Financial Time Series

Lecture 1: Introduction

Financial time series (FTS) analysis is concerned with theory and
practice of asset valuation over time.

What is the difference, if any, from traditional time series analysis?

Two topics are highly related, but FTS has added uncertainty,
because it must deal with the ever-changing business & economic
environment and the fact that volatility is not directly observed.

Objective of the course

e to access financial data online and to process the embedded in-
formation

e to provide basic knowledge of F'T'S data such as skewness, heavy
tails, and measure of dependence between asset returns

e to introduce statistical tools & econometric models useful for
analyzing these series.

e to gain experience in analyzing FT'S

e to introduce recent developments in financial econometrics and
their applications, e.g., high-frequency finance

e to study methods for assessing market risk, credit risk, and ex-
pected loss. The methods discussed include Value at Risk, ex-
pected shortfall, and tail dependence.



e to analyze high-dimensional asset returns, including co-movement

Examples of financial time series

1. Daily log returns of Apple stock: 2007 to 2016 (10 years). Data
downloaded using quantmod

2. The VIX index

3. CDS spreads: Daily 3-year CDS spreads of JP Morgan from July
20, 2004 to September 19, 2014.
4. Quarterly earnings of Coca-Cola Company: 1983-2009

Seasonal time series useful in

e carning forecasts
e pricing weather related derivatives (e.g. energy)

e modeling intraday behavior of asset returns

5. US monthly interest rates (3m & 6m Treasury bills)
Relations between the two asset returns? Term structure of in-
terest rates

6. Exchange rate between US Dollar vs Euro

Fixed income, hedging, carry trade

7. Size of insurance claims
Values of fire insurance claims (x 1000 Krone) that exceeded 500
from 1972 to 1992.

8. High-frequency financial data:
Tick-by-tick data of Caterpillars stock: January 04, 2010.
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Figure 1: Daily log returns of Apple stock from 2007 to 2016
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Figure 2: Empirical density function of daily log returns of Apple stock: 2007 to 2016



CDS of JPM: 3-yr spread
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Figure 3: Time plot of daily 3-year CDS spreads of JPM: from July 20, 2004 to September
19, 2014.
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Figure 4: CBOE Vix index: January 2, 2004 to March 7, 2014.
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EPS of Coca Cola: 1983-2009
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Figure 5: Quarterly earnings per share of Coca-Cola Company
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Figure 6: Daily Exchange Rate: Dollars per Euro
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Figure 7: Daily log returns of FX (Dollar vs Euro)
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Figure 8: Histogram of daily log returns of FX (Dollar vs Euro)

10



rate

15

10

1960 1970 1980 1990 2000 2010
year

Figure 9: Monthly US interest rates: 3m & 6m TB
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Norwegian Fire Insurance Data: 1972—-1992
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Figure 11: Claim sizes of the Norwegian fire insurance from 1972 to 1992, measured in 1000
Krone and exceeded 500.
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CAT trade data on January 04, 2010.

date hour minute second price size
20100104 9 30 0 57.65 3910

20100104 9 30 0 57.7 400
20100104 9 30 0 57.68 100
20100104 9 30 0 57.69 300
20100104 9 30 1 57.65 462
20100104 9 30 1 57.65 100
20100104 9 30 1 57.65 100
20100104 9 30 1 57.65 100
20100104 9 30 1 57.7 100
20100104 9 30 1 57.7 100
20100104 9 30 1 57.72 500
20100104 9 30 1 57.72 100
20100104 9 30 2 57.73 100
20100104 9 30 3 57.73 300
20100104 9 30 3 57.72 100
20100104 9 30 4 57.72 300
20100104 9 30 5 57.57 100
20100104 9 30 5 57.57 500
20100104 9 30 5 57.56 300
20100104 9 30 35 57.77 100
20100104 9 30 36 57.77 100
20100104 9 30 42 57.54 83600
20100104 9 30 42 57.57 100
20100104 9 30 42 57.55 100
20100104 9 30 42 57.55 2400
20100104 9 30 42 57.56 100
20100104 9 30 42 57.55 100
20100104 9 30 42 57.55 100
20100104 9 30 42 57.55 100
20100104 9 30 42 57.54 170
20100104 9 30 42 57.54 200

Outline of the course

e Returns & their characteristics: empirical analysis (summary
statistics)

e Simple linear time series models & their applications
e Univariate volatility models & their implications
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e Nonlinearity in level and volatility

e Neural network & non-parametric methods

e High-frequency financial data and market micro-structure
e Continuous-time models and derivative pricing

e Value at Risk, extreme value theory and expected shortfall (also
known as conditional VaR)

e Analysis of multiple asset returns: factor models, dynamic and
cross dependence, cross-section regression

Asset Returns
Let P; be the price of an asset at time ¢, and assume no dividend.
One-period simple return: Gross return

P,
L+ Ry= 5 or P=Po(l+R)
t—1

Simple return:

P P, — P_
R=—1—1= ool
Py Py
Multiperiod simple return: Gross return
P P P Prn
1+ Ri(k) = = X X o X
R S Tl A Py

= 1+ R)(I+Ri—y)- - (14 Ri—pta)-

The k-period simple net return is Ry(k) = Pf_tk —

Example: Table below gives six daily (adjusted) closing prices of
Apple stock in December 2015. The 1-day gross return of holding the
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stock from 12/23 to 12/24 1+ R; = 107.45/108.02 == 0.9947 so that
the daily simple return is —0.53%, which is (107.45—108.02)/108.02.

Date
Price($)

12/23 12/24 12/28 12/29 12/30 12/31
108.02 107.45 106.24 108.15 106.74 104.69

Time interval is important! Default is one year.
Annualized (average) return:

k—1

II

J=0

1k
Annualized| Ry (k)] (1+ Rtj)] — 1.

An approximation:
k—1
Annualized[ Ry (k)] ~ z > Ry ;.
5=0

Continuously compounding: Illustration of the power of compound-

ing (int. rate 10% per annum)

Type #(payment) | Int. Net

Annual 1 0.1 |$1.10000
Semi-Annual 2 0.05 | $1.10250
Quarterly 4 0.025 | $1.10381
Monthly 12 0.0083 | $1.10471
Weekly 52 % $1.10506
Daily 365 or | $1.10516
Continuously 00 $1.10517

A = Cexplr x n]

where r is the interest rate per annum, C' is the initial capital, n is
the number of years, and exp is the exponential function.
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Present value:
C' = Aexp|—r X n]

Continuously compounded (or log) return

P,
ry = hl(l + Rt) = hlit = Pt — DPt—1,
P

where p; = In(F).
Multiperiod log return:

ri(k) = In[l 4+ Ry(k)]
= In[(1+ Ry)(1+ Ry1) - (1 + By—p11)]
= In(14+ Ry)+In(14+ Re—1)+ -+ In(1 + Ry_p41)

S e A il A8 R

Example. Consider again the Apple stock price.

1. What is the log return from 12/23 to 12/24:
A: 7y = 1n(107.45) — In(108.02) = —0.529%.

2. What is the log return from day 12/23 to 12/317
A: 74(6) = In(104.69) — In(108.02) = —3.13%.

Portfolio return: N assets

N
R, = ; w; Ry

1=1

Example: An investor holds stocks of IBM, Microsoft and Citi-
Group. Assume that her capital allocation is 30%, 30% and 40%.
Use the monthly simple returns in Table 1.2 of the text. What is the
mean simple return of her stock portfolio?
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Answer: F(R;) = 0.3 x 1.35+ 0.3 x 2.62 4 0.4 x 1.17 = 1.66.
Dividend payment:
P,+D
R, — 1t + LD
b

Excess return: (adjusting for risk)

1, rp=In(P+ D) —In(Py).

Zt:Rt_ROta 2t =Tt —Tot

where ro; denotes the log return of a reference asset (e.g. risk-free
interest rate).
Relationship:

thln(l—l—Rt), Ry =¢"t —1.

If the returns are in percentage, then

R
ry = 100 x In(1 + 106), R, = [exp(r,/100) — 1] x 100.

Temporal aggregation of the returns produces

L+ Ry(k) = (14 Re)(L+ Ria) - (14 Ryprn),
rt(k) = T+ T+ Tk

These two relations are important in practice, e.g. obtain annual
returns from monthly returns.

Example. If the monthly log returns of an asset are 4.46%, —7.34%
and 10.77%, then what is the corresponding quarterly log return?
Answer: 4.46 — 7.34 + 10.77 = 7.89%.

Example: If the monthly simple returns of an asset are 4.46%,
—7.34% and 10.77%, then what is the corresponding quarterly simple
return’?

Answer: R = (1+0.0446)(1 —0.0734)(14+0.1077) —1 =1.0721 —1
= 0.0721 = 7.21%
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Distributional properties of returns

Key: What is the distribution of

{ri;i=1,--- N;t=1,--- T}’

Some theoretical properties:

Moments of a random variable X with density f(z): ¢-th moment

m) = B(X") = /_OZO o' f(z)dx

First moment: mean or expectation of X.
/-th central moment

me = E[(X — )] = |

—00

= ) f(a)de,
2nd central moment: Variance of X.

standard deviation: square-root of variance

Skewness (symmetry) and kurtosis (fat-tails)

(X T :be)g

3
P

S(:c):E{ ] K(z)=E

(X — ux)4] |

4
Oy

K (x) — 3: Excess kurtosis.

Q1: Why study the mean and variance of returns?

They are concerned with long-term return and risk, respectively.
()2: Why is symmetry important?

Symmetry has important implications in holding short or long finan-
cial positions and in risk management.

()3: Why is kurtosis important?

Related to volatility forecasting, efficiency in estimation and tests
High kurtosis implies heavy (or long) tails in distribution.
Estimation:

Data:{xy, -, 21}
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e sample mean:

. I I
,U/:E T tgl L,
e sample variance:
1 T
A2 A2
Ul’ T T . ltgl(xt ILL.T) 9
e sample skewness:
. 1 T A
S(Jf) = — ) (xt — Nm)gv

(T —1)o3 =1
e sample kurtosis:

K@) = = 5 (2 — )
X _(T—1)6§t:1 Tt — Ug) -

Under normality assumption,

$(z) ~ N0, ;), K(z) =3~ N0, 2;).

Some simple tests for normality (for large T').

1. Test for symmetry:

if normality holds.
Decision rule: Reject H, of a symmetric distribution if [S*| >
Z 2 or p-value is less than a.

2. Test for tail thickness:

K(z)—3
J24)T

20

K= ~ N(0,1)



if normality holds.
Decision rule: Reject H, of normal tails if |K*| > Z,/, or
p-value is less than a.

3. A joint test (Jarque-Bera test):
TB = (K" 4 (%) ~

if normality holds, where x3 denotes a chi-squared distribution
with 2 degrees of freedom.

Decision rule: Reject H, of normality if JB > x3(«) or p-
value is less than a.

Empirical properties of returns
Data sources: Use packages, e.g. quantmod

e Course web:

e CRSP: Center for Research in Security Prices (Wharton WRDS)
https://wrds-web.wharton.upenn.edu/wrds/

e Various web sites, e.g. Federal Reserve Bank at St. Louis

https:/ /research.stlouisfed.org/fred2/

e Data sets of the textbook:
http:/ /faculty.chicagobooth.edu/ruey.tsay /teaching /fts3/

Empirical dist of asset returns tends to be skewed to the left with
heavy tails and has a higher peak than normal dist. See Table 1.2 of
the text.

Demonstration of Data Analysis
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R demonstration: Use monthly IBM stock returns from 1967 to
2008.

x*xkx Task: (a) Set the working directory
(b) Load the library ‘‘fBasics’’.
(c) Compute summary (or descriptive) statistics
(d) Perform test for mean return being zero.
(e) Perform normality test using the Jaque-Bera method.
(f) Perform skewness and kurtosis tests.

> setwd("..") <== set working directory
> library(fBasics) <== Load the library ‘‘fBasics’’.

> da=read.table("m-ibm-6815.txt" ,header=T)
> head(da)
PERMNO date PRC ASKHI BIDLO RET vwretd ewretd sprtrn
1 12490 19680131 594.50 623.0 588.75 -0.051834 -0.036330 0.023902 -0.043848
2 12490 19680229 580.00 599.5 571.00 -0.022204 -0.033624 -0.056118 -0.031223
3 12490 19680329 612.50 612.5 562.00 0.056034 0.005116 -0.011218 0.009400
4 12490 19680430 677.50 677.5 630.00 0.106122 0.094148 0.143031 0.081929
5 12490 19680531 357.00 696.0 329.50 0.055793 0.027041 0.091309 0.011169
6 12490 19680628 353.75 375.0 0 0 0.009120
> dim(da)
[1] 576 9
> ibm=da$RET 7, Simple IBM return
> InIBM <- log(ibm+1) % compute log return
> ts.plot(ibm,main="Monthly IBM simple returns: 1968-2015") % Time plot
> mean(ibm)
[1] 0.008255663
> var(ibm)
[1] 0.004909968
> skewness (ibm)
[1] 0.2687105
attr(,"method")
[1] "moment"
> kurtosis(ibm)
[1] 2.058484
attr(,"method")
[1] "excess"
> basicStats(ibm)

346.50 -0.009104 .011527 .016225

ibm
nobs 576.000000
NAs 0.000000
Minimum -0.261905
Maximum 0.353799

1. Quartile -0.034392
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3. Quartile 0.048252
Mean 0.008256
Median 0.005600
Sum 4.755262
SE Mean 0.002920
LCL Mean 0.002521
UCL Mean 0.013990
Variance 0.004910
Stdev 0.070071
Skewness 0.268710
Kurtosis 2.058484
> basicStats(1nIBM) % log return
1nIBM
nobs 576.000000
NAs 0.000000
Minimum -0.303683
Maximum 0.302915
1. Quartile -0.034997
3. Quartile 0.047124
Mean 0.005813
Median 0.005585
Sum 3.348008
SE Mean 0.002898
LCL Mean 0.000120
UCL Mean 0.011505
Variance 0.004839
Stdev 0.069560
Skewness -0.137286
Kurtosis 1.910438

> t.test(1nIBM) %% Test mean=0 vs mean .not. zero
One Sample t-test

data: 1nIBM
t = 2.0055, df = 575, p-value = 0.04538
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
0.0001199015 0.0115051252
sample estimates:
mean of x
0.005812513

> normalTest (1nIBM,method=’jb’)
Title: Jarque - Bera Normalality Test

Test Results:
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STATISTIC:
X-squared: 90.988
P VALUE:
Asymptotic p Value: < 2.2e-16

> s3=skewness(1lnIBM); T <- length(1nIBM)
> tst <- s83/sqrt(6/T) ¥ test skewness

> tst

[1] -1.345125

> pv <- 2*pnorm(tst)

> pv

[1] 0.1785849

> k4 <- kurtosis(1nIBM)

> tst <- k4/sqrt(24/T) 7 test excess kurtosis
> tst

[1] 9.359197

>q() % quit R.

Normal and lognormal dists

Y is lognormal if X = In(Y") is normal.

If X ~ N(u,0?), then Y = exp(X) is lognormal with
Mean and variance:

672

BY) = exp(p+ %), V(Y) = exp(p+ o) fexp(o?) - 1].

Conversely, if Y is lognormal with mean g, and variance 05, then
X = 1In(Y) is normal with mean and variance

E(X)=1In ’”‘yaQ . V(X)=1ln
Lt

Application: If the log return of an asset is normally distributed
with mean 0.0119 and standard deviation 0.0663, then what is the
mean and standard deviation of its simple return?

2
0
1+g].
U

Answer: Solve this problem in two steps.
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Step 1: Based on the prior results, the mean and variance of Y; =
exp(r) are

0.0663

E(Y) =exp [0.0119 +

} = 1.014

V(Y) = exp(2 x 0.0119 + 0.0663?)[exp(0.0663%) — 1] = 0.0045

Step 2: Simple return is Ry = exp(r;) — 1 = Y; — 1. Therefore,
E(R)=E(Y)—1=0.014
V(R)=V(Y)=0.0045, standard dev =V (R) = 0.067

Remark: See the monthly IBM stock returns in Table 1.2.
Processes considered

e return series (e.g., ch. 1,2, 5)

e volatility processes (e.g., ch. 3, 4, 10, 12)

e continuous-time processes (ch. 6)

e cxtreme events (ch. 7)

e multivariate series (ch. 8, 9, 10)

Likelihood function (for self study)

Finally, it pays to study the likelihood function of returns {ry, - - -, ro}
discussed in Chapter 1.

Basic concept:

Joint dist = Conditional dist x Marginal dist, i.e.

flx,y) = flzly)f(y)
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For two consecutive returns r1 and ro, we have

f(ra,r1) = f(ra|ry) f(ry).

For three returns r1, 7o and r3, by repeated application,

f(T‘g,?“Q, Tl) - f(?”g‘?”g,ﬁ)f(?“g,?‘l)
= f(r3|ro, 1) f(ralr1) f(r1).

In general, we have

f(T’T, rr—1,:°,T2, 7‘1)
= f(relre—y, -+, m) f(rr—1, -+, 7r1)

= f(TT|7“T—1,'",7“1)f(7“T—1|7"t—27'"77“1)f(7“T—2,"'77“1)

T

— tI:IQ f(rt’/rt—la o 7T1) f(rl)a
where T, denotes product.
If r¢|ry_q1, - -+, 71 is normal with mean p; and variance atz . then like-
lihood function becomes

ro 1 — (7t — p)?
T TT—_1, ", T) = ex r1).
f(rr, rr- 1) tg\/%at ) f(r1)

For simplicity, if f(rq) is ignored, then the likelihood function be-

comes
I 1 _(Tt - Mt>2
rT T 1, T1) = ex i

This is the conditional likelihood function of the returns under nor-
mality.

Other dists, e.g. Student-t, can be used to handle heavy tails.
Model specification
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e (i;: discussed in Chapter 2
e oZ: Chapters 3 and 4.

Quantifying dependence: Consider two variables X and Y.

e Pecarson’s correlation coefficient:
~ Cov(X,Y)
P Std(X)std(Y)

e Kendall’s tau: Let (X,Y) be a random copy of (X,Y).
b, = P(X = X)(Y —¥) > 0] - P[(X — X)(Y - V) <0
— Efsign[(X — X)(Y = Y)].

This measure quantifies the probability of concordant over dis-

cordant. Here concordant means (X — X)(Y —Y) > 0. For

spherical distributions, e.g., normal, p, = %Sin_l(p).

e Spearman’s rho: rank correlation. Let Fy(x) and F,(y) be the
cumulative distribution function of X and Y.

Ps = p(Fx(X)7 Fy(Y))

That is, the correlation coefficient of probability-transformed
variables. It is just the correlation coefficient of the ranks of
the data.

Q): Why do we consider different measures of dependence?

e Correlation coefficient encounters problems when the distribu-
tions are not normal (spherical, in general). This is particularly
relevant in risk management.
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e Correlation coefficient focuses no linear dependence and is not
robust to outliers.

e The actual range of the correlation coefficient can be much smaller
than [—1, 1].

R Demonstration

> head(da)

PERMNO date PRC ASKHI BIDLO RET vwretd ewretd sprtrn
1 12490 19680131 594.50 623.0 588.75 -0.051834 -0.036330 0.023902 -0.043848
2 12490 19680229 580.00 599.5 571.00 -0.022204 -0.033624 -0.056118 -0.031223
3 12490 19680329 612.50 612.5 562.00 0.056034 0.005116 -0.011218 0.009400
4 12490 19680430 677.50 677.5 630.00 0.106122 0.094148 0.143031 0.081929
5 12490 19680531 357.00 696.0 329.50 0.055793 0.027041 0.091309 0.011169
6 12490 19680628 353.75 375.0 346.50 -0.009104 0.011527 0.016225 0.009120
> ibm <- da$RET
> sp <- da$sprtrn
> plot(sp,ibm)

> cor(sp,ibm)

[1] 0.5785249

> cor(sp,ibm,method="kendall")
[1] 0.4172056

> cor(sp,ibm,method="spearman")
[1] 0.58267

> cor(rank(ibm) ,rank(sp))

[1] 0.58267

z=rnorm(1000) %% Genreate 1000 random variates from N(O,1)
x=exp(z)

y=exp (20%z)

> cor(x,y)

[1] 0.3187030

> cor(x,y,method=’kendall’)

(11 1

> cor(x,y,method=’spearman’)

(11 1

vV V V

Takeaway
1. Understand the summary statistics of asset returns
2. Understand various definitions of returns & their relationships
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3. Learn basic characteristics of FT'S
4. Learn the basic R functions. (See Rcommands-lecl.txt on the

course web.)

R commands used to produce plots in Lecture 1.

> x=read.table("d-aapl0413.txt" ,header=T) <== Load Apple stock returns

> dim(x) <== check the size of the data file
[1] 2517 3
> x[1,] <== ghow the first row of the data
Permno date rtn
1 14593 20040102 -0.004212
> y=ts(x[,3],frequency=252,start=c(2004,1)) <== Create a time-series object in R.
> plot(y,type=’1’,xlab=’year’,ylab="rtn’)
> title(main=’Daily returns of Apple stock: 2004 to 2013’)

par(mfcol=c(2,1)) <== To put two plots on a single page
y=y*100 <== percentage returns
hist(y,nclass=50)

title(main=’Percentage returns’)

dl=density(y)
plot(di$x,d1$y,xlab="returns’,ylab=’den’ ,type=’1")

V V V V VvV V

> x=read.table("m-tb3ms.txt" ,header=T) <== Load 3m-TB rates
> dim(x)
[1] 914 4

> y=read.table("m-tb6ms.txt" ,header=T) <== Load 6m-TB rates
> dim(y)
[1] 615 4
> 914-615
[1] 299
> x[300,] <== Check date of the 3m-TB
year mon day value
300 1968 12 1 2.77
> yl1,] <== Check date of the 1st observation of 6m-TB
year mon day value
11958 12 1 3.01

> int=cbind(x[300:914,4],y[,4]) <== Line up the two TB rates
> tdx=(c(1:615)+11)/12+1959

> par(mfcol=c(1,1))

> max(int)
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[1] 16.3
> plot(tdx,int[,1],xlab="year’,ylab=’rate’,type=’1’,ylim=c(0,16.5))
> lines(tdx,int[,2],1ty=2) <== Plot the 6m-TB rate on the same frame.

> plot(tdx,int[,2]-int[,1],xlab=’year’,ylab=’spread’,type=’1’)
> abline(h=c(0)) <== Draw a horizontal like to ‘‘zero’’.

> x=read.table("q-ko-earns8309.txt" ,header=T) <== Load KO data
> dim(x)
[1] 107 3
> x[1,]

pends anntime value
19830331 19830426 0.0375
tdx=c(1:107)/12+1983
plot(tdx,x[,3],xlab="year’,ylab=’earnings’,type=’1’)
title(main="EPS of Coca Cola: 1983-2009’)
points(tdx,x[,3])

y=read.table("d-exuseu.txt" ,header=T) <== Load USEU exchange rates
dim(y)

[1] 3567 4

> yl[1,]

year mon day value

1999 1 4 1.1812

tdx=c(1:3567)/2562+1999
plot(tdx,y[,4],xlab="year’,ylab=eu’,type=’1")

title(main=’Dollars per Euro’)

V V V V V V V -~

V V V B~

A\

r=diff (log(y[,4])) <=== Compute log returns
> plot(tdx[2:3567],r,xlab="year’,ylab="rtn’,type=’1’)
> title(main=’1ln-rtn: US-EU’)

> hist(r,nclass=50)
> title(main=’useu: ln-rtn’)
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Linear Time Series Models

Financial ts: a series of a financial instrument over time.
Example: log return r;.

Data: {ry,re,...,rr} (sample size is T').

Goal: Construct a model for {r;}?

Basic Concepts

e Time series (ts): the ts {ry, t =...,—1,0,1,...} is a realization (sample path) of
a stochastic process (r; is a random variable for each t). We define:

— the mean function: p(t) = E(ry)
— the autocovariance function at lag h: y(t + h,t) = Cov(ripn, 7).
e Stationary process: 1y is a stationary ts if u(t) = g and y(t + h,t) = y(h) = W,

i.e., the mean and autocovariance functions are independent of t. For stationary
¢, define the autocorrelation function (ACF) at lag h as

h
ph:l:p_h, h=1,2,... (pp=1)
70

Stationarity means that the first two moments (mean & ACF) do not
change with time.

Ex: (White Noise = WN). If r; is serially uncorrelated (efficient market), then:

ph:O, h:1,2,...

Exercise: look back at the plots of the real series in the beginning and comment on
the stationarity of each.
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Empirical estimates of first two moments of stationary series r;

e Mean:

Asymptotic result:
FANOVT),  P= Y
Note: if r; is WN then:

7o N(0,7%/T), 0= V(r).

o ACF:
’3/ 1T—h
~ h N _ _
= =D (reen —7)(re — T
=z A T;(H )(re —7)

Note: if r; is WN then:

pn~ N(0,1/T), h=1,2,....

Fundamental tests for stationary series r;

e Hy: u=0 ws Hp:u#D0.
Assuming that r; is WN, compute

T T

“std(r) /30T

t

p-value = 2P(Z > |t]).

OH()Zpl:O (] Hl:plyé().
Assuming that r; is WN, compute

‘o P M
std(p1) 1/T

p-value = 2P(Z > |t]).

Decision Rule: reject Hy if p-value < « (the significance level).
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e Hy:pr=---=p,=0 wvs Hy:p;#0 for some j.
Ljung-Box test. Assuming that r; is WN, compute

mo a9
P

Qum) =T(T+2) Y

p-value = P(xg; > Q(m)), where df = m.
Typical default values: m € {5,10,15,20} <T — 1.
(Note: later when we fit a model with g parameters df = m — g.)

e Sources of serial correlation

— nonsynchronous trading (Ch 5)
— bid-ask bounce (Ch 5)
— risk premium (Ch 3)

Thus: the presence of serial correlation does not necessarily imply market ineffi-
ciency.

Ex: (Monthly returns of IBM stock from 1926 to 1997).

e For Ry:
Q) =54 (p=0.37), Q(10)=14.1 (p =0.17)

e For ry:
Q) =58 (p=0.33), Q(10)=13.7 (p=10.19)

Conclude: Monthly IBM stock returns are serially uncorrelated (WN),
Ex: (Monthly returns of CRSP value-weighted index from 1926 to 1997).

e For R;:
Q((5) =278 (p < 0.001), Q(10) =36.0 (p < 0.001)

e For ry:
Q(5) =26.9 (p < 0.001), Q(10) =32.7 (p < 0.001)

Conclude: Monthly CRSP returns are serially correlated (not WN).
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Back-shift or lag operator (B)

A useful notation in ts analysis.

(] BT’t =T+

e By = B(Bry) = B(ri_1) = ri_»

e B(3) =3, i.e., constants are unaffected.

R demonstration:

IBM monthly simple returns from 1968 to 2015

ibm

ACF
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Figure 1: IBM monthly simple returns from 1968 to 2015.
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da=read.table("m-ibm-6815.txt" ,header=T)
ibm=da$RET

par (mfrow=c(2,2))

plot.ts(ibm)

hist (ibm)

acf(ibm, ylim=c(-1,1))

pacf(ibm, ylim=c(-1,1))

V V V V V VvV V

> ml <- acf(ibm)
> names (m1)
[1] "acf" "type" "n.used" "lag" "series" "snames"
> mi$act
[,1]
[1,] 1.0000000000 % lag O
[2,] -0.0068713539 % lag 1
[3,]1 -0.0002212888

[28,] 0.0159729906

> m2 <- pacf(ibm) % Partial ACF (a variant of ACF)
> m23pact
[,1]
[1,] 1.0000000000
[2,] -0.0068713539
[3,] -0.0002212888

[27,] 0.0127614307

> Box.test(ibm,lag=10) % Box-Pierce Q(m) test
Box-Pierce test

data: ibm

X-squared = 7.1714, df = 10, p-value = 0.7092

> Box.test(ibm,lag=10,type=’Ljung’) % Ljung-Box Q(m) test
Box-Ljung test

data: ibm

X-squared = 7.2759, df = 10, p-value = 0.6992
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Fundamental principle of financial time series modeling

At time point ¢, having observed: {ry,... ,r._1}:

e The information set up to time ¢t — 1 is Fy_; = {ry,..., 71}
e Decompose series into two parts as:
r = predictable part + unpredictable part
— function of elements of F;_1 + a;
= [t + Or€y
where
— py = E(r¢|F;_1) = conditional mean of r;

— a; = shock or innovation at time ¢ (independent of a;)

— 02 = V(ry|F;_1) = conditional variance of r; (o} is called the volatility)

— ¢; = an iid sequence with mean 0 and variance 1
e Typical models for p;: ARMA/ARIMA (Lectures 2 & 3)
e Typical models for o;: ARCH/GARCH and variants (Lectures 4 & 5)

Linear time series models
Stationary process r; is linear if:
o0
.o 2
Ty =+ g Vnai—p, a; ~ iid (0,0%)
h=0

where = E(r;) is constant, the {a;} are the shocks or innovations, and the {1} are
the impulse responses of ry.

Some examples:

autoregressive (AR) models

moving average (MA) models
mixed ARMA models
ARIMA and seasonal models

e regression models with time series errors

e fractionally differenced models (long-memory)
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Prediction of linear time series models

Data: {rq,...,r,} with E(r;) = p and ACF py,
Question: how to predict 7,417
Answer: use Decision Theory; we want

Tni1 = function of F), (information set up to time n)

such that (both):

(1) E(Put1) = p

(i) E(Tps1 — 7011)? is minimized.
Can show that the solution is the Best Predictor (BP):

?n—i—l — E(Tn—i—lan)

For an AR(p) this is simply:

Toyr = E(rpalF)
= E(¢1rn+ -+ @prns1—p + ar| )
= Q1+ Gl + E (@] Fy)
= Q1rp -+ PpTnii—p

For MA and ARMA models this is more complicated. .. (Lecture 2).

Note: This course uses statistical methods to find models that fit the data well for
making inference, e.g. prediction. On the other hand, there exists economic theory
that leads directly to time-series models. E.g., in the real business-cycle theory in

macroeconomics, one can show that under some simplifying assumptions log(GDP)
follows an AR(2). (See Advanced Macroeconomics, by David Romer, 2006).
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Ex: (Quarterly growth rate of US real GNP, seasonally adjusted, from 1947 to 1991).
An AR(3) model for the data is:

ri = 0.005 4 0.35r;_1 + 0.18r,_5 — 0.14r,_3 +a;,  a; ~ WN(0,52 = 0.01)
Given {7, 7,_1,7n_2} We can predict 7,1 as:

Tnt+1 = 0.005 4 0.357), + 0.18r,,_1 — 0.14r,,_»
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Figure 2: US real GNP quarterly growth rate: 1947 to 1991.
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Steps in time series model building

e Check for stationarity, are there:

— trends
— cycles (seasonality is expected with quarterly and monthly data)

— unit roots (Lecture 2)
e Estimate basic moments: mean, variance, ACF, PACF
e Model building:

— specification (model/order selection)
— estimation (maximum likelihood)

— assessment (goodness-of-fit diagnostics for residuals)

e Make inference (e.g., forecasting).
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Ex: (Monthly simple returns of CRSP equally-weighted index, from 1926 to 2008)
Fig 3: ACF of series suggests autocorrelation (tenuous).
A subset MA(9) model for the series is:

Ry = 0.012 4 a; + 0.189a;_; — 0.121a,_3 + 0.122a,_9,  a; ~ WN(0, 52 = 0.07)

Model checking for the residuals: Q(10) = 11.4 (p = 0.122), suggests model fits!
Fourth panel shows 10-step ahead forecasts based on model that leaves out last 10 data
points (blue line); actual values shown as red line.
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Figure 3: Monthly simple returns of CRSP equally-weighted index: 1926 to 2008.
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