Lecture 11: Multivariate Volatility Modeling

Outline

11.1 Basic Concepts
11.2 Two Simple Models (EWMA \& BEKK)
11.3 Dynamic Conditional Correlation (DCC) Models
11.4 Copula-Based Models
11.5 Examples
11.6 VaR and ES via Multivariate Modeling

11.1 Basic Concepts

How do the correlations between asset returns change/evolve over time?

- Focus on two asset return series for ease of demonstration:

$$
\boldsymbol{r}_{t}=\left[\begin{array}{l}
r_{1, t} \\
r_{2, t}
\end{array}\right]
$$

- In general: \boldsymbol{r}_{t} is of dimension k.
- Data: $\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{T}$.
- F_{t-1} : the information set up to time $t-1$.
- Partion \boldsymbol{r}_{t} as:

$$
\boldsymbol{r}_{t}=\boldsymbol{\mu}_{t}+\boldsymbol{a}_{t}, \quad \boldsymbol{a}_{t}=\Sigma_{t}^{1 / 2} \boldsymbol{\epsilon}_{t}, \quad \boldsymbol{\epsilon}_{t} \sim\left(\mathbf{0}, I_{k}\right)
$$

where

$$
\begin{aligned}
& \boldsymbol{\mu}_{t}=\mathbb{E}\left(\boldsymbol{r}_{t} \mid F_{t-1}\right)=\left[\begin{array}{l}
\mu_{1, t} \\
\mu_{2, t}
\end{array}\right]=\text { conditional mean } \\
& \Sigma_{t}=\operatorname{Cov}\left(\boldsymbol{a}_{t} \mid F_{t-1}\right)=\left[\begin{array}{ll}
\sigma_{11, t} & \sigma_{12, t} \\
\sigma_{21, t} & \sigma_{22, t}
\end{array}\right]=\text { conditional covariance }
\end{aligned}
$$

- Concisely: $\boldsymbol{r}_{t} \mid F_{t-1} \sim\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$.
- Restrictions: none on $\boldsymbol{\mu}_{t}$, but Σ_{t} must be symmetric and positive definite (for all t):

$$
\sigma_{12, t}=\sigma_{21, t}, \quad \sigma_{11, t}>0, \quad \sigma_{22, t}>0, \quad \sigma_{11, t} \sigma_{22, t}-\sigma_{12, t}^{2}>0
$$

- Dynamic (conditional) correlation between $\boldsymbol{r}_{1, t}$ and $\boldsymbol{r}_{2, t}$:

$$
\rho_{12, t}=\frac{\sigma_{12, t}}{\sqrt{\sigma_{11, t} \sigma_{22, t}}}
$$

- Complications about Σ_{t} :
(i) positive definite requirement is difficult to enforce;
(ii) computational burden increases rapidly with k since there are $k(k+1) / 2$ independent components (curse of dimensionality).
- Additional decompositions:
- Let $V_{t}=\operatorname{Diag}\left(\sqrt{\sigma_{11, t}}, \ldots, \sqrt{\sigma_{k k, t}}\right)$ be the diagonal matrix consisting of just the diagonal elements of Σ_{t}. E.g., when $k=2$ we have:

$$
V_{t}=\left[\begin{array}{cc}
\sqrt{\sigma_{11, t}} & 0 \\
0 & \sqrt{\sigma_{22, t}}
\end{array}\right] .
$$

- Let $R_{t}=\left[\rho_{i j, t}\right]$ be the conditional correlation matrix, so that:

$$
\Sigma_{t}=V_{t} R_{t} V_{t}, \quad \text { and } \quad R_{t}=V_{t}^{-1} \Sigma_{t} V_{t}^{-1}
$$

- Coverage: Ch. 10 of Tsay's AFTS (2010), and Ch. 7 of Tsay's MTS (2014). These both rely on the R package MTS.

11.2 Simple Models

Starting from the WN residuals:

$$
\hat{\boldsymbol{a}}_{t}=\left[\begin{array}{c}
\hat{a}_{1, t} \tag{1}\\
\vdots \\
\hat{a}_{k, t}
\end{array}\right]=\boldsymbol{r}_{t}-\hat{\boldsymbol{\mu}}_{t}
$$

where the conditional mean can be estimated via, e.g., a VAR model, we can fit the following (simple) models to capture the volatility Σ_{t}.

EWMA. A crude estimate of Σ_{t} is to use the (unconditional) empirical covariance estimate of the innovations:

$$
\begin{equation*}
\widehat{\Sigma}_{t}=\frac{1}{t-1} \sum_{i=1}^{t-1} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\prime} \tag{2}
\end{equation*}
$$

which assigns equal weight of $1 /(t-1)$ to all observations. The exponentially weighted moving average (EWMA) model, improves on this by using a weighted combination of the latest observations and the previous estimate:

$$
\widehat{\Sigma}_{t}=(1-\lambda) \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\prime}+\lambda \widehat{\Sigma}_{t-1}
$$

where $0<\lambda<1$. Iterating this leads to the infinite sum representation:

$$
\widehat{\Sigma}_{t}=(1-\lambda) \sum_{i=1}^{\infty} \lambda^{i-1} \boldsymbol{a}_{t-i} \boldsymbol{a}_{t-i}^{\prime}
$$

In order to estimate λ, we assume $\boldsymbol{a}=\boldsymbol{r}_{t}-\boldsymbol{\mu}_{t} \sim N\left(\mathbf{0}, \Sigma_{t}\right)$, and maximize this Gaussian likelihood (a function of λ and the parameters in $\boldsymbol{\mu}_{t}$.) The function EWMAvol can be used for this.

BEKK. Introduced by Engle and Kroner (1995); tries to mimic a $\operatorname{GARCH}(m, s)$, but the curse of dimensionality prevents its usage beyond the simple $m=1=s$ case, so that the $\operatorname{BEKK}(1,1)$ model is:

$$
\Sigma_{t}=A_{0} A_{0}^{\prime}+A_{1}\left(\boldsymbol{a}_{t-1} \boldsymbol{a}_{t-1}^{\prime}\right) A_{1}^{\prime}+B_{1} \Sigma_{t-1} B_{1}^{\prime}
$$

where A_{0} is a lower triangular matrix, and A_{1} and B_{1} are unrestricted square matrices.

Summary Remarks:

- Pros: positive definite.
- Cons: Many parameters; dynamic relations require further study.
- Estimation: quasi-MLE (QMLE) similar to GARCH; can use function BEKK11 ($k=2$ and $k=3$ dimensional cases only).

11.3 Dynamic Conditional Correlation (DCC) Models

These are the most popular models, and involve a three-step process. We start once again from the WN residuals in (1).

Step 1. Fit a univariate GARCH to each component residual series $\left\{\hat{a}_{i, t}\right\}$ in order to obtain the volatility estimate $\hat{\sigma}_{i i, t}$, and compute the standardized innovations:

$$
\hat{\eta}_{i, t}=\hat{a}_{i, t} / \sqrt{\hat{\sigma}_{i i, t}} .
$$

As vectors, we then have:

$$
\hat{\boldsymbol{\eta}}_{t}=\widehat{V}_{t}^{-1} \hat{\boldsymbol{a}}_{t}, \quad \text { and } \quad \hat{\boldsymbol{a}}_{t}=\widehat{V}_{t} \hat{\boldsymbol{\eta}}_{t} .
$$

Step 2. Use a joint dependence model on $\hat{\boldsymbol{\eta}}_{t}$ to capture the time evolution of the conditional correlation R_{t} of $\hat{\boldsymbol{a}}_{t}$ (and ultimately the evolution of $\Sigma_{t}=V_{t} R_{t} V_{t}$). Let $\boldsymbol{\theta}$ denote the parameters of this model.

Step 3. With $\ell_{t}(\boldsymbol{\theta})$ the \log of the pdf of $\hat{\boldsymbol{\eta}}_{t}$, estimate $\boldsymbol{\theta}$ by maximizing the (conditional) log-likelihood:

$$
\ell(\boldsymbol{\theta})=\sum_{t=1}^{T} \ell_{t}(\boldsymbol{\theta})
$$

A sensible choice for the pdf of $\boldsymbol{\eta}_{t}$ is a multivariate t_{ν}. The pdf of $\boldsymbol{x} \sim t_{\nu}(\boldsymbol{\mu}, \Sigma)$, where $\boldsymbol{\mu}$ and Σ are location and scale parameters, is proportional to:

$$
f_{\nu}(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma) \propto|\Sigma|^{-1 / 2}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{\nu}\right]^{-(k+\nu) / 2}
$$

If the degrees of freedom $\nu>2$, then:

$$
\mathbb{E}(\boldsymbol{x})=\boldsymbol{\mu}, \quad \text { and } \quad \mathbb{V}(\boldsymbol{x})=\frac{\nu}{\nu-2} \Sigma
$$

However, since $\boldsymbol{\eta}_{t}$ is standardized,

$$
\mathbb{E}\left(\boldsymbol{\eta}_{t}\right)=\mathbf{0}, \quad \text { and } \quad \mathbb{V}\left(\boldsymbol{\eta}_{t}\right)=R_{t}
$$

we should use the t_{ν}^{*}, a standard t_{ν} whose pdf is proportional to:

$$
f_{\nu}^{*}\left(\boldsymbol{\eta}_{t} ; \boldsymbol{\mu}_{t}=\mathbf{0}, \Sigma_{t}=R_{t}\right) \propto\left|R_{t}\right|^{-1 / 2}\left[1+\frac{\boldsymbol{\eta}_{t}^{\prime} R_{t}^{-1} \boldsymbol{\eta}_{t}}{\nu-2}\right]^{-(k+\nu) / 2}
$$

For modeling R_{t}, three types of DCC are available in the literature.
(i) Engle (2002). Let $W_{t}=\operatorname{Diag}\left(\sqrt{Q_{11, t}}, \ldots, \sqrt{Q_{k k, t}}\right)$ be a diagonal matrix whose elements are taken from those of Q_{t}, defined recursively as:

$$
\begin{aligned}
Q_{t} & =\left(1-\theta_{1}-\theta_{2}\right) R_{0}+\theta_{1} Q_{t-1}+\theta_{2} \boldsymbol{\eta}_{t-1} \boldsymbol{\eta}_{t-1}^{\prime} \\
R_{t} & =W_{t}^{-1} Q_{t} W_{t}^{-1}
\end{aligned}
$$

where $0 \leq \theta_{i}$ and $\theta_{1}+\theta_{2}<1$, and R_{0} is the sample correlation matrix of the $\left\{\hat{\boldsymbol{\eta}}_{t}\right\}$.
(ii) Tse and Tsui (2002). Define R_{t} recursively as:

$$
R_{t}=\left(1-\theta_{1}-\theta_{2}\right) R_{0}+\theta_{1} R_{t-1}+\theta_{2} \Psi_{t-1}
$$

where the θ_{i} and R_{0} are as above, and Ψ_{t-1} is the (local) sample correlation matrix of $\left\{\boldsymbol{a}_{t-1}, \ldots, \boldsymbol{a}_{t-m}\right\}$ for a pre-specifed positive integer $m>k$ (acts as a smoothing parameter, larger m give smoother correlations).
(iii) Van der Weide (2003). Decompose $R_{t}=X_{t}^{\prime} X_{t}$, where X_{t} is an upper triangular matrix parametrized in terms of sines and cosines of a vector of angles $\boldsymbol{\theta}_{t}$ evolving via a DCC-type equation:

$$
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{0}+\lambda_{1} \boldsymbol{\theta}_{t-1}+\lambda_{2} \boldsymbol{\theta}_{t-1}^{*},
$$

where $\boldsymbol{\theta}_{t-1}^{*}$ is a local estimate of the angles using data $\left\{\hat{\boldsymbol{\eta}}_{t-1}, \ldots, \hat{\boldsymbol{\eta}}_{t-m}\right\}$ for some $m>1$, the λ_{i} are non-negative numbers satisfying $0<\lambda_{1}+\lambda_{2}<1$, and $\boldsymbol{\theta}_{0}$ denotes the initial values of the angles.

Summary Remarks:

- For the univariate GARCH fits in Step 1: use function dccPre.
- DCC models are extremely simple with only two parameters to estimate. The function dccFit allows the fitting of models in (i)-(ii), while the model in (iii) can be fitted via mtCopula (in the context of copula models to be discussed next).
- Goodness of fit checks tend to reject DCC models. The function MCHdiag carries out 4 portmanteau tests to diagnose the fit.

11.4 Copula-Based Models

Copulas: Tools for modeling the (joint) dependence structure among $k \geq 2$ random variables; from the Latin copulare (to connect or join). Thus the copula connects the marginals into a joint distribution.

Def: A k-dimensional copula is a function:

$$
C\left(u_{1}, \ldots, u_{k}\right):[0,1]^{k} \mapsto[0,1]
$$

which is a k-dimensional cdf with $\operatorname{Unif}[0,1]$ marginals: U_{1}, \ldots, U_{k}.
Key Idea $(k=2)$: For any r.v.s $X_{i}=F_{i}^{-1}\left(U_{i}\right)$, where $U_{i} \sim \operatorname{Unif}[0,1]$ and F_{i}^{-1} is the (generalized) inverse cdf of X_{i}, then

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) & =P\left(F_{1}^{-1}\left(U_{1}\right) \leq x_{1}, F_{2}^{-1}\left(U_{2}\right) \leq x_{2}\right) \\
& =P\left(U_{1} \leq F_{1}\left(x_{1}\right), U_{2} \leq F_{2}\left(x_{2}\right)\right):=C\left(u_{1}, u_{2}\right)
\end{aligned}
$$

where $u_{1}=F_{1}\left(x_{1}\right)$ and $u_{2}=F_{2}\left(x_{2}\right)$. Thus $C\left(u_{1}, u_{2}\right)$ describes the dependence structure between X_{1} and X_{2}, stripped of the marginals, w.r.t. standard uniforms (which comprise the reference distribution). Since $C\left(u_{1}, u_{2}\right)$ is invariant to the marginals, it can be used to connect any two marginals.

Sklar's Theorem ($k=2$ case): Let $F\left(x_{1}, x_{2}\right)$ be a 2 -dim cdf with marginals $F_{1}\left(x_{1}\right)$ and $F_{2}\left(x_{2}\right)$. Then there exists a copula $C\left(u_{1}, u_{2}\right)$ such that $F\left(x_{1}, x_{2}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right)$, and it's unique if $F\left(x_{1}, x_{2}\right)$ is continuous. Conversely, if $C(\cdot, \cdot)$ is a copula and F_{1} and F_{2} are univariate cdf's, then the function $C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right)$ is a joint cdf with marginals F_{1} and F_{2}.

Note: The main consequence of Sklar's Theorem is that given $F\left(x_{1}, x_{2}\right)$, the underlying (implied) copula cdf (which always exists) is:

$$
C\left(u_{1}, u_{2}\right)=F\left(F_{1}^{-1}\left(u_{1}\right), F_{2}^{-1}\left(u_{2}\right)\right) .
$$

The corresponding copula pdf, which only exists if $C\left(u_{1}, u_{2}\right)$ is differentiable, is:

$$
c\left(u_{1}, u_{2}\right)=\frac{\partial^{2} C\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}}
$$

Bounds on Copulas: Recalling that for $U \sim \operatorname{Unif}[0,1], F(u)=u I(0 \leq u \leq 1)$, we have the following bounds, which can be visualized as surfaces in the unit hypercube, and equated with degrees of independence:

- Independence (U_{1} and U_{2} are unrelated): If U_{1} and U_{2} are independent, then

$$
C\left(u_{1}, u_{2}\right)=P\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}\right)=P\left(U_{1} \leq u_{1}\right) P\left(U_{2} \leq u_{2}\right)=u_{1} u_{2}
$$

- Comonotonic (U_{1} and U_{2} are the same): If U_{1} and U_{2} are the same, $U_{1}=U_{2} \equiv U$, so that:

$$
C\left(u_{1}, u_{2}\right)=P\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}\right)=P\left(U \leq u_{1}, U \leq u_{2}\right)=P\left(U \leq \min \left(u_{1}, u_{2}\right)\right)=\min \left(u_{1}, u_{2}\right) .
$$

- Countermonotonic (U_{1} and U_{2} are opposite): If U_{1} and U_{2} are the opposite, $U_{2}=1-U_{1}$, so that:

$$
\begin{aligned}
C\left(u_{1}, u_{2}\right) & =P\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}\right)=P\left(U \leq u_{1}, 1-U \leq u_{2}\right)=P\left(U \leq u_{1}, U \geq 1-u_{2}\right) \\
& = \begin{cases}u_{1}+u_{2}-1, & u_{1}+u_{2}>1 \\
0, & u_{1}+u_{2} \leq 1\end{cases}
\end{aligned}
$$

Here we explore a copula-based model for the joint dependence of $\hat{\eta}_{i, t}$ in order to capture the time evolution of R_{t} in Step 2 of $\S 11.3$. Denote by $f_{\nu, R}^{*}(\boldsymbol{x})$ the standard t_{ν} pdf as above, which is proportional to:

$$
f_{\nu, R}^{*}(\boldsymbol{x}) \propto|R|^{-1 / 2}\left[1+\frac{\boldsymbol{x}^{\prime} R^{-1} \boldsymbol{x}}{\nu-2}\right]^{-(k+\nu) / 2}
$$

and let $f_{\nu}^{*}(x) / F_{\nu}^{*}(x)$ denote the pdf/cdf of a univariate standard t_{ν}. If the data are $\boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right)^{\prime}$, then the pdf of the (std.) t-copula evaluated at $\boldsymbol{u} \in[0,1]^{k}$ is:

$$
c_{\nu, R}^{t}(\boldsymbol{u})=\frac{f_{\nu, R}^{*}(\boldsymbol{x})}{\prod_{i=1}^{k} f_{\nu}^{*}\left(x_{i}\right)}, \quad \text { where } \quad x_{i}=F_{\nu}^{*-1}\left(u_{i}\right) .
$$

Now maximize this copula likelihood for the standardized innovations, i.e., set $x_{i}=\hat{\eta}_{i, t}$, and use a model for the time evolution of $R \equiv R_{t}$. One of the DCC models could be used here, but the function mtCopula fits a t-copula by parametrizing R_{t} via angles, and the angles evolve via a DCC-type equation.

Note: This t-copula likelihood is not multvariate t; it's called a meta- t_{ν}.
Ex: The left panels of Figure 1 display lag 1 scatterplots $\left(Z_{t-1}, Z_{t}\right)$, for 10,000 simulated values from $Z_{t} \sim \operatorname{ARCH}(1)$ with $\alpha_{0}=1$ and $\alpha_{1}=0.5$ (top panel), and from $Z_{t} \sim \operatorname{GARCH}(1,1)$ with $\alpha_{0}=1, \alpha_{1}=0.1$, and $\beta_{1}=0.8$ (bottom panel). The right panels are nonparametric estimates of the corresponding implied copula densities.

Empirical (beta) copula density for ARCH(1) @ lag 1

Empirical (beta) copula density for $\operatorname{GARCH}(1,1) @$ lag 1

Figure 1: ARCH and GARCH implied copula illustration.

11.5 Examples

Example 1: (Example 7.7.2 in MTS, Tsay, 2014) Dataset m-ibmspko-6111.txt contains the monthly values of IBM stock, S\&P composite index, and Coca Cola stock, from January 1961 to December 2011. After converting to \log returns, we fit the multivariate $t_{\nu} \mathrm{DCC}$ model of $\S 11.3$. (Fig. 2 shows the resulting pairwise R_{t}.)

```
> da=read.table("m-ibmspko-6111.txt",header=T)
> rtn=log(da[,2:4]+1)
> m1=dccPre(rtn,include.mean=T,p=0)
Sample mean of the returns: 0.00772774 0.005023909 0.01059521
Component: 1
Estimates: 0.000419 0.126739 0.788307
se.coef : 0.000162 0.035405 0.055645
t-value : 2.593448 3.57973 14.16662
Component: 2
Estimates: 9e-05 0.127725 0.836053
se.coef : 4.1e-05 0.03084 0.031723
t-value : 2.20126 4.141592 26.35486
Component: 3
Estimates: 0.000256 0.098705 0.830358
se.coef : 8.5e-05 0.022361 0.033441
t-value : 3.0153214.414112 24.83088
> names(m1)
[1] "marVol" "sresi" "est" "se.coef"
> rtn1=m1$sresi
> Vol=m1$marVol
> m2=dccFit(rtn1)
Estimates: 0.8088086 0.04027318 7.959013
st.errors: 0.1491655 0.02259863 1.135882
t-values: 5.422222 1.782107 7.006898
> names(m2)
[1] "estimates" "Hessian" "rho.t"
> S2.t = m2$rho.t
> m3=dccFit(rtn1,type="Engle")
Estimates: 0.9126634 0.04530917 8.623668
st.errors: 0.0294762 0.01273911 1.332381
t-values: 30.96272 3.556697 6.472376
> S3.t=m3$rho.t
> MCHdiag(rtn1,S2.t)
Test results:
Q(m) of et:
Test and p-value: 20.74262 0.02296152
Rank-based test:
```

Test and p-value: 30.206620 .0007924436
Qk(m) of epsilon_t:
Test and p-value: 132.4230 .002425885
Robust Qk(m):
Test and p-value: 109.96710 .0750157
> MCHdiag(rtn1,S3.t)
Test results:
Q(m) of et:
Test and p-value: 20.029580 .02897411
Rank-based test:
Test and p-value: 27.616380 .002078829
Qk(m) of epsilon_t:
Test and p-value: 131.9820 .002625755
Robust Qk(m):
Test and p-value: 111.3530 .06307334

Figure 2: DCC model with t_{ν} for the 3 series: IBM, S\&P, Coke.

Example 2: (Example 7.5 in MTS, Tsay, 2014) Analyzes again m-ibmspko-6111.txt: the monthly values of IBM stock, S\&P composite index, and Coca Cola stock, from January 1961 to December 2011. Here we fit the meta- t_{ν} copula DCC model of $\S 11.4$ to the log returns, with the Van der Weide (2003) dynamic correlation structure. (Fig. 3 shows the individual volatility estimates, and pairwise R_{t}.)

```
> da=read.table("m-ibmspko-6111.txt",header=T)
> rtn=log(da[,-1]+1)
> m1=dccPre(rtn,cond.dist="std")
Sample mean of the returns: 0.00772774 0.005023909 0.01059521
Component: 1
Estimates: 0.000388 0.115626 0.805129 9.209269
se.coef : 0.000177 0.036827 0.059471 3.054817
t-value : 2.195398 3.139719 13.5382 3.014671
Component: 2
Estimates: 0.00012 0.130898 0.814531 7.274928
se.coef : 5.7e-05 0.037012 0.046044 1.913331
t-value : 2.102768 3.536655 17.69028 3.802232
Component: 3
Estimates: 0.000216 0.104706 0.837217 7.077138
se.coef : 8.9e-05 0.028107 0.037157 1.847528
t-value : 2.437323 3.725341 22.53208 3.830599
> names(m1)
[1] "marVol" "sresi" "est" "se.coef"
> Vol=m1$marVol; eta=m1$sresi
> m2=mtCopula(eta,0.8,0.04)
Lower limits: 5.1 0.2 1e-04 0.7564334 1.031269 0.8276595
Upper limits: 20 0.95 0.04999999 1.040096 1.417994 1.138032
estimates: }\quad15.38215 0.88189 0.034025 0.919724 1.225322 1.058445
std.errors: 8.222771 0.05117 0.011733 0.041357 0.055476 0.051849
t-values: 1.870677 17.2341 2.899996 22.23883 22.08729 20.41412
Alternative numerical estimates of se:
st.errors: 5.477764 0.051033 0.011714 0.041370 0.055293 0.050793
t-values: 2.808107 17.28091 2.904679 22.23173 22.16072 20.83839
> ### Estimate all parameters (including theta_0)
> names(m2)
[1] "estimates" "Hessian" "rho.t" "theta.t"
> MCHdiag(eta,m2$rho.t)
Test results:
Q(m) of et:
Test and p-value: 19.30177 0.03659304
Rank-based test:
Test and p-value: 27.03262 0.002573576
Qk(m) of epsilon_t:
Test and p-value: 125.9746 0.007387423
Robust Qk(m):
Test and p-value: 107.4675 0.1011374
```

> \#\#\# Restimate, but fix theta_0 (based on the sample correlations)
$>\mathrm{m} 3=\mathrm{mtCopula}(\mathrm{eta}, 0.8,0.04$,include.th0=F)
Value of angles:
[1] 0.94554181 .28908581 .0345744
Lower limits: 5.10 .2 1e-05
Upper limits: 200.950 .0499999
estimates: 14.874270 .87780 .03365157
std.errors: 7.9599680 .0530130 .011951
t-values: 1.86863516 .558242 .815811
Alternative numerical estimates of se:
st.errors: 5.495680 .05298960 .01191378
t-values: $2.7065416 .56551 \quad 2.824592$

Figure 3: Volatilities and DCC model with meta- t_{ν} copula for the 3 series: IBM, S\&P, Coke.

11.6 VaR and ES via Multivariate Modeling

From our k-dim volatility models:

$$
\boldsymbol{r}_{t}=\boldsymbol{\mu}_{t}+\boldsymbol{a}_{t}, \quad \boldsymbol{a}_{t}=\Sigma_{t}^{1 / 2} \boldsymbol{\epsilon}_{t}, \quad \boldsymbol{\epsilon}_{t} \sim\left(\mathbf{0}, I_{k}\right)
$$

so that conditionally on $F_{t-1}: \boldsymbol{r}_{t} \sim\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$. Thus, for a portfolio $z_{t}=\boldsymbol{w}^{\prime} \boldsymbol{\mu}_{t}$, where the weights vector $\boldsymbol{w}^{\prime}=\left(w_{1}, \ldots, w_{k}\right)$ is composed of deterministic elements, the conditional mean and variance of z_{t} are:

$$
z_{t} \mid F_{t-1} \sim\left(\boldsymbol{w}^{\prime} \boldsymbol{\mu}_{t}, \boldsymbol{w}^{\prime} \Sigma_{t} \boldsymbol{w}\right)
$$

Most common cases are when \boldsymbol{r}_{t} is (conditionally) normal or t (both members of the Elliptically Contoured family of distributions).

- Conditionally Normal: If $\boldsymbol{r}_{t} \sim \mathrm{~N}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$, then

$$
z_{t} \sim \mathrm{~N}\left(\boldsymbol{w}^{\prime} \boldsymbol{\mu}_{t}, \boldsymbol{w}^{\prime} \Sigma_{t} \boldsymbol{w}\right)
$$

- Conditionally t_{ν}^{*} : If $\boldsymbol{r}_{t} \sim t_{\nu}^{*}\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)$, a standard t_{ν} with (conditional) mean and variance $\boldsymbol{\mu}_{t}$ and Σ_{t} $(\nu \geq 3)$, then

$$
z_{t} \sim t_{\nu}^{*}\left(\boldsymbol{w}^{\prime} \boldsymbol{\mu}_{t}, \boldsymbol{w}^{\prime} \Sigma_{t} \boldsymbol{w}\right)
$$

Proofs: These equations follow from the fact that (conditionally):

$$
\boldsymbol{\eta}_{t}=V_{t}^{-1} \boldsymbol{a}_{t} \sim\left(\mathbf{0}, R_{t}\right) \quad \Longrightarrow \quad \boldsymbol{a}_{t}=V_{t} \boldsymbol{\eta}_{t} \sim\left(\mathbf{0}, V_{t} R_{t} V_{t}^{\prime}=\Sigma_{t}\right) \quad \Longrightarrow \quad \boldsymbol{r}_{t}=\boldsymbol{\mu}_{t}+\boldsymbol{a}_{t} \sim\left(\boldsymbol{\mu}_{t}, \Sigma_{t}\right)
$$

These results can now be applied using the univariate formulas for VaR and ES from Lecture 9, given forecasts for $\boldsymbol{\mu}_{t}$ and Σ_{t} (e.g., 1-step ahead). While forecasts of $\boldsymbol{\mu}_{t}$ are straightforward (e.g., from a fitted VAR), the forecasts for Σ_{t} are more tricky....

For the Tse and Tsui (2002) model, the forecasts of R_{t} are similar to AR/ARCH:

$$
R_{t}=\left(1-\theta_{1}-\theta_{2}\right) R_{0}+\theta_{1} R_{t-1}+\theta_{2} \Psi_{t-1} \quad \Longrightarrow \quad R_{t+1}=\left(1-\theta_{1}-\theta_{2}\right) R_{0}+\theta_{1} R_{t}+\theta_{2} \Psi_{t}
$$

Since $\left\{R_{0}, R_{t}, \Psi_{t}\right\} \in F_{t}$, the best 1-step predictor follows the model:

$$
\hat{R}_{t}(1)=\mathbb{E}\left(R_{t+1} \mid F_{t}\right)=\left(1-\theta_{1}-\theta_{2}\right) R_{0}+\theta_{1} R_{t}+\theta_{2} \Psi_{t}
$$

and similarly for multi-step predictors.

