
Lecture 10: Multiple Time Series (MTS)

Outline

10.1 Basic Concepts

10.2 VAR Models

10.3 Co-integration and VECM

10.4 Pairs Trading

10.1 MTS Basic Concepts

Reference: Chapters 8 and 10 of AFTS.
We shall focus on two series (i.e., the bivariate case):

� Focus on two asset return series for ease of demonstration:

Xt =

[
x1,t

x2,t

]
� Data: x1, . . . ,xT .

� Examples:

(a) US quarterly GDP and unemployment rate. (See Fig 1.)

(b) Daily closing prices of oil related ETFs, e.g., oil services holdings (OIH) and energy select
section SPDR (XLE).

(c) Quarterly GDP grow rates of Canada, United Kingdom, and United States.

Why consider two series jointly?

� model the relationship between the series;

� improve the accuracy of forecasts (use more information).
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Figure 1: US Quarterly GDP and Unemployment (1948–2004).
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Weak stationarity:

Both

E(Xt) =

[
E(x1,t)
E(x2,t)

]
= µ

and

Cov(Xt,Xt−h) =

[
Cov(x1,t, x1,t−h) Cov(x1,t, x2,t−h)
Cov(x2,t, x1,t−h) Cov(x2,t, x2,t−h)

]
=

[
Γ11(h) Γ12(h)
Γ21(h) Γ22(h)

]
= Γh

are time invariant.
Note: Γh is not symmetric if h ̸= 0. E.g., consider Γ1:

� Γ12(1) = Cov(x1,t, x2,t−1) =⇒ x1,t depends on past of x2,t

� Γ21(1) = Cov(x2,t, x1,t−1) = Γ12(−1) =⇒ x2,t depends on past of x1,t

Cross-Correlation matrix:

Define the diagonal matrix D

D =

[√
V(x1,t) 0

0
√

V(x2,t)

]
=

[√
Γ11(0) 0

0
√
Γ22(0)

]
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The cross-correlation matrix at lag h is then defined as:

ρh = D−1ΓhD
−1

Thus ρij(h) is the cross-correlation between xi,t and xj,t−h.
From stationarity:

Γh = Γ′
−h and ρh = ρ′

−h

E.g., cor(x1,t, x2,t−1) = cor(x2,t, x1,t+1).

Testing for serial dependence:

Multivariate version of Ljung-Box Q(m) statistics are available to test:

H0 : ρ1 = · · · = ρm = 0, vs. Ha : ρi = 0, for some i.

For a series xt of dimension k, use the test statistic:

Q(m) = T 2

m∑
h=1

1

T − h
tr
(
Γ̂′
hΓ̂

−1
0 Γ̂hΓ̂

−1
0

)
∼ χ2(mk2), under H0.

Analysis with R

Use the package MTS. Some useful commands are:

(a) MTSplot: draws a multiple time series plot;

(a) ccm: computes the cross-correlation matrices;

(a) mq: computes the Ljung-Box statistics.
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Example 1. Consider the quarterly series of US GDP and unemployment data:

> require(MTS)

> x=read.table("q-gdpun.txt",header=T)

> x[1,]

year mon day gdp unemp

1948 1 1 7.3878 3.7333

> z=x[,4:5]

> MTSplot(xt)

> ### Examine differenced series

> dz=diffM(z)

> MTSplot(dz)

> mq(zt,lag=5)

Ljung-Box Statistics:

m Q(m) df p-value

[1,] 1 105 4 0

[2,] 2 153 8 0

[3,] 3 177 12 0

[4,] 4 196 16 0

[5,] 5 208 20 0

Figure 2: Differenced US Quarterly GDP and Unemployment (1948–2004).
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The differenced series are plausibly stationary, and there is strong evidence of serial correlation.
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####################################################################

> ### Examine correlations

> ccm(dz)

####################################################################

Figure 3: Autocorrelations and cross-correlations for the differenced GDP and Unemployment series.
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The differenced series have rapidly decaying ACFs consistent with ARMAs, and are most strongly
(negatively) cross-correlated at lag 0.
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10.2 Vector AutoRegressive (VAR) models

VAR(1) model for two return series:[
r1t
r2t

]
=

[
ϕ10

ϕ20

]
+

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
r1,t−1

r2,t−1

]
+

[
a1t
a2t

]
⇐⇒ rt = ϕ0 + Φrt−1 + at

where at = (a1t, a2t)
′ is a sequence of iid bivariate normal random vectors with mean zero and covariance

matrix

Cov(at) = Σ =

[
σ11 σ12

σ21 σ22

]
, where σ21 = σ12,

and is serially uncorrelated
Cov(at,at−h) = 0, for h ̸= 0.

That is, {at} is multivariate WN.

Granger causality

We can rewrite the VAR(1) model as:

r1t = ϕ10 + ϕ11r1,t−1 + ϕ12r2,t−1 + a1,t

r2t = ϕ20 + ϕ21r1,t−1 + ϕ22r2,t−1 + a2,t

so that in general r1t depends on lagged values of both r1t and r2t. But, if ϕ12 = 0 and ϕ21 ̸= 0, then we
have an example of a Granger causality relation:

� r1t does not depend on r2,t−1, but

� r2t does not depend on r1,t−1

implying that knowing r1,t−1 is helpful in predicting r2,t, but r2,t−1 is not helpful in forecasting r1,t. (We
say that r1,t Granger causes r2,t.)

Note: if σ12 = 0, then r1t and r2t are not concurrently correlated.

Stationarity condition

The VAR(1) model:
rt = ϕ0 + Φrt−1 + at

is stationary if all zeros of the polynomial |I − Φx| are greater than 1 in modulus, equivalently, if all
eigenvalues of Φ are smaller than 1 in modulus:

� if x solves |I − Φx| = 0 then |x| > 1

� if λ is an eigenvalue of Φ then |λ| < 1
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Moments

For the VAR(1) model:
rt = ϕ0 + Φrt−1 + at

� The mean is µ = (I − Φ)−1ϕ0, if the inverse exists.

� Using the MA(∞) representation

rt = ϕ0 +
∞∑
i=0

Φiat−i

the covariance function can be shown to be:

Cov(rt) =
∞∑
i=0

ΦiΣ(Φi)′

� This leads to the recursions (generalizes the AR(1)):

Γh = ΦΓh−1, h > 0, which implies Γh = ΦhΓ0

Building VAR Models

Let r1, . . . , rT be a sample from a model of dimension k.

(i) When p > 0 and q > 0 in a VARMA(p, q):

rt =

p∑
i=1

Φirt−i +

q∑
j=1

Θjat−j + at

the parameters are not identifiable (from covariance of process); additional condititons are needed.
For this reason one usually fits only a VAR(p) or a VMA(q), typically the former.

(ii) For a VAR(p), parameters can be estimated via either LSE or MLE. Fit models of increasing order:
VAR(ℓ), ℓ = 1, 2, . . ., and let Σ̂ℓ be the estimated residual covariance matrix:

– Under LSE, a test of VAR(ℓ− 1) vs. VAR(ℓ) is:

M(ℓ) = −(T − k − ℓ− 3/2) log
(
|Σ̂ℓ|/|Σ̂ℓ−1|

)
∼̇ χ2(k2)

– Under MLE, can use AIC or BIC:

AIC(ℓ) = log |Σ̂ℓ|+
2k2ℓ

T

BIC(ℓ) = log |Σ̂ℓ|+
k2ℓ log(T )

T

7



(iii) If {at} ∼ iid WN, then LSEs and MLEs are both asymptotically normal with the same limit-
ing distribution. Adequacy of fitted model can be tested by inspecting the residuals for serial
correlation:

ât = rt −
p∑

i=1

Φ̂irt−i

using the LB-statistic:

Qk(m) = T 2

m∑
i=1

1

T − i
tr
(
Â′

iÂ
−1
0 ÂiÂ

−1
0

)
∼̇ χ2((m− p)k2)

where

Âi =
1

T

T∑
t=i+1

âtâ
′
t−i

Note: Need to adjust df in the R function MTSdiag by setting the argument adj = d, where d is
the total number of non-zero coefficients in the fitted model (for a VAR(p) usually d = pk2).

Impulse Response Function (IRF)

Similar to univariate case, can write a VAR(p) as VMA(∞):

rt = µ+
∞∑
j=0

Ψjat−j, Ψ0 = I

where the {Ψj} are the IRF of rt, and Ψj is the effect of at on rt+j.

� Problem: interpretation of Ψj as the effect of at on rt+j is confounded because the elements of
at are serially correlated (recall V(at) = Σ).

� Solution: Choleski decompose Σ = LGL′, where L is lower triangular and G is diagonal, and
define the orthogonal innovations:

bt = L−1at, =⇒ V(bt) = L−1Σ(L−1)′ = G

so that

rt = µ+
∞∑
j=0

ΨjLL
−1at−j ≡ µ+

∞∑
j=0

Ψ∗
jbt−j

� Interpretation:
Ψ∗

ℓ(i, j) = impact of shock bj,t on return ri,t+ℓ

(But: this interpretation is somewhat arbitrary; depends on the ordering of the elements of rt. . . )

Example 2. Consider monthly log returns of IBM stock (r1,t) and the S&P 500 index (r2,t). BIC
suggests the VAR(1):

r1t = 1.06− 0.03r1,t−1 + 0.15r2,t−1 + a1,t

r2t = 0.41− 0.02r1,t−1 + 0.10r2,t−1 + a2,t

See Fig 8.7 in AFTS: since the dynamic dependence of the returns is weak, the IRFs exhibit simple
patterns and decay quickly. But: the top right panel shows a peak at lag 1; thus a shock (impulse) in
S&P 500 at time t has a maximum positive effect on IBM at time t+ 1.
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Example 3. Consider again the quarterly series of GDP and unemployment from Example 1. The
following code Illustrates model fitting, checking, prediction, and IRFs.

> require(MTS)

> x=read.table("Datasets/q-gdpun.txt",header=T)

> z=x[,4:5]

### plot the bivariate series

> MTSplot(z)

### find optimal VAR order

> VARorder(z, maxp = 13)

#selected order: aic = 4

#selected order: bic = 2

#selected order: hq = 3

### Fit VAR(2) and then refine it by omitting coeffs with t-ratio<1.96,

> m1=VAR(z, p = 2, output = T, include.mean = T)

> m2=refVAR(m1,thres=1.96)

### Check LB goodness of fit.

### Must adjust df by setting: adj=p*k^2 for a k-dim VAR(p).

### In general: adj is the number of non-zero VAR coeffts.

### Here: p=2=k implies adj=2^3=8, but one coef=0, so adj=7.

### All p-values low, so not a good fit...

> MTSdiag(m2, adj= 7)

### Forecast 3-steps ahead.

> VARpred(m2, h=3)

### Get irf’s and plot them manually (canned plot hard to control...)

### Summary: 1 unit change in GDP makes Unemp dip 3-4 quarters later.

> out=VARMAirf(m2$Phi,m2$Sigma)

> psi11=out$irf[1,]; psi21=out$irf[2,]; psi12=out$irf[3,]; psi22=out$irf[4,]

#pdf(file="Plots/GDP-Unemp.pdf", pointsize=12, paper="a4r",width=0,height=0)

> par(mfcol=c(2,2))

> x=seq(0, length(psi11)-1); miny=min(out$irf); maxy=max(out$irf)

> plot(x,psi11, type="l", ylab="IRF", xlab="lag", main="GDP:GDP", ylim=c(miny,maxy))

> plot(x,psi21, type="l", ylab="IRF", xlab="lag", main="Unemp:GDP", ylim=c(miny,maxy))

> plot(x,psi12, type="l", ylab="IRF", xlab="lag", main="GDP:Unemp", ylim=c(miny,maxy))

> plot(x,psi22, type="l", ylab="IRF", xlab="lag", main="Unemp:Unemp", ylim=c(miny,maxy))

> dev.off()

####################################################################

Fig. 4 (lower left panel): an impulse (unit increase) in GDP has a maximum (negative) effect in Unemp

4 time periods (1 year) later.
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Figure 4: IRF plot for US Quarterly GDP and Unemployment (1948–2004).
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10.3 Co-integration and VECM

Basic ideas:

� x1t and x2t are unit-root nonstationary;

� a linear combination of x1t and x2t is unit-root stationary.

That is, x1t and x2t share a single unit root!

Why is this of interest?

� A stationary series is mean reverting.

� Long term forecasts of the “linear” combination converge to a mean value, implying that the
long-term forecasts of x1t and x2t must be linearly related.

� This mean-reverting property has many applications, e.g., pairs trading in finance.
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Example 4. Consider the daily adjusted closing stock prices of BHP Billiton Limited of Australia and
Vale S.A. of Brazil. These are two natural resources companies. Both stocks are also listed in the New
York Stock Exchange with tick symbols BHP and Vale, respectively. The sample period is from July 1,
2002 to March 31, 2006. (See Fig 5.)

� What can be said about the two prices? Is there any arbitrage opportunity between the two funds?

� Both series have a unit root (based on ADF test). Are they co-integrated?

da=read.table("Datasets/d-bhp0206.txt",header=T)

da1=read.table("Datasets/d-vale0206.txt",header=T)

bhp=log(da[,9])

vale=log(da1[,9])

zt=10+scale(cbind(bhp,vale))

xt=seq(1:length(bhp))

plot(xt, zt[,1], lty=1, type="l", ylab="", xlab="time", lwd=2,

main="Time series plots: BHP and VALE")

lines(xt, zt[,2], lty=2, col="blue", lwd=2)

Figure 5: Daily adjusted closing stock prices of BHP and Vale stocks (adjusted to have the same mean).
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Co-integration tests

Several tests available, e.g., Johansen’s test (Johansen, 1988). To get the basic idea, let ∆xt = xt−xt−1,
and consider a univariate AR(2):

xt = ϕ1xt−1 + ϕ2xt−2 + at

Subtract xt−1 from both sides and rearrange terms to obtain:

∆xt = γxt−1 + ϕ∗
1∆xt−1 + at

where ϕ∗
1 = −ϕ2 and γ = ϕ1 + ϕ2 − 1.

Now, xt is unit-root nonstationary if and only if γ = 0. Testing that xt has a unit root is equivalent
to testing that γ = 0 in the above model. This extends to general AR(p) models.

Turn now to the VAR(p) case:

Xt = Φ1Xt−1 + · · ·+ ΦpXt−p + at

Letting Yt = Xt −Xt−1, subtract Xt−1 from both sides and re-group the coefficient matrices to rewrite
the model as:

Yt = ΠXt−1 +

p−1∑
i=1

Φ∗
iYt−i + at (1)

where:

Φ∗
p−1 = −Φp

Φ∗
p−2 = −Φp−1 − Φp

... =
...

Φ∗
1 = −Φ2 − · · · − Φp

Π = Φp + · · ·+ Φ1 − I

This is called a Vector Error-Correction Model (VECM).

Note: The matrix Π is a zero matrix if there is no co-integration.

Steps in testing for co-integration:

� Fit the model in equation (1),

� Test for the rank of Π.

If Xt is k-dimensional, and rank(Π) = m, then we have k−m unit roots in Xt, implying that there are
m linear combinations of Xt that are unit-root stationary. In this case, we can write:

Π = αβ′

where α and β are full-rank k ×m matrices. Furthermore:

� Wt = β′Xt is unit-root stationary,

� β is the co-integrating vector.
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Co-integration Notes ( *** done on board *** )

Implementation of co-integration tests (R package urca)

There are two types of co-integration test implemented in function ca.jo (both based on a likelihood
ratio test idea):

� maximal eigenvalue (type=’eigen’)

� trace (type=’trace’)

The tests require one to specify whether the underlying VAR(p) has a “constant” or “trend” (drift)
term:

Xt = µt + Φ1Xt−1 + · · ·+ ΦpXt−p + at

In function ca.jo , use following options:

� ecdet=’none’: if µt = 0 (no constant)

� ecdet=’const’: if µt = µ0 (constant)

� ecdet=’trend’: if µt = a+ bt (linear trend/drift)

(Usage of ecdet=’const’ is generally recommended.)

Fitting and forecasting a VECM (R package tsDyn)

The most general form of a VECM is:

Yt = µt +ΠXt−1 +

p−1∑
i=1

Φ∗
iYt−i + at

Function VECM can be used to fit this general VECM. Use the following options:

� include=’none’: if µt = 0 (no constant)

� include=’const’: if µt = µ0 (constant)

� include=’trend’: if µt = a+ bt (linear trend/drift)

(There are also restricted forms of ’const’ and ’trend’, but these don’t seem to be implemented...)

After fitting, use function forecast to predict a VECM.
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10.4 Pairs Trading

General idea: sell overvalued securities and buy undervalued ones, but the true value of the security is
hard to determine in practice! Pairs trading attempts to resolve this difficulty by using relative pricing.
Basically, if two securities have similar characteristics, then the prices of both securities must be more
or less the same. Here the true price is not important.

Statistical concepts: the prices behave like a random-walk, but a linear combination of them is
stationary (and hence mean-reversting). Deviations from the mean lead to trading opportunities.

Theory in Finance (Arbitrage Pricing Theory, or APT): If two securities have exactly the
same risk factor exposures, then the expected returns of the two securities over a given time period are
the same. (The key here is that the returns must be the same for all times.)

More details: Consider Stock 1 and Stock 2. Let pi,t be the log-price of Stock i at time t. It is
reasonable to assume that both series {p1t} and {p2t} contain a unit root when analyzed individually.

� Assume that {p1t} and {p2t} are co-integrated, i.e., there exists a linear combination c1p1t − c2p2t
that is stationary. Dividing the linear combination by c1, we have:

wt = p1t − γp2t

which is stationary, and hence mean-reverting.

� Now, form the portfolio Z by buying 1 share of Stock 1 and selling short on γ shares of Stock 2.
The return of the portfolio over a time period h is

r(h) = (p1,t+h − p1,t)− γ(p2,t+h − p2,t)

= p1,t+h − γp2,t+h − (p1,t − γp2,t)

= wt+h − wt

which is the increment of the stationary series wt from t 7→ t+ h. Since wt is stationary, we have
obtained a direct link of the portfolio to a stationary time series whose forecasts we can predict.

A trading strategy: Assume that E(wt) = µ, select a threshold δ, and proceed as follows:

� Buy Stock 1 and short γ shares of Stock 2 when wt = µ− δ.

� Unwind the position, i.e., sell Stock 1 and buy γ shares of Stock 2, when wt+h = µ+ δ.

� Profit: r(h) = wt+h − wt = 2δ.

Practical considerations:

� Threshold δ is chosen so that the profit exceeds the cost of the two trades. In a high frequency
regime, δ must be greater than the trading slippage, which is the same linear combination of bid-ask
spreads of the two stocks, i.e.,

(bid-ask spread of Stock 1) + γ(bid-ask spread of Stock 2)

� The speed of mean-reversion of wt plays an important role as h is directly related to the speed of
mean-reversion.

� There are many possible ways to search for co-integrating pairs of stocks, e.g., via fundamentals,
risk factors, etc.
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Example 5. Consider again the daily adjusted closing stock prices of BHP and Vale of Example 4.
First regress one variable on the other to assess suitability for Pairs Trading:

> x = cbind(bhp,vale)

> m1=lm(bhp~vale)

> summary(m1)

Call:

lm(formula = bhp ~ vale)

Residuals:

Min 1Q Median 3Q Max

-0.151818 -0.028265 0.003121 0.029803 0.147105

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.822648 0.003662 497.7 <2e-16 ***

vale 0.716664 0.002354 304.4 <2e-16 ***

---

Residual standard error: 0.04421 on 944 degrees of freedom

Multiple R-squared: 0.9899, Adjusted R-squared: 0.9899

F-statistic: 9.266e+04 on 1 and 944 DF, p-value: < 2.2e-16

Now carry out Johansen’s co-integration test (default is type “maximal eigenvalue”):

> library("urca"); library("tsDyn")

> var.order = ar(x)$order

> m2 = ca.jo(x, K=var.order, ecdet = "none")

> summary(m2)

######################

# Johansen-Procedure #

######################

Test type: maximal eigenvalue statistic (lambda max) , with linear trend

Eigenvalues (lambda):

[1] 0.0406019854 0.0000101517

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 0.01 6.50 8.18 11.65

r = 0 | 39.13 12.91 14.90 19.19

Eigenvectors, normalised to first column:

(These are the cointegration relations)

bhp.l2 vale.l2

bhp.l2 1.000000 1.000000

vale.l2 -0.717784 2.668019
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Weights W:

(This is the loading matrix)

bhp.l2 vale.l2

bhp.d -0.06272119 -2.179372e-05

vale.d 0.03303036 -3.274248e-05

Conclude: there exists 1 cointegrating relation given by the 1st column of the (bhp.l2,vale.l2) matrix:

wt = bhp− 0.717784(vale)

Repeating Johansen’s co-integration test (with type “trace”), gives same conclusion:

> m3 = ca.jo(x, K=var.order, type=c("trace"))

> summary(m3)

######################

# Johansen-Procedure #

######################

Test type: trace statistic , with linear trend

Eigenvalues (lambda):

[1] 0.0406019854 0.0000101517

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 1 | 0.01 6.50 8.18 11.65

r = 0 | 39.14 15.66 17.95 23.52

Eigenvectors, normalised to first column:

(These are the cointegration relations)

bhp.l2 vale.l2

bhp.l2 1.000000 1.000000

vale.l2 -0.717784 2.668019

Weights W:

(This is the loading matrix)

bhp.l2 vale.l2

bhp.d -0.06272119 -2.179372e-05

vale.d 0.03303036 -3.274248e-05
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Inspection of the ACF/PACF of wt suggests an AR(2) model (Fig 6):

### Plots

> wt=bhp-0.718*vale

> split.screen(figs=c(2,1))

> screen(1)

> split.screen(figs=c(1,2))

> screen(3)

> acf(wt)

> screen(4)

> pacf(wt)

> screen(2)

> ts.plot(wt)

### Fit AR(2)

> m4=arima(wt,order=c(2,0,0))

Coefficients:

ar1 ar2 intercept

0.8050 0.1215 1.820

s.e. 0.0323 0.0325 0.008

sigma^2 estimated as 0.000333: log likelihood = 2444.26, aic = -4880.52

### No problems detected in resids

> tsdiag(m4)

Figure 6: Time series plot and ACF/PACF for the cointegrated BHP and Vale series wt.
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Now use VECM (package tsDYn) to estimate and predict the underlying VECM. Note:

� Set lag=p-1 from the fitted VAR(p) (since p = 2 here, we should use lag=1).

� r is the number of cointegrating relations (r=1 here).

> m5 = VECM(x, lag=1, r=1, estim="ML", include ="const")

> summary(m5)

#############

### Model VECM

#############

Full sample size: 946 End sample size: 944

Number of variables: 2 Number of estimated slope parameters 8

AIC -14875.77 BIC -14832.12 SSR 0.8188267

Cointegrating vector (estimated by ML):

bhp vale

r1 1 -0.717784

ECT Intercept bhp -1

Equation bhp -0.0627 (0.0146)*** 0.1159 (0.0266)*** -0.1149 (0.0367)**

Equation vale 0.0330 (0.0169). -0.0584 (0.0308). 0.0528 (0.0425)

vale -1

Equation bhp 0.0692 (0.0320)*

Equation vale 0.0452 (0.0371)

### predict fitted VECM 3 steps ahead

> predict(m5, n.ahead=3)

bhp vale

947 3.650391 2.465768

948 3.648675 2.469617

949 3.647362 2.473280

Let xt = (bhp, vale)′, and recall that ∆xt = xt − xt−1. The fitted VECM is:

∆xt = µ0 +αβ′xt−1 + Φ∗
1∆xt−1 + at

where

µ0 =

[
0.1159
−0.0584

]
, α =

[
−0.0627
0.0330

]
, β =

[
1

−0.7179

]
, Φ∗

1 =

[
−0.1149 0.0692
0.0528 0.0452

]
and the cointegrating relation is: wt = β′xt = (1,−0.7179)xt.
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