}=0.9$, then $k \approx 6.58$.
AR(2) model:

1. Form: $r_{t}=\phi_{0}+\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+a_{t}$, or

$$
\left(1-\phi_{1} B-\phi_{2} B^{2}\right) r_{t}=\phi_{0}+a_{t} .
$$

2. Stationarity condition: (factor of polynomial)
3. Characteristic equation: $\left(1-\phi_{1} x-\phi_{2} x^{2}\right)=0$
4. Mean: $E\left(r_{t}\right)=\frac{\phi_{0}}{1-\phi_{1}-\phi_{2}}$
5. Mean-adjusted format: Using $\phi_{0}=\mu-\phi_{1} \mu-\phi_{2} \mu$, we can write the $\operatorname{AR}(2)$ model as

$$
\left(r_{t}-\mu\right)=\phi_{1}\left(r_{t-1}-\mu\right)+\phi_{2}\left(r_{t-2}-\mu\right)+a_{t} .
$$

This form is often used in the finance literature to highlight the mean-reverting property of a stationary $\mathrm{AR}(2)$ model.
6. ACF: $\rho_{0}=1, \rho_{1}=\frac{\phi_{1}}{1-\phi_{2}}$,

$$
\rho_{\ell}=\phi_{1} \rho_{\ell-1}+\phi_{2} \rho_{\ell-1}, \quad \ell \geq 2 .
$$

7. Stochastic business cycle: if $\phi_{1}^{2}+4 \phi_{2}<0$, then r_{t} shows characteristics of business cycles with average length

$$
k=\frac{2 \pi}{\cos ^{-1}\left[\phi_{1} /\left(2 \sqrt{-\phi_{2}}\right)\right]},
$$

where the cosine inverse is stated in radian. If we denote the solutions of the polynomial as $a \pm b i$, where $i=\sqrt{-1}$, then we have $\phi_{1}=2\left(1\right.$ and $\phi_{2}=-\left(a^{2}+b^{2}\right)$ so that
$\phi_{1}=\frac{2 a}{a^{2}+b^{2}} \quad k=\frac{2 \pi}{\cos ^{-1}\left(a / \sqrt{a^{2}+b^{2}}\right)} . \quad \phi_{2}=-\frac{1}{a^{2}+b^{2}}$
In R or S-Plus, one can obtain $\sqrt{a^{2}+b^{2}}$ using the command Mod.
8. Forecasts: Similar to $\mathrm{AR}(1)$ models

Simulation in R: Use the command arima.sim

1. $\mathrm{y} 1=\operatorname{arima.sim}(\mathrm{model}=1 \mathrm{ist}(\operatorname{ar}=\mathrm{c}(1.3,-.4)), 1000)$
2. $\mathrm{y} 2=\operatorname{arima} . \operatorname{sim}($ model $=\operatorname{list}(\operatorname{ar}=\mathrm{c}(.8,-.7)), 1000)$

Check the ACF and PACF of the above two simulated series.
Discussion: (Reference only)
An $\operatorname{AR}(2)$ model can be written as an $\operatorname{AR}(1)$ model if one expands the dimension. Specifically, we have

$$
\begin{aligned}
r_{t}-\mu & =\phi_{1}\left(r_{t-1}-\mu\right)+\phi_{2}\left(r_{t-2}-\mu\right)+a_{t} \\
r_{t-1}-\mu & =r_{t-1}-\mu, \quad \text { (an identity.) }
\end{aligned}
$$

Now, putting the two equations together, we have

$$
\left[\begin{array}{c}
r_{t}-\mu \\
r_{t-1}-\mu
\end{array}\right]=\left[\begin{array}{cc}
\phi_{1} & \phi_{2} \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
r_{t-1}-\mu \\
r_{t-2}-\mu
\end{array}\right]+\left[\begin{array}{c}
a_{t} \\
0
\end{array}\right] .
$$

This is a 2 -dimensional $\operatorname{AR}(1)$ model. Several properties of the $\operatorname{AR}(2)$ model can be obtained from the expanded $\operatorname{AR}(1)$ model.

Building an AR model

- Order specification

1. Partial ACF: (naive, but effective)

- Use consecutive fittings
- See Text (p. 40) for details
- Key feature: PACF cuts off at lag p for an $\operatorname{AR}(p)$ model.
- Illustration: See the PACF of the U.S. quarterly growth rate of GNP.

2. Akaike information criterion

$$
A I C(\ell)=\ln \left(\tilde{\sigma}_{\ell}^{2}\right)+\frac{2 \ell}{T}
$$

for an $\operatorname{AR}(\ell)$ model, where $\tilde{\sigma}_{\ell}^{2}$ is the MLE of residual variance.

Find the AR order with minimum AIC for $\ell \in[0, \cdots, P]$.
3. BIC criterion:

$$
B I C(\ell)=\ln \left(\tilde{\sigma}_{\ell}^{2}\right)+\frac{\ell \ln (T)}{T} .
$$

R command: ar(rt, method=''mle'', order.max=12)

- Needs a constant term? Check the sample mean.
- Estimation: least squares method or maximum likelihood method
- Model checking:

1. Residual: obs minus the fit, i.e. 1-step ahead forecast errors at each time point.
2. Residual should be close to white noise if the model is adequate. Use Ljung-Box statistics of residuals, but degrees of freedom is $m-g$, where g is the number of AR coefficients used in the model.

Example: Analysis of U.S. GNP growth rate series. R demonstration:

```
> library(fBasics)
> da=read.table("dgnp82.dat")
> x=da[,1]
> par(mfcol=c(2,2)) % put 4 plots on a page###
See Figure 2 of the lecture note 2.
> plot(x,type='l') % first plot
> plot(x[1:175],x[2:176]) % 2nd plot
> plot(x[1:174],x[3:176]) % 3rd plot
> acf(x,lag=12) % 4th plot
```

```
> pacf(x,lag.max=12) % Compute PACF (not shown in this handout)
> Box.test(x,lag=10,type='Ljung') % Compute Q(10) statistics
    Box-Ljung test
data: x
X-squared = 43.2345, df = 10, p-value = 4.515e-06
> m1=ar(x,method='mle') % Automatic AR fitting using AIC criterion.
> m1
Call: ar(x = x, method = "mle")
Coefficients:
    1 2 3 % An AR(3) is specified.
0.3480 0.1793 -0.1423
Order selected 3 sigma^2 estimated as 9.427e-05
> names(m1)
\begin{tabular}{rllll} 
[1] & "order" & "ar" & "var.pred" & "x.mean" \\
[6] "n.used" & "order.max" & "partialacf" & "resid" & "method" \\
{\([11]\)} & "series" & "frequency" & "call" & "asy.var.coef"
\end{tabular}
> plot(m1$resid,type='l') % Plot residuals of the fitted model (not shown)
> Box.test(m1$resid,lag=10,type='Ljung') % Model checking
```

 Box-Ljung test
 data: m1\$resid
X-squared $=7.0808, \mathrm{df}=10, \mathrm{p}$-value $=0.7178$
> m2=arima(x,order=c(3,0,0)) \% Another approach with order given.
> m2
Call: $\operatorname{arima}(\mathrm{x}=\mathrm{x}$, order $=c(3,0,0))$
Coefficients:

```
\begin{tabular}{rrrrll} 
ar1 & ar2 & ar3 & intercept & \(\%\) & Fitted model is \\
s.e. & 0.3480 & 0.1793 & -0.1423 & 0.0077 & \(\%\) \\
& 0.0745 & 0.0778 & 0.0745 & 0.0012 & \(\%\)
\end{tabular}
sigma^2 estimated as 9.427e-05: log likelihood = 565.84, aic = -1121.68
> names(m2)
\begin{tabular}{lllll}
{\([1]\)} & "coef" & "sigma2" & "var.coef" & "mask" \\
{\([7]\)} & "arma" & "residuals" "call" & "series" & "code"
\end{tabular}
[13] "model"
> Box.test(m2$residuals,lag=10,type='Ljung')
    Box-Ljung test
data: m2$residuals
X-squared = 7.0169, df = 10, p-value = 0.7239
> ts.plot(m2$residuals) % Residual plot
> tsdiag(m2) % obtain 3 plots of model checking (not shown in handout).
> p1=c(1,-m2$coef[1:3]) % Further analysis of the fitted model.
> roots=polyroot(p1)
> roots
[1] 1.590253+1.063882e+00i -1.920152-3.530887e-17i 1.590253-1.063882e+00i
> Mod(roots)
[1] 1.913308 1.920152 1.913308
> k=2*pi/acos(1.590253/1.913308)
> k
[1] 10.65638
> predict(m2,8) % Prediction 1-step to 8-step ahead.
$pred
Time Series:
Start = 177
End = 184
Frequency = 1
[1] 0.001236254 0.004555519 0.007454906 0.007958518
[5] 0.008181442 0.007936845 0.007820046 0.007703826
$se
Time Series:
Start = 177
End = 184
Frequency = 1
[1] 0.009709322 0.010280510 0.010686305 0.010688994
```

Another example: Monthly U.S. unemployment rate from January 1948 to February, 2017. I use this example to emphasize two messages: (1) Modeling and prediction using AR models, including model simplification; (2) handling outliers.

Demonstration:

```
> require(quantmod)
> get Symbols("UNRATE",src="FRED")
> chartSeries(UNRATE)
> unrate <- as.numeric(UNRATE) ## create a regular vector, instead of a ''xts'' object
> tail(UNRATE)
                UNRATE
2016-09-01 4.9
2016-10-01 4.8
2016-11-01 4.6
2016-12-01 4.7
2017-01-01 4.8
2017-02-01 4.7
> tdx <- c(1:830)/12+1948
> plot(tdx,unrate,type='l',xlab='year',ylab='rate')
> title(main="Monthly U.S. unemployment rate")
> ar(unrate,method="mle")
Call:ar(x = unrate, method = "mle")
Coefficients:
\begin{tabular}{rrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0.9946 & 0.2152 & -0.0713 & -0.0533 & 0.0494 & -0.1275 & -0.0610 \\
9 & 10 & 11 & & & & \\
-0.0077 & -0.1048 & 0.1003 & & & &
\end{tabular}
Order selected 11 sigma^2 estimated as 0.03719
> m1 <- arima(unrate,order=c(11,0,0))
> m1
Call:arima(x = unrate, order = c(11, 0, 0))
Coefficients:
\begin{tabular}{rrrrrrrrr} 
& \(\operatorname{ar} 1\) & \(\operatorname{ar} 2\) & \(\operatorname{ar} 3\) & \(\operatorname{ar} 4\) & \(\operatorname{ar} 5\) & \(\operatorname{ar} 6\) & \(\operatorname{ar} 7\) & \(\operatorname{ar} 8\) \\
& 0.9945 & 0.2152 & -0.0712 & -0.0532 & 0.0493 & -0.1275 & -0.0610 & 0.0513 \\
s.e. & 0.0346 & 0.0488 & 0.0495 & 0.0495 & 0.0497 & 0.0495 & 0.0496 & 0.0496 \\
& \(\operatorname{ar} 9\) & \(\operatorname{ar10}\) & \(\operatorname{ar11}\) & intercept & & &
\end{tabular}
```

```
_}\begin{array}{rrrrr}{-0.0077}&{-0.1047}&{0.1004}&{5.6715}\\{\mathrm{ s.e. 0.0496 0.0490}}&{0.0348}&{0.4417}
sigma^2 estimated as 0.03718: log likelihood = 186.03, aic = -346.07
> names(m1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [1] & "coef" & "sigma2" & "var.coef" & "mask" & "loglik" & "aic" \\
\hline [7] & "arma" & "residuals" & "call" & "series" & "code" & "n.cond" \\
\hline [13] & "nobs" & "model" & & & & \\
\hline \multicolumn{7}{|l|}{> tsdiag (m1,gof=24)} \\
\hline \multicolumn{7}{|l|}{> c1 <- c (NA,NA, NA, \(0,0, N A, 0,0,0, N A, N A, N A)\)} \\
\hline \multicolumn{7}{|l|}{> m2 <- arima (unrate, order=c (11,0,0),fixed=c1) \#\# refinement} \\
\hline \multicolumn{7}{|l|}{> m2} \\
\hline Call & arima(x & rate, order & \(=c(11,0\), & ), fixed & & \\
\hline
\end{tabular}
Call:arima(x = unrate, order = c(11, 0, 0), fixed = c1)
Coefficients:
\begin{tabular}{lrrrrrrrrrr} 
& \(\operatorname{ar} 1\) & \(\operatorname{ar} 2\) & \(\operatorname{ar} 3\) & \(\operatorname{ar} 4\) & \(\operatorname{ar} 5\) & \(\operatorname{ar} 6\) & \(\operatorname{ar} 7\) & \(\operatorname{ar} 8\) & \(\operatorname{ar} 9\) & \(\operatorname{ar} 10\) \\
s.e. & 0.9967 & 0.2045 & -0.0800 & 0 & 0 & -0.1369 & 0 & 0 & 0 & -0.0989 \\
& 0.0343 & 0.0481 & 0.0427 & 0 & 0 & 0.0291 & 0 & 0 & 0 & 0.0407 \\
& ar11 & intercept & & & & & & & & \\
s.e. & 0.0998 & 5.6702 & & & & & & & &
\end{tabular}
sigma^2 estimated as 0.03733: log likelihood = 184.37, aic = -352.74
> tsdiag(m2)
> tsdiag(m2,gof=24)
> pm2 <- predict(m2,4)
> names(pm2)
[1] "pred" "se"
> low <- pm2$pred-1.96*pm2$se
> upp <- pm2$pred+1.96*pm2$se
> names(pm2)
[1] "pred" "se"
> pm2$pred
Time Series:
Start = 831
End = 834
Frequency = 1
[1] 4.737312 4.710012 4.745765 4.759146
> pm2$se
Time Series:
Start = 831
End = 834
Frequency = 1
[1] 0.1932128 0.2727943 0.3577585 0.4391267
> low
Time Series:
```

```
Start = 831
End = 834
Frequency = 1
[1] 4.358614 4.175335 4.044559 3.898457
> upp
Time Series:
Start = 831
End = 834
Frequency = 1
[1] 5.116009 5.244688 5.446972 5.619834
######################## Handling outliers
> which.min(m2$residuals) ### locate the minimum of residuals
[1] 23
> I23 <- rep (0,830)
> I23[23] <- 1
> c1 <- c(c1,NA)
> m3 <- arima(unrate,order=c(11,0,0),fixed=c1,xreg=I23)
> m3
Call: arima(x = unrate, order = c(11, 0, 0), xreg = I23, fixed = c1)
```

Coefficients:

	ar1	ar2	ar3	ar4	ar5	ar6	$\operatorname{ar} 7$	$\operatorname{ar} 8$	$\operatorname{ar} 9$	$\operatorname{ar} 10$
s.e.	1.0449	0.1219	-0.0472	0	0	-0.1345	0	0	0	-0.1021
	0.0349	0.0515	0.0434	0	0	0.0287	0	0	0	0.0413
ar11	intercept	I23								
	0.1025	5.6709	-0.7749							
s.e.	0.0345	0.4428	0.1338							

sigma^2 estimated as 0.03591: log likelihood $=200.43$, aic $=-382.87$
> tsdiag(m3,gof=24)
> which.max (m3\$residuals) \#\#\# locate the maximum of the residuals
[1] 22
> I 22 <- $\operatorname{rep}(0,830)$
> I22[22] <- 1
$>c 1<-c(c 1, N A)$
$>\mathrm{X}<-\mathrm{cbind}(\mathrm{I} 23, \mathrm{I} 22)$
$>\mathrm{m} 4$ <- arima(unrate, order=c $(11,0,0)$,fixed=c1, xreg=X)
$>\mathrm{m} 4$
Call:arima($x=$ unrate, order $=c(11,0,0), \operatorname{xreg}=X, f i x e d=c 1)$
Coefficients:

	ar1	ar2	ar3	ar4	$\operatorname{ar} 5$	$\operatorname{ar} 6$	$\operatorname{ar} 7$	$\operatorname{ar} 8$	$\operatorname{ar} 9$
	1.0764	0.1170	-0.0955	0	0	-0.1069	0	0	0
s.e.	-0.0951								
0.0346	0.0507	0.0431	0	0	0.0283	0	0	0	0.0416
ar11	intercept	I23	I22						
0.0901	5.6690	-0.2580	1.1729						

Figure 4: Model checking for $\operatorname{AR}(11)$ model fitted to UNRATE series.
$\begin{array}{lllll}\text { s.e. } & 0.0348 & 0.4388 & 0.1367 & 0.1375\end{array}$
sigma^2 estimated as 0.03305: log likelihood $=234.86$, aic $=-449.73$
> tsdiag(m4,gof=24)

Moving-average (MA) model

Model with finite memory!
Some daily stock returns have minor serial correlations and can be modeled as MA or AR models.

MA(1) model

- Form: $r_{t}=\mu+a_{t}-\theta a_{t-1}$
- Stationarity: always stationary.
- Mean (or expectation): $E\left(r_{t}\right)=\mu$
- Variance: $\operatorname{Var}\left(r_{t}\right)=\left(1+\theta^{2}\right) \sigma_{a}^{2}$.
- Autocovariance:

1. Lag 1: $\operatorname{Cov}\left(r_{t}, r_{t-1}\right)=-\theta \sigma_{a}^{2}$
2. Lag $\ell: \operatorname{Cov}\left(r_{t}, r_{t-\ell}\right)=0$ for $\ell>1$.

Thus, r_{t} is not related to r_{t-2}, r_{t-3}, \cdots.

- ACF: $\rho_{1}=\frac{-\theta}{1+\theta^{2}}, \rho_{\ell}=0$ for $\ell>1$.

Finite memory! MA(1) models do not remember what happen two time periods ago.

- Forecast (at origin $t=n$):

1. 1-step ahead: $\hat{r}_{n}(1)=\mu-\theta a_{n}$. Why? Because at time n, a_{n} is known, but a_{n+1} is not.
2. 1-step ahead forecast error: $e_{n}(1)=a_{n+1}$ with variance σ_{a}^{2}.
3. Multi-step ahead: $\hat{r}_{n}(\ell)=\mu$ for $\ell>1$.

Thus, for an MA(1) model, the multi-step ahead forecasts are just the mean of the series. Why? Because the model has memory of 1 time period.
4. Multi-step ahead forecast error:

$$
e_{n}(\ell)=a_{n+\ell}-\theta a_{n+\ell-1}
$$

5. Variance of multi-step ahead forecast error:

$$
\left(1+\theta^{2}\right) \sigma_{a}^{2}=\text { variance of } r_{t}
$$

- Invertibility:
- Concept: r_{t} is a proper linear combination of a_{t} and the past observations $\left\{r_{t-1}, r_{t-2}, \cdots\right\}$.
- Why is it important? It provides a simple way to obtain the shock a_{t}.

For an invertible model, the dependence of r_{t} on $r_{t-\ell}$ converges to zero as ℓ increases.

- Condition: $|\theta|<1$.
- Invertibility of MA models is the dual property of stationarity for AR models.
$\underline{\text { MA(2) model }}$
- Form: $r_{t}=\mu+a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}$. or

$$
r_{t}=\mu+\left(1-\theta_{1} B-\theta_{2} B^{2}\right) a_{t}
$$

- Stationary with $E\left(r_{t}\right)=\mu$.
- Variance: $\operatorname{Var}\left(r_{t}\right)=\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma_{a}^{2}$.
- ACF: $\rho_{2} \neq 0$, but $\rho_{\ell}=0$ for $\ell>2$.
- Forecasts go the the mean after 2 periods.

Building an MA model

- Specification: Use sample ACF

Sample ACFs are all small after lag q for an $\operatorname{MA}(q)$ series. (See test of ACF.)

- Constant term? Check the sample mean.
- Estimation: use maximum likelihood method
- Conditional: Assume $a_{t}=0$ for $t \leq 0$
- Exact: Treat a_{t} with $t \leq 0$ as parameters, estimate them to obtain the likelihood function.

Exact method is preferred, but it is more computing intensive.

- Model checking: examine residuals (to be white noise)
- Forecast: use the residuals as $\left\{a_{t}\right\}$ (which can be obtained from the data and fitted parameters) to perform forecasts.

Model form in R: R parameterizes the MA (q) model as

$$
r_{t}=\mu+a_{t}+\theta_{1} a_{t-1}+\cdots+\theta_{q} a_{t-q}
$$

instead of the usual minus sign in θ. Consequently, care needs to be exercised in writing down a fitted MA parameter in R. For instance, an estimate $\hat{\theta}_{1}=-0.5$ of an $\mathrm{MA}(1)$ in R indicates the model is $r_{t}=a_{t}-0.5 a_{t-1}$.

Example:Daily log return of the value-weighted index R demonstration

```
> library(fBasics)
> da=read.table("d-ibmvwew6202.txt")
> dim(da)
[1] 10194 4
> vW=log(1+da[,3])*100 % Compute percentage log returns of the vw index.
> acf(vw,lag.max=10) % ACF plot is not shon in this handout.
> m1=arima(vw,order=c(0,0,1)) % fits an MA(1) model
> m1
```

```
Call:
arima(x = vw, order = c(0, 0, 1))
Coefficients:
            ma1 intercept
        0.1465 0.0396 % The model is vw(t) = 0.0396+a(t)+0.1465a(t-1).
s.e. 0.0099 0.0100
sigma^2 estimated as 0.7785: log likelihood = -13188.48, aic = 26382.96
> tsdiag(m1)
> predict(m1,5)
$pred
Time Series:
Start = 10195
End = 10199
Frequency = 1
[1] 0.05036298 0.03960887 0.03960887 0.03960887 0.03960887
$se
Time Series:
Start = 10195
End = 10199
Frequency = 1
[1] 0.8823290 0.8917523 0.8917523 0.8917523 0.8917523
```

Mixed ARMA model: A compact form for flexible models.
Focus on the ARMA(1,1) model for

1. simplicity
2. useful for understanding GARCH models in Ch. 3 for volatility modeling.

ARMA(1,1) model

- Form: $\left(1-\phi_{1} B\right) r_{t}=\phi_{0}+(1-\theta B) a_{t}$ or

$$
r_{t}=\phi_{1} r_{t-1}+\phi_{0}+a_{t}-\theta_{1} a_{t-1} .
$$

A combination of an $\operatorname{AR}(1)$ on the LHS and an $\operatorname{MA}(1)$ on the RHS.

- Stationarity: same as $\operatorname{AR}(1)$
- Invertibility: same as MA(1)
- Mean: as $\operatorname{AR}(1)$, i.e. $E\left(r_{t}\right)=\frac{\phi_{0}}{1-\phi_{1}}$
- Variance: given in the text
- ACF: Satisfies $\rho_{k}=\phi_{1} \rho_{k-1}$ for $k>1$, but

$$
\rho_{1}=\phi_{1}-\left[\theta_{1} \sigma_{a}^{2} / \operatorname{Var}\left(r_{t}\right)\right] \neq \phi_{1} .
$$

This is the difference between $\operatorname{AR}(1)$ and $\operatorname{ARMA}(1,1)$ models.

- PACF: does not cut off at finite lags.

Building an ARMA(1,1) model

- Specification: use EACF or AIC
- Use the command auto.arima of the package forecast.
- Estimation: cond. or exact likelihood method
- Model checking: as before
- Forecast: MA(1) affects the 1-step ahead forecast. Others are similar to those of $\mathrm{AR}(1)$ models.

Three model representations:

- ARMA form: compact, useful in estimation and forecasting
- AR representation: (by long division)

$$
r_{t}=\phi_{0}+a_{t}+\pi_{1} r_{t-1}+\pi_{2} r_{t-2}+\cdots
$$

It tells how r_{t} depends on its past values.

- MA representation: (by long division)

$$
r_{t}=\mu+a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots
$$

It tells how r_{t} depends on the past shocks.
For a stationary series, ψ_{i} converges to zero as $i \rightarrow \infty$. Thus, the effect of any shock is transitory.
The MA representation is particularly useful in computing variances of forecast errors.

For a ℓ-step ahead forecast, the forecast error is

$$
e_{n}(\ell)=a_{n+\ell}+\psi_{1} a_{n+\ell-1}+\cdots+\psi_{\ell-1} a_{n+1}
$$

The variance of forecast error is

$$
\operatorname{Var}\left[e_{n}(\ell)\right]=\left(1+\psi_{1}^{2}+\cdots+\psi_{\ell-1}^{2}\right) \sigma_{a}^{2} .
$$

Unit-root Nonstationarity

Random walk

- Form $p_{t}=p_{t-1}+a_{t}$
- Unit root? It is an $\mathrm{AR}(1)$ model with coefficient $\phi_{1}=1$.
- Nonstationary: Why? Because the variance of r_{t} diverges to infinity as t increases.
- Strong memory: sample ACF approaches 1 for any finite lag.
- Repeated substitution shows

$$
p_{t}=\sum_{i=0}^{\infty} a_{t-i}=\sum_{i=0}^{\infty} \psi_{i} a_{t-i}
$$

where $\psi_{i}=1$ for all i. Thus, ψ_{i} does not converge to zero. The effect of any shock is permanent.

Random walk with drift

- Form: $p_{t}=\mu+p_{t-1}+a_{t}, \quad \mu \neq 0$.
- Has a unit root
- Nonstationary
- Strong memory
- Has a time trend with slope μ. Why?

differencing

- 1st difference: $r_{t}=p_{t}-p_{t-1}$

If p_{t} is the \log price, then the 1 st difference is simply the \log return. Typically, 1st difference means the "change" or "increment" of the original series.

- Seasonal difference: $y_{t}=p_{t}-p_{t-s}$, where s is the periodicity, e.g. $s=4$ for quarterly series and $s=12$ for monthly series.

If p_{t} denotes quarterly earnings, then y_{t} is the change in earning from the same quarter one year before.

Meaning of the constant term in a model

- MA model: mean
- AR model: related to mean
- 1st differenced: time slope, etc.

Practical implication in financial time series
Example: Monthly log returns of General Electrics (GE) from 1926
to 1999 (74 years)
Sample mean: $1.04 \%, \operatorname{std}(\hat{\mu})=0.26$
Very significant!
is about 12.45% a year
$\$ 1$ investment in the beginning of 1926 is worth

- annual compounded payment: \$5907
- quarterly compounded payment: $\$ 8720$
- monthly compounded payment: $\$ 9570$
- Continuously compounded?

Unit-root test

Let p_{t} be the log price of an asset. To test that p_{t} is not predictable (i.e. has a unit root), two models are commonly employed:

$$
\begin{aligned}
& p_{t}=\phi_{1} p_{t-1}+e_{t} \\
& p_{t}=\phi_{0}+\phi_{1} p_{t-1}+e_{t} .
\end{aligned}
$$

The hypothesis of interest is $H_{o}: \phi_{1}=1$ vs $H_{a}: \phi_{1}<1$.
Dickey-Fuller test is the usual t-ratio of the OLS estimate of ϕ_{1} being 1. This is the DF unit-root test. The t-ratio, however, has a nonstandard limiting distribution.
Let $\Delta p_{t}=p_{t}-p_{t-1}$. Then, the augmented DF unit-root test for an $\operatorname{AR}(p)$ model is based on

$$
p_{t}=c_{t}+\beta p_{t-1}+\sum_{i=1}^{p-1} \phi_{i} \Delta p_{t-i}+e_{t} .
$$

The t-ratio of the OLS estimate of β is the ADF unit-root test statistic. Again, the statistic has a non-standard limiting distribution.
Example: Consider the log series of U.S. quaterly real GDP series from 1947.I to 2009.IV. (data from Federal Reserve Bank of St. Louis). See q-gdpc96. txt on the course web.

R demonstration

```
> library(fUnitRoots)
> help(UnitrootTests) % See the tests available
>da=read.table(''q-gdpc96.txt'', header=T)
>gdp=log(da[,4])
> adfTest(gdp,lag=4,type=c("c")) #Assume an AR(4) model for the series.
Title: Augmented Dickey-Fuller Test
```

```
Test Results:
    PARAMETER:
        Lag Order: 4
    STATISTIC:
        Dickey-Fuller: -1.7433
    P VALUE:
        0.4076 # cannot reject the null hypothesis of a unit root.
*** A more careful analysis
> x=diff(gdp)
> ord=ar(x) # identify an AR model for the differenced series.
> ord
Call:ar(x = x)
Coefficients:
    1 2 3
    0.3429 0.1238 -0.1226
Order selected 3 sigma^2 estimated as 8.522e-05
> # An AR(3) for the differenced data is confirmed.
    # Our previous analysis is justified.
```

Discussion: The command arima on R.

1. Dealing with the constant term. If there is any differencing, no constant is used.

The subcommand include.mean $=\mathrm{T}$ in the arima command.
2. Fixing some parameters. Use subcommand fixed in arima. See the unemployment rate series used in AR modeling.

Exponential Smoothing Approach

Suppose the available data are $r_{t}, r_{t-1}, r_{t-2}, \cdots$ and we are interested in predicting r_{t+1}.

Intuition: The data r_{t} should be more relevant than r_{t-1} in predicting r_{t+1}. Similarly, r_{t-1} is more relevant than r_{t-2}, etc.
A simple formulation: Suppose we assign weight w to r_{t}, weight $w \theta$ with $0<\theta<1$ to r_{t-1}, weight $w \theta^{2}$ to the data r_{t-2}, etc. That is, we use an initial weight w and a discounting factor θ.
Simple fact: The weight must sum to 1. Why? Not to change the scale. Therefore,

$$
\begin{aligned}
1 & =w+w \theta+w \theta^{2}+w \theta^{3}+\cdots \\
& =w\left[1+\theta+\theta^{2}+\theta^{3}+\cdots\right] \\
& =\frac{w}{1-\theta} .
\end{aligned}
$$

Therefore, $w=1-\theta$. Consequently, the 1 -step ahead prediction of r_{t+1} is
$r_{t}(1)=(1-\theta) r_{t}+(1-\theta) \theta r_{t-1}+(1-\theta) \theta^{2} r_{t-2}+(1-\theta) \theta^{3} r_{t-3}+\cdots$.
Let a_{t+1} be the forecast error (or the innovation at time $t+1$), then we have

$$
\begin{equation*}
r_{t+1}=r_{t}(1)+a_{t+1} . \tag{3}
\end{equation*}
$$

Now, suppose we have data r_{t-1}, r_{t-2}, \cdots and are interested in forecasting one step a head. The same argument shows that

$$
\begin{equation*}
r_{t-1}(1)=(1-\theta) r_{t-1}+(1-\theta) \theta r_{t-2}+(1-\theta) \theta^{2} r_{t-3}+\cdots . \tag{4}
\end{equation*}
$$

Next, using Equation (2), we have

$$
\begin{aligned}
r_{t}(1) & =(1-\theta) r_{t}+\theta\left[(1-\theta) r_{t-1}+(1-\theta) \theta r_{t-2}+(1-\theta) \theta^{2} r_{t-3}+\cdots\right] \\
& =(1-\theta) r_{t}+\theta r_{t-1}(1) . \quad[\text { see Equation (4) }] .
\end{aligned}
$$

Putting the prior result into Equation (3), we obtain

$$
\begin{aligned}
r_{t+1} & =(1-\theta) r_{t}+\theta r_{t-1}(1)+a_{t+1} \\
& =r_{t}-\theta\left[r_{t}-r_{t-1}(1)\right] \\
& =r_{t}-\theta a_{t}+a_{t+1}
\end{aligned}
$$

In the above, we have use $r_{t}=r_{t-1}(1)+a_{t}$. Consequently, the exponential smoothing model is

$$
r_{t+1}-r_{t}=a_{t+1}-\theta a_{t},
$$

which is an $\operatorname{ARIMA}(0,1,1)$ model and can be written as

$$
(1-B) r_{t}=(1-\theta B) a_{t} .
$$

This shows that the exponential smoothing method is simply using an $\operatorname{ARIMA}(0,1,1)$ model with a positive θ, which is the discounting factor.
Updating: For a given discounting rate θ, it is easy to update the forecast via the exponential smoothing method, because

$$
r_{t}(1)=(1-\theta) r_{t}+\theta r_{t-1}(1),
$$

which means the new prediction is simply a weighted average of the new data r_{t} and the previous forecast $r_{t-1}(1)$. The weights are simply the initial weight and the discounting factor, respectively.

