
Introduction to Linear Models

Linear models are parametric statistical models that summarize how
the probability distribution of a response variable (usually denoted as Y )
depends upon one or more explanatory variables (usually denoted with
X’s: X0, X1, X2, . . . , Xk).

• They are statistical (or probabilistic) because they specify a (con-
ditional) probability distribution of a random variable (or at least
some aspects of that distribution, like its mean and variance).

• They are parametric because the probability distribution is specified
up to a finite number of unknown constants, or parameters.

• They are linear because the mean of the conditional probability dis-
tribution of Y , E(Y |X0, X1, . . . , Xk), is specified to be a linear func-
tion of model parameters.

• This conditional mean, E(Y |X0, X1, . . . , Xk), is called the regression
function for Y on X0, . . . , Xk.

The classical linear model specifies that

Y = X0β0 + X1β1 + · · ·Xkβk + e = xT β + e

where

x =




X0
...

Xk




(k+1)×1

, β =




β0
...

βk




(k+1)×1

,

where e has conditional mean 0, and variance σ2.

• Notice that this model implies that the regression function is linear
in the β’s:

E(Y |x) = X0β0 + X1β1 + · · ·Xkβk.

• Notice that this model indirectly specifies the first two moments of
the conditional distribution of Y |x by moment assumptions on e:

E(Y |x) = xT β, and var(Y |x) = σ2
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Strictly speaking, the “model” given above is not a true statistical model
because it specifies only the first two moments (i.e., the mean and variance)
of Y given x rather than the entire conditional distribution.

Important results concerning the estimation of the regression function,
E(Y |x), are available based only on mean and variance specifications.
However, for inference on the model parameters, it is necessary to complete
the model specification by assuming further that e ∼ N(0, σ2).

• It then follows that Y |x ∼ N(xT β, σ2).

Typically, we will have a sample of data consisting of observed values of n
independent copies of (Y,X0, . . . , Xk):

(Y1, X10, X11, . . . , X1k), . . . , (Yn, Xn0, Xn1, . . . , Xnk).

In this case, the classical linear model is supposed to hold for each copy
(Yi, Xi0, Xi1, . . . , Xik), i = 1, . . . , n.

That is, the model becomes

Yi = xT
i β + ei, i = 1, . . . , n, where e1, . . . , en

iid∼ N(0, σ2) (∗)

and xi = (Xi0, Xi1, . . . , Xik)T .

• The notation iid∼ N(0, σ2) means, “are independent, identically dis-
tributed random variables each with a normal distribution with mean
0 and variance σ2.”

• Typically, Xi0 is equal to one for all i in multiple linear regression
models, but this need not be so in general.

• In model (*) the parameters are β0, β1, . . . , βk, σ2. The regression
parameters are β0, β1, . . . , βk.

More succinctly, we can write model (*) in vector/matrix notation as

y = Xβ + e, e1, . . . , en
iid∼ N(0, σ2).
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Example - Simple Linear Regression Model

Suppose that for n = 6 mother-daughter pairs we have height data: Yi =height
of daughter in ith pair, Xi1 =height of mother in ith pair; and in addi-
tion, we have information on birth order (1 means daughter was first-born
daughter).

Pair (i) Xi1 Yi Birth Order

1 62.5 64 1
2 67.5 68 3
3 65 63 1
4 65 66 2
5 60 61 2
6 59.5 66 3

It may be of interest to investigate how a woman’s height depends upon
her mother’s height. As part of that investigation we may consider the
simple linear regression model

Yi = β0 + β1Xi1 + ei, i = 1, . . . , 6,

where e1, . . . , e6
iid∼ N(0, σ2).

In vector notation this model can be written



64
68
...

66


 =




1 62.5
1 67.5
...

...
1 59.5




(
β0

β1

)
+




e1

e2
...
e6




y = Xβ + e

where e1, . . . , e6
iid∼ N(0, σ2).
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Example - Multiple Linear Regression

Suppose that we observe that daughters’ heights don’t increase steadily
as mothers’ heights increase. Instead, daughters’ heights level off for large
mothers’ heights. We may then wish to consider a model which is quadratic
in mother’s height:

Yi = β0 + β1Xi1 + β2 X2
i1︸︷︷︸

≡Xi2

+ei, i = 1, . . . , 6,

where ei’s are as before.

• While this model is quadratic in Xi1 it is still a linear model because
it is linear in β0, β1, β2.

Example - One-way ANOVA

Suppose we knew only the birth order information and not mother’s height.
Then we might be interested in fitting a model which allowed for different
means for each level of birth order.

The cell-means one-way ANOVA model does just that. Let Yij =the
height of the jth daughter in the ith birth-order group (i = 1, 2, 3, j = 1, 2).

The cell-means model is

Yij = µi + eij , i = 1, 2, 3, j = 1, 2,

where e11, . . . , e32
iid∼ N(0, σ2).

This model can be written in vector notation as




Y11

Y12

Y21

Y22

Y31

Y32




=




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1







µ1

µ2

µ3


 +




e11

e12

e21

e22

e31

e32




y = Xβ + e
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An alternative, but equivalent, version of this model is the effects model:

Yij = µ + αi + eij , i = 1, . . . , 3, j = 1, . . . , 2,

where the eij ’s are as before.

The effects model can be written in vector form as



Y11

Y12

Y21

Y22

Y31

Y32




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1







µ
α1

α2

α3


 +




e11

e12

e21

e22

e31

e32




y = Xβ + e

• Notice that, like the multiple regression model, this version of the
one-way anova model includes an intercept, although here we’ve
called that intercept µ rather than β0.

• We’ll investigate the equivalence between the cell-means and effects
forms of ANOVA models later in the course.

Example - An ANCOVA Model

Suppose we had available both birth-order information and mother’s height.
A model that accounts for dependence of daughter’s height on both of these
variables is

Yij = µ + αi + βXij + eij , i = 1, 2, 3, j = 1, 2,

where Xij =mother’s height for the jth pair in the ith birth-order group.
The assumptions on eij are as in the ANOVA models.

In vector notation this model is



Y11

Y12

Y21

Y22

Y31

Y32




=




1 1 0 0 X11

1 1 0 0 X12

1 0 1 0 X21

1 0 1 0 X22

1 0 0 1 X31

1 0 0 1 X32







µ
α1

α2

α3

β


 +




e11

e12

e21

e22

e31

e32




y = Xβ + e
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In ANOVA models for designed experiments, the explanatory variables
(columns of the design matrix X) are fixed by design. That is, they are
non-random.

In regression models, the X’s are often observed simultaneously with the
Y ’s. That is, they are random variables because they are measured (not
assigned or selected) characteristics of the randomly selected unit of ob-
servation.

In either case, however, the classical linear model treats X as fixed, by
conditioning on the values of the explanatory variables.

That is, the probability distribution of interest is that of Y |x, and all
expectations and variances are conditional on x (e.g., E(Y |x), var(e|x),
etc.).

• Because this conditioning applies throughout linear models, we will
always consider the explanatory variables to be constants and we’ll
often drop the conditioning notation (the |x part).

• If we have time, we will consider the case where X is considered to
be random later in the course. See ch. 10 of our text.

Notation:

When dealing with scalar-valued random variables, it is common (and use-
ful) to use upper and lower case to distinguish between a random variable
and the value that it takes on in a given realization.

• E.g., Y, Z are random variables with observed values y, and z, respec-
tively. So, we might be concerned with Pr(Z = z) (if Z is discrete),
or we might condition on Z = z and consider the conditional mean
E(Y |Z = z).

However, when working with vectors and matrices I will drop this distinc-
tion and instead denote vectors with bold-faced lower case and matrices
with bold upper case. E.g., y and x are vectors, and X a matrix.

The distinction between the random vector (or matrix) and its realized
value will typically be clear from the context.
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Some Concepts from Linear Algebra

Since our topic is the linear model, its not surprising that many of the
most useful mathematical tools come from linear algebra.

Matrices, Vectors, and Matrix Algebra

A matrix is a rectangular (or square) array of numbers or variables. E.g.,
we can arrange the mother-daughter height data (p. 4) in a 6× 2 matrix

A =




62.5 64
67.5 68
65 63
65 66
60 61

59.5 66




To represent the elements of A as variables, we use symbols for the ele-
ments:

A =




a11 a12

a21 a22

a31 a32

a41 a42

a51 a52

a61 a62



≡ (aij).

The size, or dimension of A is its number of rows (r) and columns (c);
in this case, we say A is 6× 2, or in general r × c.

A vector is simply a matrix with only one column. E.g.,

x =




64
68
63
66
61
66




is the vector formed from the second column of A above.
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• We will typically denote vectors with boldface lower-case letters (e.g.,
x,y, z1, etc.) and matrices with boldface upper-case letters (e.g.,
A,B,M1,M2, etc.).

• Vectors will always be column vectors. If we need a row vector we
will use the transpose of a vector. E.g., xT = (64, 68, 63, 66, 61, 66)
is the row vector version of x.

A scalar is a 1× 1 matrix; i.e., a real-valued number or variable. Scalars
will be denoted in ordinary (non-bold) typeface.

Matrices of special form:

A diagonal matrix is a square matrix with all of its off-diagonal elements
equal to 0. We will use the diag(·) function in two ways: if its argument
is a square matrix, then diag(·) yields a vector formed from the diagonal
of that matrix; if its argument is a vector, then diag(·) yields a diagonal
matrix with that vector on the diagonal. E.g.,

diag




1 2 3
4 5 6
7 8 9


 =




1
5
9


 diag




1
2
3


 =




1 0 0
0 2 0
0 0 3


 .

The n×n identity matrix is a diagonal matrix with 1’s along the diago-
nal. We will denote this as I, or In when we want to make clear what the
dimension is. E.g.,

I3 =




1 0 0
0 1 0
0 0 1




• The identity matrix has the property that

IA = A, BI = B,

where A,B, I are assumed conformable to these multiplications.

A vector of 1’s is denoted as j, or jn when we want to emphasize that the
dimension is n. A matrix of 1’s is denoted as J, or Jn,m to emphasize the
dimension. E.g.,

j4 = (1, 1, 1, 1)T , J2,3 =
(

1 1 1
1 1 1

)
.
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A vector or matrix containing all 0’s will be denoted by 0. Sometimes we
will add subscripts to identify the dimension of this quantity.

Lower and upper-triangular matrices have 0’s above and below the diago-
nal, respectively. E.g.,

L =




1 0 0
2 3 0
4 5 6


 U =

(
3 2
0 1

)
.

I will assume that you know the basic algebra of vectors and matrices. In
particular, it is assumed that you are familiar with

• equality/inequality of matrices (two matrices are equal if they have
the same dimension and all corresponding elements are equal);

• matrix addition and subtraction (performed elementwise);
• matrix multiplication and conformability (to perform the matrix

multiplication AB, it is necessary for A and B to be conformable;
i.e., the number of columns of A must equal the number of rows of
B);

• scalar multiplication (cA is the matrix obtained by multiplying each
element of A by the scalar c);

• transpose of a matrix (interchange rows and columns, denoted with
a T superscript);

• the trace of a square matrix (sum of the diagonal elements; the trace
of the n× n matrix A = (aij) is tr(A) =

∑n
i=1 aii);

• the determinant of a matrix (a scalar-valued function of a matrix
used in computing a matrix inverse; the determinant of A is denoted
|A|);

• the inverse of a square matrix A, say (a matrix, denoted A−1, whose
product with A yields the identity matrix; i.e., AA−1 = A−1A = I).

• Chapter 2 of our text contains a review of basic matrix algebra.
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Some Geometric Concepts:

Euclidean Space: A vector
(
x
y

)
of dimension two can be thought of as

representing a point on a two-dimensional plane:

and the collection of all such points defines the plane, which we call R2.

Similarly, a three-dimensional vector (x, y, z)T can represent a point in
3-dimensional space:

with the collection of all such triples yielding 3 dimensional space, R3.

More generally, Euclidean n-space, denoted Rn, is given by the collection
of all n-tuples (n-dimensional vectors) consisting of real numbers.

• Actually, the proper geometric interpretation of a vector is as a di-
rected line segment extending from the origin (the point 0) to the
point indicated by the coordinates (elements) of the vector.
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Vector Spaces: Rn (for each possible value of n) is a special case of the
more general concept of a vector space:

Let V denote a set of n-dimensional vectors. If, for every pair of vectors
in V , xi ∈ V and xj ∈ V , it is true that

i. xi + xj ∈ V , and
ii. cxi ∈ V , for all real scalars c,

then V is said to be a vector space of order n.

• Examples: Rn (Euclidean n-space) is a vector space because it is
closed under addition and scalar multiplication. Another example
is the set consisting only of 0. Moreover, 0 belongs to every vector
space in Rn.

Spanning Set, Linear Independence, and Basis. The defining char-
acteristics of a vector space ensure that all linear combinations of vec-
tors in a vector space V are also in V . I.e., if x1, . . . ,xk ∈ V , then
c1x1 + c2x2 + · · ·+ ckxk ∈ V for any scalars c1, . . . , ck.

Suppose that every vector in a vector space V can be expressed as a linear
combination of the k vectors x1, . . . ,xk. Then the set {x1, . . . ,xk} is said
to span or generate V , and we write V = L(x1,x2, . . . ,xk) to denote
that V is the vector space spanned by {x1, . . . ,xk}.

If the spanning set of vectors {x1, . . . ,xk} also has the property of linear
independence, then {x1, . . . ,xk} is called a basis of V .

Vectors x1, . . . ,xk are linearly independent if
∑k

i=1 cixi = 0 implies
that c1 = 0, c2 = 0, . . . , ck = 0.

• I.e., If x1, . . . ,xk are linearly independent (LIN), then there is no
redundancy among them in the sense that it is not possible to write
x1 (say) as a linear combination of x2, . . . ,xk.

• Therefore, a basis of V is a spanning set that is LIN.

• It is not hard to prove that every basis of a given vector space V has
the same number of elements. That number of elements is called the
dimension or rank of V .
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Example:

x1 =




1
2
0


 , x2 =




1
−1
0


 , x3 =




3
0
0




are all in R3. The space spanned by {x1,x2,x3} is

L(x1,x2,x3) = {ax1 + bx2 + cx3|a, b, c ∈ R}

=








a + b + 3c
2a− b

0




∣∣∣∣a, b, c ∈ R



 =








d
e
0




∣∣∣∣d, e ∈ R





• Note that x1,x2,x3 are not LIN, because it is possible to write any
one of the three vectors as a linear combination of the other two.
E.g., 


3
0
0




︸ ︷︷ ︸
x3

=




1
2
0




︸ ︷︷ ︸
x1

+2




1
−1
0




︸ ︷︷ ︸
x2

.

• This linear dependence can be removed by eliminating any one of the
three vectors from the set. So, for example, x1,x2 are LIN and span
the same set as do x1,x2,x3. That is, L(x1,x2) = L(x1,x2,x3) ≡ V ,
so {x1,x2} and {x1,x2,x3} are both spanning sets for V , but only
{x1,x2} is a basis for V .

• Bases are not unique. {x2,x3} and {x1,x3} are both bases for V as
well in this example.

• Note also that here V is of order 3 and R3 is of order 3, but V 6= R3.
In general, there are many vector spaces of a given order.
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Subspaces. Let V be a vector space and W be a set with W ⊂ V . Then
W is a subspace of V if and only if W is also a vector space.

Example: Let V1, V2, V3 be the sets of vectors having the forms x,
y, and z, respectively, where

x =




α
0
0


 ,y =




0
0
β


 , z =




γ
0
δ


 , for real α, β, γ, and δ.

I.e.,

V1 = L






1
0
0





 , V2 = L







0
0
1





 , V3 = L







1
0
0


 ,




0
0
1





 .

Then V1, V2, V3 each define a vector space of order 3, each of which
is a subspace of R3. In addition, V1 and V2 are each subspaces of
V3.

• In this course, we will be concerned with vector spaces that are
subspaces of Rn.

Column Space, Rank of a Matrix. The column space of a matrix
A is denoted C(A), and defined as the space spanned by the columns
of A. I.e., if A is an n × m matrix with columns a1, . . . ,am so that
A = [a1, . . . ,am], then C(A) = L(a1, . . . , am).

The rank of A is defined to be the dimension of C(A). I.e., the number
of LIN columns of A.
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Some properties of the rank of a matrix.

1. For an m× n matrix A,

rank(A) ≤ min(m,n).

If rank(A) = min(m,n) then A is said to be of full rank.

2. rank(A + B) ≤ rank(A) + rank(B).

3. If the matrices A, B are conformable to the multiplication AB then

rank(AB) ≤ min{rank(A), rank(B)}.

4. For any n× n matrix A, |A| = 0 if and only if rank(A) < n.

• An n×n matrix A has an inverse (i.e., is nonsingular) if and only if
|A| 6= 0, so also iff rank(A) = n.

5. For nonsingular matrices A, B, and any matrix C, then

rank(C) = rank(AC) = rank(CB) = rank(ACB).

6. rank(A) = rank(AT ) = rank(AT A) = rank(AAT ).

7. For A an m× n matrix and b an m× 1 vector,

rank([A,b]) ≥ rank(A)

(adding a column to A can’t reduce its rank).

And a couple of properties of the column space of a matrix:

8. C(AT A) = C(AT ).

9. C(ACB) = C(AC) if rank(CB) = rank(C).
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Inner Products, Length, Orthogonality, and Projections.

For two vectors x and y in a vector space V of order n, we define 〈x,y〉
to be the inner product operation given by

〈x,y〉 =
n∑

i=1

xiyi = xT y = yT x.

• When working in more general spaces where x and y may not be
vectors, the inner product may still be defined as 〈x,y〉 =

∑n
i=1 xiyi

even when the multiplication xT y is not defined. In addition, in
some contexts the inner product may be defined differently (e.g., as
〈x,y〉 = xT Ay for some matrix A). Therefore, sometimes it is of
use to distinguish 〈x,y〉 from xT y. However, in this course these two
operations will always be the same. Nevertheless, I will sometimes
write 〈x,y〉 for xT y even though they mean the same thing.

• The inner product is sometimes called the dot product. Several
notations are commonly used, including x · y and (x,y).

Properties of the inner product:

1. 〈x,y〉 = 〈y,x〉
2. 〈ax,y〉 = a〈x,y〉
3. 〈x1 + x2,y〉 = 〈x1,y〉+ 〈x2,y〉

(Euclidean) Length: The Euclidean length of a vector x ∈ Rn is defined
to be

√
〈x,x〉 =

√
xT x and is denoted as ||x||. That is, ||x||2 = 〈x,x〉 =

xT x.

• It is possible to define other types of lengths, but unless otherwise
stated, lengths will be assumed to be Euclidean as defined above.

• E.g., for x = (3, 4, 12), the length of x is ||x|| =
√∑

i xixi =√
9 + 16 + 144 =

√
169 = 13.

(Euclidean) Distance: The distance between vectors x,y ∈ Rn is the
length of x− y.
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• The inner product between two vectors x,y ∈ Rn quantifies the
angle between them. In particular, if θ is the angle formed between
x and y then

cos(θ) =
〈x,y〉
||x||||y|| .

Orthogonality: x and y are said to be orthogonal (i.e., perpendicular)
if 〈x,y〉 = 0. The orthogonality of x and y is denoted with the notation
x ⊥ y.

• Note that orthogonality is a property of a pair of vectors. When we
want to say that each pair in the collection of vectors x1, . . . ,xk is
orthogonal, then we say that x1, . . . ,xk are mutually orthogonal.

Example: Consider the model matrix from the ANCOVA example on p.
6:

X =




1 1 0 0 62.5
1 1 0 0 67.5
1 0 1 0 65
1 0 1 0 65
1 0 0 1 60
1 0 0 1 59.5




Let x1, . . . ,x5 be the columns of X. Then x2 ⊥ x3,x2 ⊥ x4,x3 ⊥ x4 and
the other pairs of vectors are not orthogonal. I.e., x2,x3,x4 are mutually
orthogonal.

The length of these vectors are

||x1|| =
√

12 + 12 + 12 + 12 + 12 + 12 =
√

6, ||x2|| = ||x3|| = ||x3|| =
√

2,

and
||x5|| =

√
62.52 + · · ·+ 59.52 = 155.09.
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Pythagorean Theorem: Let v1, . . . ,vk be mutually orthogonal vectors
in a vector space V . Then

∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥

2

=
k∑

i=1

||vi||2

Proof:

∥∥∥∥∥
k∑

i=1

vi

∥∥∥∥∥

2

=

〈
k∑

i=1

vi,
k∑

j=1

vj

〉
=

k∑

i=1

k∑

j=1

〈vi,vj〉 =
k∑

i=1

〈vi,vi〉 =
k∑

i=1

||vi||2

Projections: The (orthogonal) projection of a vector y on a vector x
is the vector ŷ such that

1. ŷ = bx for some constant b; and
2. (y − ŷ) ⊥ x (or, equivalently, 〈ŷ,x〉 = 〈y,x〉).
• It is possible to define non-orthogonal projections, but by default

when we say “projection” we will mean the orthogonal projection as
defined above.

• The notation p(y|x) will denote the projection of y on x.
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Some Pictures:

Vector: A line segment from the origin (0, all elements equal to zero) to
the point indicated by the coordinates of the (algebraic) vector.

E.g., x =




1
3
2




Vector Addition:

19



Scalar Multiplication: Multiplication by a scalar scales a vector by
shrinking or extending the vector in the same direction (or opposite direc-
tion if the scalar is negative).

Projection: The projection of y on x is the vector in the direction of x
(part 1 of the definition) whose difference from y is orthogonal (perpen-
dicular) to x (part 2 of the definition).

• From the picture above it is clear that ŷ is the projection of y on
the subspace of all vectors of the form ax, the subspace spanned by
x.
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It is straight-forward to find ŷ = p(y|x), the projection of y on x:

By part 1 of the definition ŷ = bx, and by part 2,

ŷT x = yT x.

But since
ŷT x = (bx)T x = bxT x = b‖x‖2,

the definition implies that

b‖x‖2 = yT x ⇒ b =
yT x
‖x‖2

unless x = 0, in which case b could be any constant.

So, ŷ is given by

ŷ =

{
(any constant)0 = 0, for x = 0(

yT x
‖x‖2

)
x, otherwise

Example: In R2, let y =
(
4
3

)
, x =

(
5
0

)
. Then to find ŷ = p(y|x) we

compute xT y = 20, ‖x‖2 = 25, b = 20/25 = 4/5 so that ŷ = bx =
(4/5)

(
5
0

)
=

(
4
0

)
.

In addition, y − ŷ =
(
0
3

)
so y − ŷ ⊥ x.

In this case, the Pythagorean Theorem reduces to its familiar form from
high school algebra. The squared length of the hypotenuse (‖y‖2 = 16 +
9 = 25) is equal to the sum of the squared lengths of the other two sides
of a right triangle (‖y − ŷ‖2 + ‖ŷ‖2 = 9 + 16 = 25).
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Theorem Among all multiples ax of x, the projection ŷ = p(y|x) is the
closest vector to y.

Proof: Let y∗ = cx for some constant c. ŷ is such that

(y − ŷ) ⊥ ax for any scalar a

so in particular, for b = yT x/‖x‖2,

(y − ŷ) ⊥ (b− c)x︸ ︷︷ ︸
=bx−cx=ŷ−y∗

In addition,
y − y∗ = y − ŷ︸ ︷︷ ︸+ ŷ − y∗︸ ︷︷ ︸

so the P.T. implies

‖y − y∗‖2 = ‖y − ŷ‖2 + ‖ŷ − y∗‖2
⇒ ‖y − y∗‖2 ≥ ‖y − ŷ‖2 for all y∗ = cx

with equality if and only if y∗ = ŷ.

The same sort of argument establishes the Cauchy-Schwartz Inequal-
ity:

Since ŷ ⊥ (y − ŷ) and y = ŷ + (y − ŷ), it follows from the P.T. that

‖y‖2 = ‖ŷ‖2 + ‖y − ŷ‖2
= b2‖x‖2 + ‖y − ŷ‖2

=
(yT x)2

‖x‖2 + ‖y − ŷ‖2︸ ︷︷ ︸
≥0

⇒ ‖y‖2 ≥ (yT x)2

‖x‖2

or
(yT x)2 ≤ ‖y‖2‖x‖2

with equality if and only if ‖y − ŷ‖ = 0 (i.e., iff y is a multiple of x).
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Projections onto 0/1 or indicator vectors. Consider a vector space in
Rn. Let A be a subset of the indices 1, . . . , n. Let iA denote the indicator
vector for A; that is iA is the n-dimensional vector with 1’s in the positions
given in the set A, and 0’s elsewhere.

• E.g., the columns of the model matrix in the cell-means version of
the one-way ANOVA model are all indicator variables. Recall the
mother-daughter height example that had n = 6 and two observa-
tions per birth-order group. The model matrix was

X =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




= [x1,x2,x3].

Here, xi is an indicator vector for the ith birth-order group. I.e.,
xi = iAi where A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}.

The projection of a vector y onto an indicator vector is simply the mean
of those elements of y being indicated, times the indicator vector.

I.e.,the projection ŷA of y on iA is biA where

b =
yT iA
‖iA‖2 =

∑
i∈A yi

N(A)

where N(A) =the number of indices in A. That is, b = ȳA, the mean of
the y−values with components in A, so that ŷA = ȳAiA.
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Example: the daughters’ height data were given by y = (64, 68, 63, 66, 61, 66)T .
The projection of y onto x1 is

p(y|x1) =
64 + 68
12 + 12︸ ︷︷ ︸

=66

x1 =




66
66
0
0
0
0




.

Similarly,

p(y|x2) =
63 + 66

2
x2 =




0
0

64.5
64.5
0
0




, p(y|x3) =
61 + 66

2
x3 =




0
0
0
0

63.5
63.5




.

Orthogonality to a Subspace: A vector y is orthogonal to a subspace
V of Rn if y is orthogonal to all vectors in V . If so, we write y ⊥ V .

Orthogonal Complement: Let V ⊥ = {v ∈ Rn|v ⊥ V }. V ⊥ is called
the orthogonal complement of V .

More generally, if V ⊂ W , then V ⊥ ∩W = {v ∈ W |v ⊥ V } is called the
orthogonal complement of V with respect to W .

• It can be shown that if W is a vector space and V is a subspace of W ,
then the orthogonal complement of V with respect to W is a subspace
of W and for any w ∈ W , w can be written uniquely as w = w0+w1,
where w0 ∈ V and w1 ∈ V ⊥ ∩W . The ranks (dimensions) of these
subspaces satisfy rank(V ) + rank(V ⊥ ∩W ) = rank(W ).
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Projection onto a Subspace: The projection of a vector y on a subspace
V of Rn is the vector ŷ ∈ V such that (y− ŷ) ⊥ V . The vector e = y− ŷ
will be called the residual vector for y relative to V .

• Fitting linear models is all about finding projections of a response
vector onto a subspace defined as a linear combination of several vec-
tors of explanatory variables. For this reason, the previous definition
is central to this course.

• The condition (y− ŷ) ⊥ V is equivalent to (y− ŷ)T x = 0 or yT x =
ŷT x for all x ∈ V . Therefore, the projection ŷ of y onto V is the
vector which has the same inner product as does y with each vector
in V .

Comment: If vectors x1, . . . ,xk span a subspace V then a vector z ∈ V
equals p(y|V ) if 〈z,xi〉 = 〈y,xi〉 for all i.

Why?

Because any vector x ∈ V can be written as
∑k

j=1 bjxj for some scalars
b1, . . . , bk, so for any x ∈ V if 〈z,xj〉 = 〈y,xj〉 for all j, then

〈z,x〉 = 〈z,
k∑

j=1

bjxj〉 =
k∑

j=1

bj〈z,xj〉 =
k∑

j=1

bj〈y,xj〉 = 〈y,
k∑

j=1

bjxj〉 = 〈y,x〉

Since any vector x in a k−dimensional subspace V can be expressed as a
linear combination of basis vectors x1, . . . ,xk, this suggests that we might
be able to compute the projection ŷ of y on V by summing the projections
ŷi = p(y|xi).

• We’ll see that this works, but only if x1, . . . ,xk form an orthogonal
basis for V .

First, does a projection p(y|V ) as we’ve defined it exist at all, and if so,
is it unique?

• We do know that a projection onto a one-dimensional subspace exists
and is unique. Let V = L(x), for x 6= 0. Then we’ve seen that
ŷ = p(y|V ) is given by

ŷ = p(y|x) =
yT x
‖x‖2 x.
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Example Consider R5, the vector space containing all 5−dimensional
vectors of real numbers. Let A1 = {1, 3}, A2 = {2, 5}, A3 = {4} and
V = L(iA1 , iA2 , iA3) = C(X), where X is the 5 × 3 matrix with columns
iA1 , iA2 , iA3 .

Let y = (6, 10, 4, 3, 2)T . It is easy to show that the vector

ŷ =
3∑

i=1

p(y|iAi
) = 5iA1 + 6iA2 + 3iA3 =




5
6
5
3
6




satisfies the conditions for a projection onto V (need to check that ŷ ∈ V
and ŷT iAi = yT iAi , i = 1, 2, 3).

• The representation of ŷ as the sum of projections on linearly inde-
pendent vectors spanning V is possible here because iA1 , iA2 , iA3 are
mutually orthogonal.

Uniqueness of projection onto a subspace: Suppose ŷ1, ŷ2 are two vectors
satisfying the definition of p(y|V ). Then ŷ1 − ŷ2 ∈ V and

〈y − ŷ1,x〉 = 0 = 〈y − ŷ2,x〉, ∀x ∈ V

⇒ 〈y,x〉 − 〈ŷ1,x〉 = 〈y,x〉 − 〈ŷ2,x〉 ∀x ∈ V

⇒ 〈ŷ1 − ŷ2,x〉 = 0 ∀x ∈ V

so ŷ1 − ŷ2 is orthogonal to all vectors in V including itself, so

‖ŷ1 − ŷ2‖2 = 〈ŷ1 − ŷ2, ŷ1 − ŷ2〉 = 0
⇒ ŷ1 − ŷ2 = 0 ⇒ ŷ1 = ŷ2
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Existence of p(y|V ) is based on showing how to find p(y|V ) if an orthogonal
basis for V exists, and then showing that an orthogonal basis always exists.

Theorem: Let v1, . . . ,vk be an orthogonal basis for V , a subspace of Rk.
Then

p(y|V ) =
k∑

i=1

p(y|vi).

Proof: Let ŷi = p(y|vi) = bivi for bi = 〈y,vi〉/‖vi‖2. Since ŷi is a scalar
multiple of vi, it is orthogonal to vj , j 6= i. From the comment on the top
of p.25, we need only show that

∑
i ŷi and y have the same inner product

with each vj . This is true because, for each vj ,

〈
∑

i

ŷi,vj〉 =
∑

i

bi〈vi,vj〉 = bj‖vj‖2 = 〈y,vj〉.

Example: Let

y =




6
3
3


 , v1 =




1
1
1


 , v2 =




3
0
−3


 , V = L(v1,v2).

Then v1 ⊥ v2 and

p(y|V ) = ŷ = p(y|v1) + p(y|v2) =
(

12
3

)
v1 +

(
9
18

)
v2

=




4
4
4


 +




3/2
0

−3/2


 =




5.5
4

2.5




In addition, 〈y,v1〉 = 12, 〈y,v2〉 = 9 are the same as 〈ŷ,v1〉 = 12, and
〈ŷ,v2〉 = 16.5 − 7.5 = 9. The residual vector is e = y − ŷ = (.5,−1, .5)T

which is orthogonal to V .

Note that the Pythagorean Theorem holds:

‖y‖2 = 54, ‖ŷ‖2 = 52.5, ‖y − ŷ‖2 = 1.5.

• We will see that this result generalizes to become the decomposition
of the total sum of squares into model and error sums of squares in
a linear model.
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Every subspace contains an orthogonal basis (infinitely many, actually).
Such a basis can be constructed by the Gram-Schmidt orthogonalization
method.

Gram-Schmidt Orthogonalization: Let x1, . . . ,xk be a basis for a
k−dimensional subspace V of Rk. For i = 1, . . . , k, let Vi = L(x1, . . . ,xi)
so that V1 ⊂ V2 ⊂ · · · ⊂ Vk are nested subspaces. Let

v1 = x1,

v2 = x2 − p(x2|V1) = x2 − p(x2|v1),

v3 = x3 − p(x3|V2) = x3 − {p(x3|v1) + p(x3|v2)},
...

vk = xk − p(xk|Vk−1) = xk − {p(xk|v1) + · · ·+ p(xk|vk−1)}

• By construction, v1 ⊥ v2 and v1,v2 span V2; v3 ⊥ V2 (v1,v2,v3

are mutually orthogonal) and v1,v2,v3 span V3; etc., etc., so that
v1, . . . ,vk are mutually orthogonal spanning V .

If v1, . . . ,vk form an orthogonal basis for V , then

ŷ = p(y|V ) =
k∑

j=1

p(y|vj) =
k∑

j=1

bjvj , where bj = 〈y,vj〉/‖vj‖2

so that the Pythagorean Theorem implies

‖ŷ‖2 =
k∑

j=1

‖bjvj‖2 =
k∑

j=1

b2
j‖vj‖2 =

k∑

j=1

〈y,vj〉2
‖vj‖2 .

Orthonormal Basis: Two vectors are said to be orthonormal if they are
orthogonal to one another and each has length one.

• Any vector v can be rescaled to have length one simply by multiply-
ing that vector by the scalar 1/‖v‖ (dividing by its length).

If v∗1, . . . ,v
∗
k form an orthonormal basis for V , then the results above

simplify to

ŷ =
k∑

j

〈y,v∗j 〉v∗j and ‖ŷ‖2 =
k∑

j=1

〈y,v∗j 〉2.
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Example: The vectors

x1 =




1
1
1


 , x2 =




1
0
0




are a basis for V , the subspace of vectors with the form (a, b, b)T . To
orthonormalize this basis, take v1 = x1, then take

v2 = x2 − p(x2|v1) =




1
0
0


− 〈x2,v1〉

‖v1‖2 v1

=




1
0
0


− 1

3




1
1
1


 =




2/3
−1/3
−1/3




v1,v2 form an orthogonal basis for V , and

v∗1 =
1√
3
v1 =




1/
√

3
1/
√

3
1/
√

3


 , v∗2 =

1√
6/9

v2 =




2/
√

6
−1/

√
6

−1/
√

6




form an orthonormal basis for V .

• The Gram-Schmidt method provides a method to find the projection
of y onto the space spanned by any collection of vectors x1, . . . ,xk

(i.e., the column space of any matrix).

• Another method is to solve a matrix equation that contains the
k simultaneous linear equations known as the normal equations.
This may necessitate the use of a generalized inverse of a matrix
if x1, . . . ,xk are linearly dependent (i.e., if the matrix with columns
x1, . . . ,xk is not of full rank).

• See homework #1 for how the Gram-Schmidt approach leads to non-
matrix formulas for regression coefficients; in what follows we develop
the matrix approach.
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Consider V = L(x1, . . . ,xk) = C(X), where X = [x1, . . . ,xk]. ŷ, the
projection of y onto V is a vector in V that forms the same angle as does
y with each of the vectors in the spanning set {x1, . . . ,xk}.
That is, ŷ has the form ŷ = b1x1 + · · ·+ bkxk where 〈ŷ,xi〉 = 〈y,xi〉, for
all i.

These requirements can be expressed as a system of equations, called the
normal equations:

〈ŷ,xi〉 = 〈y,xi〉, i = 1, . . . , k,

or, since ŷ =
∑k

j bjxj ,

k∑

j=1

bj〈xj ,xi〉 = 〈y,xi〉, i = 1, . . . , k.

More succinctly, these equations can be written as a single matrix equation:

XT Xb = XT y, (the normal equation)

where b = (b1, . . . , bk)T .

To see this note that XT X has (i, j)th element 〈xi,xj〉 = xT
i xj , and XT y

is the k × 1 vector with ith element 〈y,xi〉 = xT
i y:

XT X =




xT
1

xT
2
...

xT
k


 (x1 x2 · · · xk ) = (xT

i xj) and XT y =




xT
1

xT
2
...

xT
k


y =




xT
1 y

xT
2 y
...

xT
k y




• If XT X has an inverse (is nonsingular) then the equation is easy
to solve:

b = (XT X)−1XT y

• Assume X is n × k with n ≥ k. From rank property 6 (p. 15) we
know that

rank(XT X) = rank(X).

Therefore, we conclude that the k × k matrix XT X has full rank
k and thus is nonsingular if and only if Xn×k has rank k (has full
column rank or linearly independent columns).
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If we write ŷ = b1x1 + · · ·+ bkxk = Xb, then for X of full rank we have

ŷ = X(XT X)−1XT y = Py, where P = X(XT X)−1XT

• P = X(XT X)−1XT is called the (orthogonal) projection matrix
onto C(X) because premultiplying y by P produces the projection
ŷ = p(y|C(X)).

• P is sometimes called the hat matrix because it “puts the hat on”
y. Our book uses the notation H instead of P (‘H’ for hat, ‘P’ for
projection, but these are just two different terms and symbols for
the same thing).

Since ŷ = p(y|C(X)) is the closest point in C(X) to y, b has another
interpretation: it is the value of β that makes the linear combination Xβ
closest to y. I.e., (for X of full rank) b = (XT X)−1XT y minimizes

Q = ||y −Xβ||2 (the least squares criterion)
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Example – Typographical Errors: Shown below are the number of
galleys for a manuscript (X1) and the dollar cost of correcting typograph-
ical errors (Y ) in a random sample of n = 6 recent orders handled by a
firm specializing in technical manuscripts.

i Xi1 Yi

1 7 128
2 12 213
3 4 75
4 14 250
5 25 446
6 30 540

A scatterplot of Y versus X1 appears below.
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It is clear from the above scatterplot that the relationship between cost
and manuscript length is nearly linear.
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Suppose we try to approximate y = (128, . . . , 540)T by a linear function
b0 + b1x1 where x1 = (7, . . . , 30)T . The problem is to find the values of
(β0, β1) in the linear model

y =




1 7
1 12
1 4
1 14
1 25
1 30




︸ ︷︷ ︸
=X

(
β0

β1

)
+




e1

e2

e3

e4

e5

e6




y = β0 x0︸︷︷︸
=j6

+β1x1 + e.

Projecting y onto L(x0,x1) = C(X) produces ŷ = Xb where b solves the
normal equations

XT Xb = XT y. (∗)

That is, b minimizes

Q = ||y −Xβ||2 = ||y − (β0 + β1x1)||2 = ||e||2 =
6∑

i

e2
i .

• That is, b minimizes the sum of squared errors. Therefore, Q is
called the least squares criterion and b is called the least squares
estimator of β.

b solves (*), where

XT X =
(

6 92
92 1930

)
and XT y =

(
1652
34602

)
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In this example, x0,x1 are linearly independent so X has full rank (equal
to 2) and XT X is nonsingular with

(XT X)−1 =
(

.6194 −.0295
−.0295 .0019

)

so

b = (XT X)−1XT y =
(

1.5969
17.8524

)
ŷ = Xb =




126.6
215.8
73.0
251.5
447.9
537.2




In addition,

‖y‖2 = 620, 394, ‖ŷ‖2 = 620, 366, ‖e‖2 = ‖y − ŷ‖2 = 28.0

so the Pythagorean Theorem holds.

Another Example - Gasoline Additives

Suppose that an experiment was conducted to compare the effects on oc-
tane for 2 different gasoline additives. For this purpose an investigator
obtains 6 one-liter samples of gasoline and randomly divides these sam-
ples into 3 groups of 2 samples each. The groups are assigned to receive no
additive (treatment C, for control), or 1 cc/liter of additives A, or B, and
then octane measurements are made. The resulting data are as follows:

Treatment Observations

A 91.7 91.9
B 92.4 91.3
C 91.7 91.2

Let y be the vector y = (y11, y12, y21, y22, y31, y32)T , where yij is the re-
sponse (octane) for the jth sample receiving the ith treatment.
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Let x1,x2,x3 be indicators for the three treatments. That is, x1,x2,x3
correspond to the columns of the model matrix

X =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




.

The best approximation to y by a vector in V = L(x1,x2,x3) = C(X) in
the least squares sense is

ŷ = p(y|V ) =
3∑

i=1

p(y|xi) =
3∑

i=1

ȳixi,

where ȳi = (1/2)(yi1 + yi2), the mean of the values in the ith treatment.

• The second equality above follows from the orthogonality and linear
independence of x1,x2,x3 ({x1,x2,x3} form an orthogonal basis for
V ).

Easy computations lead to

ȳ1 = 91.80, ȳ2 = 91.85, ȳ3 = 91.45,

so

ŷ = 91.80




1
1
0
0
0
0




+ 91.85




0
0
1
1
0
0




+ 91.45




0
0
0
0
1
1




=




91.80
91.80
91.85
91.85
91.45
91.45




It is easily verified that the error sum of squares is ‖y − ŷ‖2 = 0.75 and
‖ŷ‖2 = 50, 453.53 which sum to ‖y‖2 = 50, 454.28.
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Projection Matrices.

Definition: P is a (orthogonal) projection matrix onto V if and only if

i. v ∈ V implies Pv = v (projection); and
ii. w ⊥ V implies Pw = 0 (orthogonality).

• For X an n × k matrix of full rank, it is not hard to show that
P = X(XT X)−1XT satisfies this definition where V = C(X), and is
therefore a projection matrix onto C(X). Perhaps simpler though,
is to use the following theorem:

Theorem: P is a projection matrix onto its column space C(P) ⊂ Rn if
and only if

i. PP = P (it is idempotent), and
ii. P = PT (it is symmetric).

Proof: First, the ⇒ part: Choose any two vectors w, z ∈ Rn. w can be
written w = w1 + w2 where w1 ∈ C(P) and w2 ⊥ C(P) and z can be
decomposed similarly as z = z1 + z2. Note that

(I−P)w = w −Pw = (w1 + w2)−Pw1︸︷︷︸
=w1

−Pw2︸︷︷︸
=0

= w2

and
Pz = Pz1 + Pz2 = Pz1 = z1,

so
0 = zT

1 w2 = (Pz)T (I−P)w.

We’ve shown that zT PT (I − P)w = 0 for any w, z ∈ Rn, so it must be
true that PT (I − P) = 0 or PT = PT P. Since PT P is symmetric, PT

must also be symmetric, and this implies P = PP.

Second, the ⇐ part: Assume PP = P and P = PT and let v ∈ C(P) and
w ⊥ C(P). v ∈ C(P) means that we must be able to write v as Pb for
some vector b. So v = Pb implies Pv = PPb = Pb = v (part i. proved).
Now w ⊥ C(P) means that PT w = 0, so Pw = PT w = 0 (proves part
ii.).
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Now, for X an n×k matrix of full rank, P = X(XT X)−1XT is a projection
matrix onto C(P) because it is symmetric:

PT = {X(XT X)−1XT }T = X(XT X)−1XT = P

and idempotent:

PP = {X(XT X)−1XT }{X(XT X)−1XT } = X(XT X)−1XT = P.

Theorem: Projection matrices are unique.

Proof: Let P and M be projection matrices onto some space V . Let
x ∈ Rn and write X = v + w where v ∈ V and w ∈ V ⊥. Then Px =
Pv + Pw = v and Mx = Mv + Mw = v. So, Px = Mx for any x ∈ Rn.
Therefore, P = M.

• Later, we’ll see that C(P) = C(X). This along with the uniqueness
of projection matrices means that (in the X of full rank case) P =
X(XT X)−1XT is the (unique) projection matrix onto C(X).

So, the projection matrix onto C(X) can be obtained from X as X(XT X)−1XT .
Alternatively, the projection matrix onto a subspace can be obtained from
an orthonormal basis for the subspace:

Theorem: Let o1, . . . ,ok be an orthonormal basis for V ∈ Rn, and let
O = (o1, . . . ,ok). Then OOT =

∑k
i=1 oioT

i is the projection matrix onto
V .

Proof: OOT is symmetric and OOT OOT = OOT (idempotent); so, by the
previous theorem OOT is a projection matrix onto C(OOT ) = C(O) = V
(using property 8, p.15).
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Some Examples:

1. The projection (matrix) onto the linear subspace of vectors of the
form (a, 0, b)T (the subspace spanned by (0, 0, 1)T and (1, 0, 0)T ) is

P =




0 1
0 0
1 0




︸ ︷︷ ︸
=O

(
0 0 1
1 0 0

)
=




1 0 0
0 0 0
0 0 1




2. Let jn represent the column vector containing n ones. The projection
onto L(jn) is

P =
1√
n
jn

(
1√
n
jn

)T

=
1
n
jnjTn = n× n matrix with all elements = to n−1

Note that Px = x̄jn, where x̄ = 〈x, jn〉/‖jn‖2 = (
∑n

i=1 xi)/n.

Projections onto nested subspaces: Let V be a subspace of Rn and
let V0 be a subspace of V . Let P and P0 be the corresponding projection
matrices. Then

(1) PP0 = P0, and (2) P0P = P0.

Proof: (1): letting ŷ = Py ∈ V and ŷ0 = P0y ∈ V0 ⊂ V , then for
y ∈ Rn, P (P0y) = P(ŷ0) = ŷ0. Now (2) follows from the symmetry of
projection matrices: Since P0 = PP0 and P0 is symmetric it follows that
P0 = PP0 = (PP0)T = PT

0 PT = P0P.

38



Projection onto the orthogonal complement:

Theorem: Let P and P0 be projection matrices with C(P0) ⊂ C(P).
Then (i) P−P0 is a projection matrix onto C(P−P0), and (ii) C(P−P0)
is the orthogonal complement of C(P0) with respect to C(P).

Proof: First prove that P−P0 is a projection matrix onto C(P−P0) by
checking idempotency:

(P−P0)(P−P0) = PP−PP0−P0P+P0P0 = P−P0−P0+P0 = P−P0

and symmetry:
(P−P0)T = PT −PT

0 = P−P0.

Now prove that C(P − P0) is the orthogonal complement of C(P0) with
respect to C(P): C(P − P0) ⊥ C(P0) because (P − P0)P0 = PP0 −
P0P0 = P0 − P0 = 0. Thus, C(P − P0) is contained in the orthogonal
complement of C(P0) with respect to C(P). In addition, the orthogonal
complement of C(P0) with respect to C(P) is contained in C(P − P0)
because if x ∈ C(P) and x ∈ C(P0)⊥, then x = Px = (P−P0)x+P0x =
(P−P0)x.

• An important consequence of this theorem is that if PV is the projec-
tion matrix onto a subspace V , then I−PV is the projection matrix
onto the orthogonal complement of V .

Another Example:

3. If V = L(jn), then V ⊥ is the set of all n−vectors whose elements
sum to zero.

The projection onto V ⊥ is PV ⊥ = In−PV = In− 1
n jnjTn . Note that

PV ⊥x is the vector of deviations from the mean:

PV ⊥x = (In − 1
n
jnjTn )x = x− x̄jn = (x1 − x̄, . . . , xn − x̄)T .
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More on Subspaces:

Direct Sums: In a linear model y = Xβ + e, it is useful to decompose
the sample space Rn into two orthogonal subspaces: the model subspace
C(X) and the error space C(X)⊥. This provides a means of separating
sources of variability in the response variable (variability explained by the
model versus everything else).

In ANOVA, we go one-step farther and decompose the model space C(X)
into mutually orthogonal subspaces of C(X). This provides a means for
separating the influences of several explanatory factors on the response,
which makes for better understanding.

• To undersand these ideas from the geometric viewpoint, we intro-
duce the ideas of linear independence of subspaces and summation
of vector spaces (called the direct sum).

Linear independence of subspaces: Subspaces V1, . . . , Vk of Rn are
linearly independent if for xi ∈ Vi, i = 1, . . . , k,

∑k
i=1 xi = 0 implies that

xi = 0 for all i = 1, . . . , k.

• For a pair of subspaces Vi, Vj , i 6= j, the property Vi ∩ Vj = {0} is
equivalent to linear independence of Vi and Vj .

• However, for several subspaces V1, . . . , Vk, pairwise linear indepen-
dence (Vi ∩ Vj = {0} for each i 6= j ∈ {1, . . . , k}) does not imply
linear independence of the collection V1, . . . , Vk.

Direct sum: Let V1, . . . , Vk be subspaces of Rn. Then

V =

{
x

∣∣∣ x =
k∑

i=1

xi,xi ∈ Vi, i = 1, . . . , k

}

is called the direct sum of V1, . . . , Vk, and is denoted by

V = V1 + · · ·+ Vk.

If these subspaces are linearly independent, then we will write the direct
sum as

V = V1 ⊕ · · · ⊕ Vk

to indicate the linear independence of V1, . . . , Vk.
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• Note that for any subspace V ∈ Rn, V ⊥ is a subspace. In addition,
since V ⊥ ∩ V = {0}, V ⊥ and V are linearly independent and Rn =
V ⊕ V ⊥.

Theorem The representation x =
∑

i=1 xi for xi ∈ Vi of elements x ∈
V = V1 + · · · + Vk is unique if and only if the subspaces are linearly
independent.

Proof: (First the ⇐ part:) Suppose that these subspaces are linearly inde-
pendent and suppose that x has two such representations: x =

∑k
i=1 xi =∑k

i=1 wi for xi,wi ∈ Vi, i = 1, . . . , k. Then
∑k

i=1(xi −wi) = 0, which by
linear independence implies xi −wi = 0 or xi = wi for each i.

(Next the ⇒ part:) Suppose the representation is unique, let vi ∈ Vi,
i = 1, . . . , k, and let

∑k
i=1 vk = 0. Since 0 ∈ Vi for each i, and 0 =

0 + · · · + 0, it follows that vi = 0 for each i (uniqueness), implying the
linear independence of V1, . . . , Vk.

Theorem: If {vi1, . . . ,vini} is a basis for Vi, for each i = 1, . . . , k, and
V1, . . . , Vk are linearly independent, then {v11, . . . ,v1n1 , . . . ,vk1, . . . ,vknk

}
is a basis for V = V1 ⊕ · · · ⊕ Vk.

Proof: Omitted.

Corollary: If V = V1 ⊕ · · · ⊕ Vk, then

dim(V ) = dim(V1) + · · ·+ dim(Vk).

Proof: Omitted.

Theorem For any subspace V ⊂ Rn and any x ∈ Rn, there exist unique
elements x1,x2 such that x = x1 + x2, where x1 ∈ V and x2 ∈ V ⊥.

Proof: For existence take x1 = p(x|V ) (which we know exists) and then
take x2 = x − x1. Uniqueness follows from the linear independence of V
and V ⊥ and the Theorem at the top of the page.

Corollary: x1 = p(x|V ) and x2 = p(x|V ⊥).

Proof: Follows from the identities x = p(x|V ) + [x − p(x|V )], x = [x −
p(x|V ⊥)] + p(x|V ⊥) and the uniqueness of the decomposition in the pre-
vious Theorem.

41



Example: Consider R4, the space of 4-component vectors. Let

x1 = j4 =




1
1
1
1


 , x2 =




1
1
1
0


 , x3 =




1
1
0
0




and let

V1 = L(x1) = {




a
a
a
a


 |a ∈ R} V2 = L(x2,x3) = {




b + c
b + c

b
0


 |b, c ∈ R}

Notice that V1 and V2 are linearly independent, so that V defined to be

V = V1 ⊕ V2 = {




a + b + c
a + b + c

a + b
a


 |a, b, c real numbers}

has dimension 1 + 2 = 3.

The orthogonal complements are

V ⊥
1 = {




a
b
c

−a− b− c


 |a, b, c ∈ R} V ⊥

2 = {




a
−a
0
b


 |a, b ∈ R}

V ⊥ = {




a
−a
0
0


 |a ∈ R}

• In general, for V = V1 ⊕ V2, the relationship PV = PV1 + PV2 holds
only if V1 ⊥ V2. They are not orthogonal in this example. Verify
that PV = PV1 +PV2 doesn’t hold here by computing p(y|V ), p(y|V1)
and p(y|V2) for some y (e.g., y = (1, 2, 3, 4)T ).
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Earlier, we established that a projection onto a subspace can be accom-
plished by projecting onto orthogonal basis vectors for that subspace and
summing.

In the following theorem we establish that a projection onto a subspace V
can be accomplished by summing the projections onto mutually orthogonal
subspaces whose sum is V .

Theorem: Let V1, . . . , Vk be mutually orthogonal subspaces of Rn. Let
V = V1 ⊕ · · · ⊕ Vk. Then p(y|V ) =

∑k
i=1 p(y|Vi), for all y ∈ Rn.

Proof: Let ŷi = p(y|Vi). To show that
∑

i ŷi is the projection of y onto
V , we must show that for each x ∈ V , 〈y,x〉 = 〈∑i ŷi,x〉. Since x ∈ V ,
x can be written as x =

∑k
j=1 xj for some x1 ∈ V1,x2 ∈ V2, . . . ,xk ∈ Vk.

Thus,

〈
∑

i

ŷi,x〉 = 〈
∑

i

ŷi,
∑

j

xj〉 =
k∑

i=1

k∑

j=1

〈ŷi,xj〉

=
∑

i

〈ŷi,xi〉+
∑

i,j
i6=j

〈ŷi,xj〉

︸ ︷︷ ︸
=0

∗=
k∑

i=1

〈y,xi〉

= 〈y,

k∑

i=1

xi〉 = 〈y,x〉

.

(∗ since ŷi is the projection onto Vi).
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For V ⊂ Rn, Rn can always be decomposed into V and V ⊥ so that
Rn = V ⊕ V ⊥.

The previous theorem tells us that any y ∈ Rn can be decomposed as

y = p(y|V ) + p(y|V ⊥),

or since y = Iny = PRny,

PRny = PV y + PV ⊥y

for all y. Because this is true for all y, it follows that

PRn︸︷︷︸
=I

= PV + PV ⊥

⇒ PV⊥ = I−PV

More generally, consider a subspace V0 that is a proper subset of a subspace
V (i.e., V0 ⊂ V and is not equal to V , where V is not necessarily Rn).
Then V can be decomposed as V = V0 ⊕ V1 where V1 = V ⊥

0 ∩ V is the
orthogonal complement of V0 w.r.t. V , and

PV = PV0 + PV1 .

Rearranging, this result can be stated as

PV0 = PV −PV ⊥0 ∩V

or
PV ⊥0 ∩V = PV −PV0

which are (sometimes) more useful forms of the same relationship.
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Example: One-way ANOVA, Effects Version:

Consider the model at the top of p. 6:




y11

y12

y21

y22

y31

y32




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1







µ
α1

α2

α3


 +




e11

e12

e21

e22

e31

e32




y = Xβ + e

Let x1, . . . ,x4 be the columns of X. The sample space Rn can be decom-
posed as

R6 = C(X)⊕ C(X)⊥.

• C(X) is called the model space and C(X)⊥ the error space.

The model space C(X) can be decomposed further as

C(X) = L(x1) + L(x2,x3,x4)

• Notice that we use a ‘+’ rather than a ‘⊕’ because L(x1), L(x1,x2,x3)
are not LIN. Why? Because they intersect:

L(x1) =








a
a
a
a
a
a




∣∣∣∣a ∈ R





, L(x2,x3,x4) =








b
b
c
c
d
d




∣∣∣∣b, c, d ∈ R





.

These spaces intersect when b = c = d.

• Alternatively, we can check the definition: Does v + w = 0 imply
v = w = 0 for v ∈ L(x1),w ∈ L(x2,x3,x4)? No, because we could
take v = (a, a, a, a, a, a)T and w = (−a,−a,−a,−a,−a,−a)T for
a 6= 0.
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A more useful decomposition of the model space is into LIN subspaces.
For example,

C(X) = L(x1)⊕ (L(x2,x3,x4) ∩ L(x1)⊥).

• Here, (L(x2,x3,x4)∩L(x1)⊥) is the orthogonal complement of L(x1)
with respect to C(X). It can be represented as








b
b
c
c

−(b + c)
−(b + c)




∣∣∣∣b, c ∈ R





.

Since L(x1) and (L(x2,x3,x4) ∩ L(x1)⊥) are LIN, orthogonal and direct
sum to give C(X), the projection of y onto C(X) (that is, fitting the
model) can be done as

ŷ = p(y|C(X)) = p(y|L(x1)) + p(y|(L(x2,x3,x4) ∩ L(x1)⊥)),

where
p(y|L(x1)) = ȳ··x1 = (ȳ··, ȳ··, ȳ··, ȳ··, ȳ··, ȳ··)T

and

p(y|(L(x2,x3,x4) ∩ L(x1)⊥)) = PL(x2,x3,x4)y −PL(x1)y

= ȳ1·x2 + ȳ2·x3 + ȳ3·x4 − ȳ··x1

= ȳ1·x2 + ȳ2·x3 + ȳ3·x4 − ȳ··(x2 + x3 + x4)

=
3∑

i=1

(ȳi· − ȳ··)xi+1

=




ȳ1· − ȳ··
ȳ1· − ȳ··
ȳ2· − ȳ··
ȳ2· − ȳ··
ȳ3· − ȳ··
ȳ3· − ȳ··



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Since R6 = L(x1)⊕ (L(x2,x3,x4) ∩ L(x1)⊥)⊕ C(X)⊥ we have

PR6 = PL(x1) + PL(x2,x3,x4)∩L(x1)⊥ + PC(X)⊥

PR6y = PL(x1)y + PL(x2,x3,x4)∩L(x1)⊥y + PC(X)⊥y

y = ŷ1 + ŷ2︸ ︷︷ ︸
=ŷ

+e

where ŷ1 = p(y|L(x1)), ŷ2 = p(y|(L(x2,x3,x4)∩L(x1)⊥)), ŷ = p(y|C(X)),
and e = p(y|C(X)⊥) = y − ŷ.

The Pythagorean Theorem yields

||y||2 = ||ŷ1||2 + ||ŷ2||2︸ ︷︷ ︸
=||ŷ||2

+||e||2

which is usually rearranged to yield the following decomposition of the
corrected total sum of squares in the one-way anova:

||y||2 − ||ŷ1||2 = ||ŷ2||2 + ||e||2 (∗)

where

||y||2 =
∑

i

∑

j

y2
ij ||ŷ1||2 =

∑

i

∑

j

ȳ2
··

||ŷ2||2 =
∑

i

∑

j

(ȳi· − ȳ··)2 ||e||2 =
∑

i

∑

j

(yij − ȳi·)2.

so that (*) becomes

∑

i

∑

j

(yij − ȳ··)2

︸ ︷︷ ︸
=SST otal

=
∑

i

∑

j

(ȳi· − ȳ··)2

︸ ︷︷ ︸
SST rt

+
∑

i

∑

j

(yij − ȳi·)2

︸ ︷︷ ︸
=SSE

.
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Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors: A square n × n matrix A is said to
have an eigenvalue λ, with a corresponding eigenvector v 6= 0 if

Av = λv. (1)

Since (1) can be written
(A− λI)v = 0

for some nonzero vector v, this implies that the columns of (A − λI) are
linearly dependent ⇔ |A − λI| = 0. So, the eigenvalues of A are the
solutions of

|A− λI| = 0 (characteristic equation)

If we look at how a determinant is calculated it is not difficult to see that
|A − λI| will be a polynomial in λ of order n so there will be n (not
necessarily real, and not necessarily distinct) eigenvalues (solutions).

• if |A| = 0 then Av = 0 for some nonzero v. That is, if the columns
of A are linearly dependent then λ = 0 is an eigenvalue of A.

• The eigenvector associated with a particular eigenvalue is unique
only up to a scale factor. That is, if Av = λv, then A(cv) = λ(cv)
so v and cv are both eigenvectors for A corresponding to λ. We
typically normalize eigenvectors to have length 1 (choose the v that
has the property ‖v‖ =

√
vT v = 1).

• We will mostly be concerned with eigen-pairs of symmetric matrices.
For An×n symmetric, there exist n not necessarily distinct but real
eigenvalues.

• If λi and λj are distinct eigenvalues of the symmetric matrix A then
their associated eigenvectors vi, vj , are orthogonal.

• If there exist exactly k LIN vectors v1, . . . ,vk corresponding to the
same eigenvalue λ, then λ is said to have multiplicity k.

• In this case all vectors in L(v1, . . . ,vk) are eigenvectors for λ, and
k orthogonal vectors from this subspace can be chosen as the eigen-
vectors of λ.
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Computation: By computer typically, but for 2× 2 case we have

A =
(

a b
c d

)
⇒ A− λI =

(
a− λ b

c d− λ

)

|A− λI| = 0 ⇒
(a− λ)(d− λ)− bc = λ2 − (a + d)λ + (ad− bc) = 0

⇒ λ =
(a + d)±

√
(a + d)2 − 4(ad− bc)

2
To obtain associated eigenvector solve Av = λv. There are infinitely
many solutions for v so choose one by setting v1 = 1, say, and solve
for v2. Normalize to have length one by computing (1/‖v‖)v.

Orthogonal Matrices: We say that A is orthogonal if AT = A−1 or,
equivalently, AAT = AT A = I, so that the columns (and rows) of A all
have length 1 and are mutually orthogonal.

Spectral Decomposition: If An×n is a symmetric matrix then it can
be written (decomposed) as follows:

A = Un×nΛn×nUT
n×n,

where

Λ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




and U is an orthogonal matrix with columns u1,u2, . . . ,un the (normal-
ized) eigenvectors corresponding to eigenvalues λ1, λ2, . . . , λn.

• We haven’t yet talked about how to interpret eigenvalues and eigen-
vectors, but the spectral decomposition says something about the
significance of these quantities: the “information” in A can be bro-
ken apart into its eigenvalues and eigenvectors.
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An equivalent representation of the spectral decomposition is

A = UΛUT = ( λ1u1 . . . λnun )︸ ︷︷ ︸
=UΛ




uT
1
...

uT
n


 =

n∑

i=1

λiuiuT
i .

Note that uiuT
i = Pi i = 1, . . . , n, are projections onto the one-dimensional

subspaces L(ui).

So, if the eigenvalues of A are all distinct, we have

A =
n∑

i=1

λiPi

or, if A has r distinct eigenvalues λ1, . . . , λr with multiplicities k1, . . . , kr,
then

A =
r∑

i=1

λiP∗i

where P∗i is the projection onto the kj−dimensional subspace spanned by
the eigenvectors corresponding to λi.

Results:

1. Recall that the trace of a matrix is the sum of its diagonal elements.
Both the trace and the determinant of a matrix give scalar-valued
measures of the size of a matrix.

Using the spectral decomposition, it is easy to show that for a n×n
symmetric matrix A,

tr(A) =
n∑

i=1

λi and |A| =
n∏

i=1

λi
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2. If A has eigenvalues λ1, . . . , λn, then A−1 has the same associated
eigenvectors and eigenvalues 1/λ1, . . . , 1/λn since

A−1 = (UΛUT )−1 = UΛ−1UT .

3. Similarly, if A has the additional property that it is positive def-
inite (defined below), then a square root matrix, A1/2, can be
obtained with the property A1/2A1/2 = A:

A1/2 = UΛ1/2UT , where

Λ1/2 =




√
λ1 0 · · · 0
0

√
λ2 · · · 0

...
...

. . .
...

0 0 · · · √
λn




A1/2 is symmetric, has eigenvalues that are the square roots of the
eigenvalues of A, and has the same associated eigenvectors as A.

Quadratic Forms: For a symmetric matrix An×n, a quadratic form in
xn×1 is defined by

xT Ax =
n∑

i=1

n∑

j=1

aijxixj .

(xT Ax is a sum in squared (quadratic) terms, x2
i , and xixj terms.)

• Quadratic forms are going to arise frequently in linear models as
squared lengths of projections, or sums of squares.

The spectral decomposition can be used to “diagonalize” (in a certain
sense) the matrix in a quadratic form. A quadratic from xT Ax in a
symmetric matrix A can be written

xT Ax = xT UΛUT x = (UT x)T Λ (UT x)︸ ︷︷ ︸
=y

= yT Λ︸︷︷︸
diagonal

y.
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Eigen-pairs of Projection Matrices: Suppose that PV is a projection ma-
trix onto a subspace V ∈ Rn.

Then for any x ∈ V and any y ∈ V ⊥,

PV x = x = (1)x, and PV y = 0 = (0)y.

Therefore, by definition (see (1) on p.47),

• All vectors in V are eigenvectors of PV with eigenvalues 1, and

• All vectors in V ⊥ are eigenvectors of PV with eigenvalues 0.

• The eigenvalue 1 has multiplicity = dim(V ), and

• The eigenvalue 0 has multiplicity = dim(V ⊥) = n− dim(V ).

• In addition, since tr(A) =
∑

i λi it follows that tr(PV ) = dim(V )
(the trace of a projection matrix is the dimension of the space onto
which it projects).

• In addition, rank(PV ) = tr(PV ) = dim(V ).
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Positive Definite Matrices: A is positive definite (p.d.) if xT Ax > 0
for all x 6= 0. If xT Ax ≥ 0 for all nonzero x then A is positive semi-
definite (p.s.d.). If A is p.d. or p.s.d. then it is said to be non-negative
definite (n.n.d.).

• If An×n is p.d. then for i = 1, . . . , n, uT
i Aui = λi > 0;

• i.e., the eigenvalues of A are all positive.

• It can also be shown that if the eigenvalues of A are all positive then
A is p.d.

Example

The matrix

A =
(

2 −1
−1 3

)

is positive definite.

Q: Why?

A: Because the associated quadratic form is

xT Ax = ( x1 x2 )
(

2 −1
−1 3

)(
x1

x2

)

= 2x2
1 − 2x1x2 + 3x2

2 = 2(x1 − 1
2
x2)2 +

5
2
x2

2,

which is clearly positive as long as x1 and x2 are not both 0.

The matrix

B =




13 −2 −3
−2 10 −6
−3 −6 5




is positive semidefinite because its associated quadratic form is

xT Bx = (2x1 − x2)2 + (3x1 − x3)2 + (3x2 − 2x3)2,

which is always non-negative, but does equal 0 for x = (1, 2, 3)T (or any
multiple of (1, 2, 3)T ).
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Some Results on p.d. and p.s.d. matrices:

1.
a. If A is p.d., then all of its diagonal elements aii are positive.
b. If A is p.s.d., then all aii ≥ 0.

2. Let M be a nonsingular matrix.
a. If A is p.d., then MT AM is p.d.
b. If A is p.s.d., then MT AM is p.s.d.

3. Let A be a p × p p.d. matrix and let B be a k × p matrix of rank
k ≤ p. Then BABT is p.d.

4. Let A be a p× p p.d. matrix and let B be a k × p matrix. If k > p
or if rank(B) < min(k, p) then BABT is p.s.d.

5. A symmetric matrix A is p.d. if and only if there exists a nonsingular
matrix M such that A = MT M.

6. A p.d. matrix is nonsingular.

7. Let B be an n× p matrix.
a. If rank(B) = p, then BT B is p.d.
b. If rank(B) < p, then BT B is p.s.d.

8. If A is p.d., then A−1 is p.d.

9. If A is p.d. and is partitioned in the form

A =
(

A11 A12

A21 A22

)

where A11 and A22 are square, then A11 and A22 are both p.d.

Inverses of Partitioned Matrices: A very useful result is the following: Let
A be a symmetric matrix that can be partitioned as above in result 9 (note
this implies A21 = AT

12). Then

A−1 =
(

A−1
11 + CB−1CT −CB−1

−B−1CT B−1

)

where B = A22 −AT
12A

−1
11 A12, and C = A−1

11 A12. More general results
are available for A nonsymmetric (see, e.g., Ravishanker & Dey, 2002, A
First Course in Linear Model Theory, p. 37).
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Systems of Equations

The system of n (linear) equations in p unknowns,

a11x1 + a12x2 + · · ·+ a1pxp = c1

a21x1 + a22x2 + · · ·+ a2pxp = c2

...

an1x1 + an2x2 + · · ·+ anpxp = cn

can be written in matrix form as

Ax = c (∗)
where A is n× p, x is p× 1 and c is n× 1.

• If n 6= p then x and c are of different sizes.

• If n = p and A is nonsingular, then there exists a unique solution
vector x given by x = A−1c.

• If n > p so that A has more rows than columns, then (*) usually
(but not always) does not have a solution.

• If n < p, so that A has fewer rows than columns, (*) usually (but
not always) has an infinite number of solutions.

Consistency: If (*) has one or more solution vectors then it is said to be
consistent. Systems without any solutions are said to be inconsistent.

We will most often be concerned with systems where A is square. Suppose
A is p× p with rank(A) = r < p.

Recall rank(A) = rank(AT ) so that the rank of A (the number of linearly
independent columns in A) = the number of linearly independent columns
of AT = the number of linearly independent rows of A.

Therefore, there are r < p linearly independent rows of A which implies
there exists a b 6= 0 so that

AT b = 0, or, equivalently, bT A = 0T .

55



Multiplying both sides of (*) by bT we have

bT Ax = bT c

⇒ 0T x = bT c

⇒ bT c = 0

Otherwise, if bT c 6= 0, there is no x such that Ax = c.

• Hence, in order for Ax = c to be consistent, the same linear rela-
tionships, if any, that exist among the rows of A must exist among
the rows (elements) of c.

– This idea is formalized by comparing the rank of A with the
rank of the augmented matrix [A, c].

Theorem: The system of equations Ax = c has at least one solution
vector (is consistent) if and only if rank(A) = rank([A, c]).

Proof: Suppose rank(A) = rank([A, c]). Then c is a linear combination
of the columns of A; that is, there exists some x so that we can write

x1a1 + x2a2 + · · ·+ xpap = c,

or, equivalently, Ax = c.

Now suppose there exists a solution vector x such that Ax = c. In general,
rank(A) ≤ rank([A, c]) (result 7, p.15). But since there exists an x such
that Ax = c, we have

rank([A, c]) = rank([A,Ax]) = rank(A[I,x])

≤ rank(A) (by result 3, p.15)

and we have
rank(A) ≤ rank([A, c]) ≤ rank(A)

so that rank(A) = rank([A, c]).
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Generalized Inverses

Generalized Inverse: A generalized inverse of an n×k matrik X is defined
to be any k × n matrix X− that satisfies the condition

(1) XX−X = X.

• Such a matrix always exists.

• Such a matrix is not unique.

• If X is nonsingular, then the generalized inverse of X is unique and
is equal to X−1.

Example:

Let

A =




2 2 3
1 0 1
3 2 4


 .

The first two rows of A are linearly independent, but the third row is equal
to the sum of the others, so rank(A) = 2.

The matrices

A−
1 =




0 1 0
1
2 −1 0
0 0 0


 , A−

2 =




0 1 0
0 − 3

2
1
2

0 0 0




are each generalized inverses of A since straight-forward matrix multipli-
cation verifies that AA−

1 A = A and AA−
2 A = A.

A matrix need not be square to have a generalized inverse. For example,

x =




1
2
3
4




has generalized inverses x−1 = (1, 0, 0, 0), x−2 = (0, 1/2, 0, 0), x−3 = (0, 0, 1/3, 0)
and x−4 = (0, 0, 0, 1/4). In each case, it is easily verified that

xx−i x = x, i = 1, . . . , 4.
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Let X be n× k of rank r, let X− be a generalized inverse of X, and let G
and H be any two generalized inverse of XT X. Then we have the following
results concerning generalized inverses:

1. rank(X−X) = rank(XX−) = rank(X) = r.

2. (X−)T is a generalized inverse of XT . Furthermore, if X is symmet-
ric, then (X−)T is a generalized inverse of X.

3. X = XGXT X = XHXT X.

4. GXT is a generalized inverse of X.

5. XGXT is symmetric, idempotent, and is invariant to the choice of
G; that is, XGXT = XHXT .

Proof:

1. By result 3 on rank (p.15), rank(X−X) ≤ min{rank(X−), rank(X)} ≤
rank(X) = r. In addition, because XX−X = X, we have r =
rank(X) ≤ min{rank(X), rank(X−X)} ≤ rank(X−X). Putting these
together we have r ≤ rank(X−X) ≤ r ⇒ rank(X−X) = r. We can
show rank(XX−) = r similarly.

2. This follows immediately upon transposing both sides of the equation
XX−X = X.

3. For v ∈ Rn, let v = v1 + v2 where v1 ∈ C(X) and v2 ⊥ C(X). Let
v1 = Xb for some vector b ∈ Rn. Then for any such v,

vT XGXT X = vT
1 XGXT X = bT (XT X)G(XT X) = bT (XT X) = vT X.

Since this is true for all v ∈ Rn, it follows that XGXT X = X,
and since G is arbitrary and can be replaced by another generalized
inverse H, it follows that XHXT X = X as well.

4. Follows immediately from result 3.
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5. Invariance: observe that for the arbitrary vector v, above,

XGXT v = XGXT Xb = XHXT Xb = XHXT v.

Since this holds for any v, it follows that XGXT = XHXT .
Symmetry: (XGXT )T = XGT XT , but since GT is a generalized in-
verse for XT X, the invariance property implies XGT XT = XGXT .
Idempotency: XGXT XGXT = XGXT from result 3.

Result 5 says that X(XT X)−XT is symmetric and idempotent for any
generalized inverse (XT X)−. Therefore, X(XT X)−XT is the unique pro-
jection matrix onto C(X(XT X)−XT ).

In addition, C(X(XT X)−XT ) = C(X), because v ∈ C(X(XT X)−XT )
⇒ v ∈ C(X), and if v ∈ C(X) then there exists a b ∈ Rn so that
v = Xb = X(XT X)−XT Xb ⇒ v ∈ C(X(XT X)−XT ).

We’ve just proved the following theorem:

Theorem: X(XT X)−XT is the projection matrix onto C(X) (projection
matrices are uniqe).

• Although a generalized inverse is not unique, this does not pose
any particular problem in the theory of linear models, because we’re
mainly interested in using a generalized inverse to obtain the projec-
tion matrix X(XT X)−XT onto C(X), which is unique.

A generalized inverse X− of X which satisfies (1) and has the additional
properties

(2) X−XX− = X−,
(3) X−X is symmetric, and
(4) XX− is symmetric,

is unique, and is known as the Moore-Penrose Inverse, but we have
little use for the Moore-Penrose inverse in this course.

• A generalized inverse of a symmetric matrix is not necessarily sym-
metric. However, it is true that a symmetric generalized inverse can
always be found for a symmetric matrix. In this course, we’ll gen-
erally assume that generalized inverses of symmetric matrices are
symmetric.
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Generalized Inverses and Systems of Equations:

A solution to a consistent system of equations can be expressed in terms
of a generalized inverse.

Theorem: If the system of equations Ax = c is consistent and if A− is
any generalized inverse of A, then x = A−c is a solution.

Proof: Since AA−A = A, we have

AA−Ax = Ax.

Substituting Ax = c on both sides, we obtain

AA−c = c.

Writing this in the form A(A−c) = c, we see that A−c is a solution to
Ax = c.

For consistent systems of equations with > 1 solution, different choices of
A− will yield different solutions of Ax = c.

Theorem: If the system of equations Ax = c is consistent, then all
possible solutions can be obtained in either of the following two ways:

i. Use a specific A− in the equation x = A−c+(I−A−A)h, combined
with all possible values of the arbitrary vector h.

ii. Use all possible values of A− in the equation x = A−c.

Proof: See Searle (1982, Matrix Algebra Useful for Statistics, p.238).
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An alternative necessary and sufficient condition for Ax = c to be consis-
tent instead of the rank(A) = rank([A, c]) condition given before is

Theorem: The system of equations Ax = c has a solution if and only if
for any generalized inverse A− of A it is true that

AA−c = c.

Proof: Suppose Ax = c is consistent. Then x = A−c is a solution.
Therefore, we can multiply c = Ax by AA− to get

AA−c = AA−Ax = Ax = c.

Now suppose AA−c = c. Then we can multiply x = A−c by A to obtain

Ax = AA−c = c.

Hence a solution exists, namely x = A−c.

The Cholesky Decomposition: Let A be a symmetric positive semi-
definite matrix. There exist an infinite number of “square-root matrices”;
that is, n× n matrices B such that

A = BT B.

• The matrix square root A1/2 = UΛ1/2UT obtained earlier based on
spectral decomposition A = UΛUT is the unique symmetric square
root, but there are many other non-symmetric square roots.

In particular, there exists a unique upper-triangular matrix B so that this
decomposition holds. This choice of B is called the Cholesky factor and the
decomposition A = BT B for B upper-triangular is called the Cholesky
decomposition.
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Random Vectors and Matrices

Definitions:

Random Vector: A vector whose elements are random variables. E.g.,

xk×1 = ( x1 x2 · · · xk )T
,

where x1, . . . , xk are each random variables.

Random Matrix: A matrix whose elements are random variables. E.g.,
Xn×k = (xij), where x11, x12, . . . , xnk are each random variables.

Expected Value: The expected value (population mean) of a random
matrix (vector) is the matrix (vector) of expected values. For Xn×k,

E(X) =




E(x11) E(x12) · · · E(x1k)
...

...
. . .

...
E(xn1) E(xn2) · · · E(xnk)


 .

• E(X) will often be denoted µX or just µ when the random matrix
(vector) for which µ is the mean is clear from the context.

• Recall, for a univariate random variable X,

E(X) =
{ ∫∞

−∞ xfX(x)dx if X is continuous;∑
all x xfX(x) if X is discrete.

Here, fX(x) is the probability density function of X in the continuous
case, fX(x) is the probability function of X in the discrete case.
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(Population) Variance-Covariance Matrix: For a random vector
xk×1 = (x1, x2, . . . , xk)T , the matrix



var(x1) cov(x1, x2) · · · cov(x1, xk)
cov(x2, x1) var(x2) · · · cov(x2, xk)

...
...

. . .
...

cov(xk, x1) cov(xk, x2) · · · var(xk)




≡




σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k
...

...
. . .

...
σk1 σk2 · · · σkk




is called the variance-covariance matrix of x and is denoted var(x)
or Σx or sometimes Σ when it is clear which random vector is being
referred to.

• Note that the var(·) function takes a single argument which is a
vector or scalar.

• The book uses the notation cov(x) for the var-cov matrix of x. This
is not unusual, but I like to use var(·) when there’s one argument,
and cov(·, ·) when there are two.

• Recall: for a univariate random variable xi with expected value µi,

σii = var(xi) = E[(xi − µi)2]

• Recall: for univariate random variables xi and xj ,

σij = cov(xi, xj) = E[(xi − µi)(xj − µj)]

• var(x) is symmetric because σij = σji.

• In terms of vector/matrix algebra, var(x) has formula

var(x) = E[(x− µx)(x− µx)T ].

• If the random variables x1, . . . , xk in x are mutually independent,
then cov(xi, xj) = 0, when i 6= j, and var(x) is diagonal with
(σ11, σ22, . . . , σkk)T along the diagonal and zeros elsewhere.
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(Population) Covariance Matrix: For random vectors xk×1 = (x1, . . . , xk)T ,
and yn×1 = (y1, . . . , yn)T let σij = cov(xi, yj), i = 1, . . . , k, j =
1, . . . , n. The matrix




σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...
σk1 σk2 · · · σkn


 =




cov(x1, y1) · · · cov(x1, yn)
...

. . .
...

cov(xk, y1) · · · cov(xk, yn)




is the covariance matrix of x and y and is denoted cov(x,y), or
sometimes Σx,y.

• Notice that the cov(·, ·) function takes two arguments, each of which
can be a scalar or a vector.

• In terms of vector/matrix algebra, cov(x,y) has formula

cov(x,y) = E[(x− µx)(y − µy)T ].

• Note that var(x) = cov(x,x).

(Population) Correlation Matrix: For a random variable xk×1, the
population correlation matrix is the matrix of correlations among
the elements of x:

corr(x) =




1 ρ12 · · · ρ1k

ρ21 1 · · · ρ2k
...

...
. . .

...
ρk1 ρk2 · · · 1


 ,

where ρij = corr(xi, xj).

• Recall: for random variables xi and xj ,

ρij = corr(xi, xj) =
σij√

σii
√

σjj

measures the amount of linear association between xi and xj .

• For any x, corr(x) is symmetric.
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• Sometimes we will use the corr function with two arguments, corr(xk×1,yn×1)
to mean the k × n matrix of correlations between the elements of x
and y:

corr(x,y) =




corr(x1, y1) · · · corr(x1, yn)
...

. . .
...

corr(xk, y1) · · · corr(xk, yn)


 .

• Notice that corr(x) = corr(x,x).

• For random vectors xk×1 and yn×1, let

ρx = corr(x), Σx = var(x), ρx,y = corr(x,y), Σx,y = cov(x,y),
Vx = diag(var(x1), . . . , var(xk)), and Vy = diag(var(y1), . . . , var(yn)).

The relationship between ρx and Σx is

Σx = V1/2
x ρxV1/2

x

ρx = (V1/2
x )−1Σx(V1/2

x )−1

and the relationship between the covariance and correlation matrices
of x and y is

Σx,y = V1/2
x ρx,yV1/2

y

ρx,y = V−1/2
x Σx,yV−1/2

y
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Properties:

Let X, Y be random matrices of the same dimension and A, B be
matrices of constants such that AXB is defined

1. E(X + Y) = E(X) + E(Y).
2. E(AXB) = AE(X)B.

– In particular, E(AX) = Aµx.

Now let xk×1, yn×1 be random vectors and let ck×1 and dn×1 be vectors
of constants. Let A, B be matrices conformable to the products Ax and
By.

3. cov(x,y) = cov(y,x)T .
4. cov(x + c,y + d) = cov(x,y).
5. cov(Ax,By) = Acov(x,y)BT .

Let x1,x2 be two k × 1 random vectors and y1,y2 be two n × 1 random
vectors. Then

6. cov(x1 + x2,y1) = cov(x1,y1) + cov(x2,y1) and cov(x1,y1 + y2) =
cov(x1,y1) + cov(x1,y2).

– Taken together, properties 5 and 6 say that cov(·, ·) is linear
in both arguments (that is, it is bilinear).

Several properties of var(·) follow directly from the properties of cov(·, ·)
since var(x) = cov(x,x):

7. var(x1 + c) = cov(x1 + c,x1 + c) = cov(x1,x1) = var(x1).
8. var(Ax) = Avar(x)AT .
9. var(x1 + x2) = cov(x1 + x2,x1 + x2) = var(x1) + cov(x1,x2) +

cov(x2,x1) + var(x2).

If x1 and x2 are independent, then cov(x1,x2) = 0, so property 9 implies
var(x1 +x2) = var(x1) + var(x2). This result extends easily to a sum of n
independent xi’s so that

var(
n∑

i=1

xi) =
n∑

i=1

var(xi), if x1, . . . ,xn are independent.
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In addition, if var(x1) = · · · = var(xn) = Σx then var(
∑n

i=1 xi) = nΣx.
The formula for the variance of a sample mean vector follows easily:

var(x̄) = var(
1
n

n∑

i=1

xi) =
(

1
n

)2

var(
n∑

i=1

xi) =
(

1
n2

)
nΣx =

1
n

Σx.

• Notice this generalizes the familiar result from the univariate case.

In linear models, quadratic forms xT Ax in some random vector x and
symmetric matrix A often arise, and its useful to have a general result
about how to take the expected value of such quantities.

• Note that for A not symmetric, xT Ax is still a quadratic form,
because it is possible to write xT Ax as xT Bx for the symmetric
matrix B = 1

2 (A + AT ). That is, Q(x) = xT Ax can be written

Q(x) = xT Ax =
1
2
(xT Ax + xT Ax︸ ︷︷ ︸

=(xT AT x)T

) =
1
2
(xT Ax + xT AT x)

= xT

{
1
2
(A + AT )

}

︸ ︷︷ ︸
=B symmetric

x

That quadratic forms are common and important in linear models is famil-
iar once we realize that any quadratic form can be written as a weighted
sum of squares, and vice versa.

Let A be an n × n symmetric matrix with spectral decomposition A =∑n
i=1 λiuiuT

i . Then

Q(x) = xT Ax =
n∑

i=1

λixT uiuT
i x =

n∑

i=1

λi (uT
i x)︸ ︷︷ ︸
≡wi

(uT
i x) =

n∑

i=1

λiw
2
i .

67



The expected value of a quadratic form xT Ax follows immediately from
a more general result concerning the expected value of a bilinear form,
Q(x,y) = (xk×1)T Ak×nyn×1.

Theorem: (E.V. of a bilinear form) Let E(x) = µx and E(y) = µy,
cov(x,y) = Σx,y = (σij) and A = (aij). Then,

E(xT Ay) =
∑

i

∑

j

aijσij + µT
xAµy = tr(AΣT

x,y) + µT
xAµy.

Proof: Writing the bilinear form in summation notation we have xT Ay =∑
i

∑
j aijxiyj . In addition, E(xiyj) = cov(xi, yj) + µx,iµy,j = σij +

µx,iµy,j , so

E(xT Ay) =
k∑

i=1

n∑

j=1

aijσij

︸ ︷︷ ︸
=(i,i)th term of AΣT

x,y

+
k∑

i=1

n∑

j=1

aijµx,iµy,j

= tr(AΣT
x,y) + µT

xAµy

Letting y = x we obtain

Theorem: (E.V. of a quadratic form) Let Q(x) = xT Ax, var(x) = Σ,
E(x) = µ and A = (aij). Then,

E {Q(x)} =
∑

i

∑

j

aijcov(xi, xj) + µT Aµ = tr(AΣ) + Q(µ).

68



Example: Let x1, . . . , xn be independent random variables each with
mean µ and variance σ2. Then for x = (x1, . . . , xn)T , E(x) = µjn,
var(x) = σ2In.

Consider the quadratic form

Q(x) =
n∑

i=1

(xi − x̄)2 = ‖PV ⊥x‖2 = xT (In −PV )x,

where V = L(jn), and PV = (1/n)Jn,n. To obtain E{Q(x)} we note
the matrix in the quadratic form is A = In − PV and Σx = σ2In. Then
AΣx = σ2(In−PV ), and tr(AΣ) = σ2(n−1) (trace of a projection matrix
equals the dimension onto which it projects). Thus

E{Q(x)} = σ2(n− 1) + Q(µjn)︸ ︷︷ ︸
=0

• An immediate consequence of this is the unbiasedness of the sample
variance, s2 = 1

n−1

∑n
i=1(xi − x̄)2.

An alternative method of obtaining this result is to define y = (x1−x̄, x2−
x̄, . . . , xn−x̄)T , and apply the preceding theorem to Q(x) =

∑
i(xi−x̄)2 =

yT Iny.

Since y = PV ⊥x, y has var-cov matrix PV ⊥(σ2In)PT
V ⊥ = σ2PV ⊥ (because

PV ⊥ is idempotent and symmetric) and mean 0.

So,

E{Q(x)} = tr{In(σ2PV ⊥)} = tr{σ2(In −PV )} = σ2(n− 1),

as before.
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The Multivariate Normal Distribution

Multivariate Normal Distribution: A random vector yn×1 is said to
have a multivariate normal distribution if y has the same distribution as

An×pzp×1 + µn×1 ≡ x

where, for some p, z is a vector of independent N(0, 1) random variables,
A is a matrix of constants, and µ is a vector of constants.

• The type of transformation used in going from z to x above is called
an affine transformation.

By using the form of x and the fact that the elements of z are independent
standard normal, we can determine the density function of x and hence of
y.

• This is only possible in the case that n = p and rank(A) = p. We
will restrict attention to this case.

Define g(z) = Az+µ to be the transformation from z to x. For A a p× p
full rank matrix, g(z) is a 1–1 function from Rp to Rp so that we can use
the following change of variable formula for the density of x:

fx(x) = fz{g−1(x)}abs
(∣∣∣∣

∂g−1(x)
∂xT

∣∣∣∣
)

= fz{A−1(x− µ)}abs(|A−1|).

(Here, abs(·) denotes the absolute value and | · | the determinant.)

Since the elements of z are independent standard normals, the density of
z is

fz(z) =
p∏

i=1

1√
2π

e−z2
i /2 = (2π)−p/2 exp

(
−1

2
zT z

)
.

Plugging into our change of variable formula we get

fx(x) = (2π)−p/2abs(|A|)︸ ︷︷ ︸
=|A|

−1 exp
{
−1

2
(x− µ)(AAT )−1(x− µ)

}
.
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Note that Σ = var(x) is equal to var(Az+µ) = var(Az) = AIAT = AAT ,
so

|Σ| = |AAT | = |A|2 ⇒ |A| = |Σ|1/2.

In addition, E(x) = E(Az + µ) = µ.

So, a multivariate normal random vector of dimension p with mean µ and
p.d. var-cov matrix Σ has density

fx(x) = (2π)−p/2|Σ|−1/2 exp
{
−1

2
(x− µ)T (Σ)−1(x− µ)

}
, for all x ∈ Rp.

• In the case where A is n×p with rank(A) 6= n, x is still multivariate
normal, but its density does not exist. Such cases correspond to
multivariate normal distributions with non p.d. var-cov matrices,
which arise rarely and which we won’t consider in this course. Such
distributions do not have p.d.f.’s but can be characterized using the
characteristic function, which always exists.

Recall that the probability density function is just one way to characterize
(fully describe) the distribution of a random variable (or vector). An-
other function that can be used for this purpose is the moment generating
function m.g.f.

The m.g.f. of a random vector x is mx(t) = E(etT x). So, for x = Az+µ ∼
Nn(µ,AAT = Σ), the m.g.f. of x is

mx(t) = E[exp{tT (Az + µ)}] = etT µE(etT Az) = etT µmz(AT t). (∗)

The m.g.f. of a standard normal r.v. zi is mzi(u) = eu2/2, so the m.g.f. of
z is

mz(u) =
p∏

i=1

exp(u2
i /2) = euT u/2.

Substituting into (*) we get

mx(t) = etT µ exp{1
2
(AT t)T (AT t)} = etT µ exp(

1
2
tT Σt).
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• So, if mx(t) completely characterizes the distribution of x and mx(t)
depends only upon x’s mean and variance µ and Σ, then that says
that a multivariate normal distribution is completely specified by
these two parameters.

• I.e., for x1 ∼ Nn(µ1, Σ1) and x2 ∼ Nn(µ2, Σ2), x1 and x2 have the
same distribution if and only if µ1 = µ2 and Σ1 = Σ2.

Theorem: Let µ be an element of Rn and Σ an n × n symmetric p.s.d.
matrix. Then there exists a multivariate normal distribution with mean
µ and var-cov matrix Σ.

Proof: Since Σ is symmetric and p.s.d., there exists a B so that Σ = BBT

(e.g., the Cholesky decomposition). Let z be an n×1 vector of independent
standard normals. Then x = Bz + µ ∼ Nn(µ,Σ).

• This result suggests that we can always generate a multivariate nor-
mal random vector with given mean µ and given var-cov matrix Σ
by generating a vector of independent standard normals z and then
pre-multiplying z by the lower-triangular Cholesky factor B and then
adding on the mean vector µ.

Theorem: Let x ∼ Nn(µ,Σ) where Σ is p.d. Let yr×1 = Cr×nx + d for
C and d containing constants. Then y ∼ Nr(Cµ + d,CΣCT ).

Proof: By definition, x = Az + µ for some A such that AAT = Σ, and
z ∼ Np(0, Ip). Then

y = Cx + d = C(Az + µ) + d = CAz + Cµ + d

= (CA)z + (Cµ + d).

So, by definition, y has a multivariate normal distribution with mean
Cµ + d and var-cov matrix (CA)(CA)T = CΣCT .

Simple corollaries of this theorem are that if x ∼ Nn(µ,Σ), then

i. any subvector of x is multivariate normal too, with mean and vari-
ance given by the corresponding subvector of µ and submatrix of Σ,
respectively, and

ii. any linear combination aT x ∼ N(aT µ,aT Σa) (univariate normal)
for a a vector of constants.
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Theorem: Let yn×1 have a multivariate normal distribution, and parti-
tion y as

y =




y1
p×1
· · ·
y2

(n−p)×1


 .

Then y1 and y2 are independent if and only if cov(y1,y2) = 0.

Proof: 1st, independence implies 0 covariance: Suppose y1,y2 are inde-
pendent with means µ1, µ2. Then

cov(y1,y2) = E{(y1−µ1)(y2−µ2)T } = E{(y1−µ1)}E{(y2−µ2)T } = 0(0T ) = 0.

2nd, 0 covariance and normality imply independence: To do this we use
the fact that two random vectors are independent if and only if their joint
m.g.f. is the product of their marginal m.g.f.’s. Suppose cov(y1,y2) = 0.
Let tn×1 be partitioned as t = (tT

1 , tT
2 )T where t1 is p × 1. Then y has

m.g.f.

my(t) = exp(tT µ︸︷︷︸
=tT

1 µ1+tT
2 µ2

) exp(
1
2
tT Σt),

where

Σ = var(y) =
(

Σ11 0
0 Σ22

)
=

(
var(y1) 0

0 var(y2)

)

Because of the form of Σ, tT Σt = tT
1 Σ11t1 + tT

2 Σ22t2, so

my(t) = exp(tT
1 µ1 +

1
2
tT
1 Σ11t1 + tT

2 µ2 +
1
2
tT
2 Σ22t2)

= exp(tT
1 µ1 +

1
2
tT
1 Σ11t1) exp(tT

2 µ2 +
1
2
tT
2 Σ22t2) = my1(t1)my2(t2).
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Lemma: Let y ∼ Nn(µ, Σ) where we have the partitioning

y =




y1
p×1
· · ·
y2

(n−p)×1


 , µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ21 = ΣT
12. Let y2|1 = y2 − Σ21Σ−1

11 y1. Then y1 and y2|1 are
independent with

y1 ∼ Np(µ1, Σ11), y2|1 ∼ Nn−p(µ2|1,Σ22|1),

where

µ2|1 = µ2 − Σ21Σ−1
11 µ1, and Σ22|1 = Σ22 − Σ21Σ−1

11 Σ12.

Proof: We can write y1 = C1y where C1 = (I,0) and we can write y2|1 =
C2y where C2 = (−Σ21Σ−1

11 , I), so by the theorem on the bottom of p.
72, both y1 and y2|1 are normal. Their mean and variance-covariances are
C1µ = µ1 and C1ΣCT

1 = Σ11 for y1, and C2µ = µ2|1 and C2ΣCT
2 = Σ22|1

for y2|1. Independence follows from the fact that these two random vectors
have covariance matrix cov(y1,y2|1) = cov(C1y,C2y) = C1ΣCT

2 = 0.

Theorem: For y defined as in the previous theorem, the conditional
distribution of y2 given y1 is

y2|y1 ∼ Nn−p(µ2 + Σ21Σ−1
11 (y1 − µ1), Σ22|1).

Proof: Since y2|1 is independent of y1, its conditional distribution for a
given value of y1 is the same as its marginal distribution, y2|1 ∼ Nn−p(µ2|1, Σ22|1).
Notice that y2 = y2|1 + Σ21Σ−1

11 y1. Conditional on the value of y1,
Σ21Σ−1

11 y1 is constant, so the conditional distribution of y2 is that of y2|1
plus a constant, or (n− p)−variate normal, with mean

µ2|1 +Σ21Σ−1
11 y1 = µ2−Σ21Σ−1

11 µ1 +Σ21Σ−1
11 y1 = µ2 +Σ21Σ−1

11 (y1−µ1),

and var-cov matrix Σ22|1.
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Partial and Multiple Correlation

Example — Height and Reading Ability:

Suppose that an educational psychologist studied the relationship between
height y1 and reading ability y2 of children based on scores on a standard-
ized test. For 200 children in grades 3, 4, and 5 he measured y1 and y2
and found that the sample correlation between these variables was .56.

Is there a linear association between height and reading ability?

Well, yes, but only because we’ve ignored one or more “lurking” variables.
There is likely no direct effect of height on reading ability. Instead, older
children with more years of schooling tend to be better readers and tend
to be taller. The effects of age on both y1 and y2 have been ignored by
just examining the simple correlation between y1 and y2.

The partial correlation coefficient is a measure of linear relationship be-
tween two variables, with the linear effects of one or more other variables
(in this case, age) removed.
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Partial Correlation: Suppose v ∼ Np+q(µ, Σ) and let v, µ and Σ be
partitioned as

v =
(

x
y

)
, µ =

(
µx

µy

)
, Σ =

(
Σxx Σxy

Σyx Σyy

)
,

where x = (v1, . . . , vp)T is p× 1 and y = (vp+1, . . . , vp+q)T is q × 1.

Recall that the conditional var-cov matrix of y given x is

var(y|x) = Σyy − ΣyxΣ−1
xxΣxy ≡ Σy|x.

Let σij|1,...,p denote the (i, j)th element of Σy|x.

Then the partial correlation coefficient of yi and yj given x = c is
defined by

ρij|1,...,p =
σij|1,...,p

[σii|1,...,pσjj|1,...,p]1/2

(provided the denominator is non-zero, in which case ρij|1,...,p is unde-
fined).

• Like the ordinary correlation coefficient, the partial correlation sat-
isfies

−1 ≤ ρij|1,...,p ≤ 1.

• Interpretation: the partial correlation ρij|1,...,p measures the linear
association between yi and yj after accounting for (or removing) the
linear association between yi and x and between yj and x.

– E.g., if v1 = age, v2 =height, v3 =reading ability, x = v1 and
y = (v2, v3)T , then ρ23|1 = the correlation between height and
reading ability after removing the effects of age on each of these
variables. I would expect ρ23|1 ≈ 0.
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The partial correlation measures the linear association between two vari-
ables after removing the effects of several others. The multiple correla-
tion coefficient measures the linear association between one variable and
a group of several others.

Multiple Correlation: Suppose v ∼ Np+1(µ, Σ) and let v, µ and Σ be
partitioned as

v =
(

x
y

)
, µ =

(
µx

µy

)
, Σ =

(
Σxx σxy

σyx σyy

)
,

where x = (v1, . . . , vp)T is p×1, and y = vp+1 is a scalar random variable.

Recall that the conditional mean of y given x is

µy + σyxΣ−1
xx (x− µx) ≡ µy|x.

Then the squared multiple correlation coefficient between y and x
is defined as

ρ2
y,x =

cov(µy|x, y)
[var(µy|x)var(y)]1/2

.

• A computationally simple formula is given by

ρ2
y,x =

{
σyxΣ−1

xxσxy

σyy

}1/2

.

• My notation for this quantity is ρ2
y,x rather than ρy,x because it

behaves like the square of a correlation coefficient. It is bounded
between zero and one:

0 ≤ ρ2
y,x ≤ 1,

and quantifies the strength of the linear association, but not the
direction.

• The sample squared multiple correlation coefficient is called the co-
efficient of determination and usually denoted R2.

• We’ll talk about sample versions of the partial and multiple correla-
tion coefficients later, when we get to fitting linear models.

77



Distributions of Quadratic Forms: The χ2, F , and t Distributions

• All three of these distributions arise as the distributions of certain
functions of normally distributed random variables.

• Their central (ordinary) versions are probably familiar as the dis-
tributions of normal-theory test statistics under the usual null hy-
potheses and as the basis for confidence intervals.

• The non-central versions of these distributions arise as the distribu-
tions of normal-theory test statistics under the alternatives to the
usual null hypotheses. Thus, they are important in, for example,
determining the power of tests.

Chi-square Distribution: Let x1, . . . , xn be independent normal ran-
dom variables with means µ1, . . . , µn and common variance 1. Then

y = x2
1 + · · ·+ x2

n = xT x = ‖x‖2, where x = (x1, . . . , xn)T

is said to have a noncentral chi-square distribution with n degrees
of freedom and noncentrality parameter λ = 1

2

∑n
i=1 µ2

i . We denote
this as y ∼ χ2(n, λ).

• As in the t and F distributions, the central chi-square distribution
occurs when the noncentrality parameter λ equals 0.

• The central χ2 with n degrees of freedom will typically be denoted
χ2(n) ≡ χ2(n, 0).

– In particular, for z1, . . . , zn
iid∼ N(0, 1), z2

1 + · · ·+ z2
n ∼ χ2(n).

• The non-central χ2(n, λ) distribution depends only on its parame-
ters, n and λ.
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A random variable Y ∼ χ2(n) (a central χ2 with n d.f.) has p.d.f.

fY (y; n) =
yn/2−1e−y/2

Γ(n/2)2n/2
, for y > 0.

• This is a special case of a gamma density with power parameter n/2
and scale parametr 1/2.

The non-central χ2 density is a Poisson mixture of central χ2’s. If Z ∼
χ2(n, λ) then Z has p.d.f.

fZ(z; n, λ) =
∞∑

k=0

p(k; λ)fY (z;n + 2k), for z > 0,

where p(k; λ) = {e−λ(λ)k}/k! is the Poisson probability function with rate
(mean) λ.

• I.e., the noncentral χ2 is a weighted sum of central χ2’s with Poisson
weights.

Theorem: Let Y ∼ χ2(n, λ). Then

i. E(Y ) = n + 2λ;
ii. var(Y ) = 2n + 8λ; and
iii. the m.g.f. of Y is

mY (t) =
exp[−λ{1− 1/(1− 2t)}]

(1− 2t)n/2
.

Proof: The proof of (i) and (ii) we leave as a homework problem. The proof
of (iii) simply involves using the definition of expectation to evaluate

mY (t) = E(etY ) = E{et(xT x)} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
et(xT x) fx(x)︸ ︷︷ ︸
a N(µ, I) density

dx1 . . . dxn,

where x is an n × 1 vector of independent normals with mean µ and
constant variance 1. See Graybill (1976, p. 126) for details.
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The χ2 distribution has the convenient property that sums of independent
χ2’s are χ2 too:

Theorem: If v1, . . . , vk are independent random variables distributed as
χ2(ni, λi), i = 1, . . . , k, respectively, then

k∑

i=1

vi ∼ χ2(
k∑

i=1

ni,
k∑

i=1

λi).

Proof: follows easily from the definition.

Distribution of a Quadratic Form:

From the definition of a central chi-square, it is immediate that if y ∼
Nn(µ, In) then

‖y − µ‖2 = (y − µ)T (y − µ) ∼ χ2(n).

For y ∼ Nn(µ, Σ) where Σ is p.d., we can extend this to

(y − µ)T Σ−1(y − µ) ∼ χ2(n)

by noting that

(y − µ)T Σ−1(y − µ) = (y − µ)T Σ−1/2Σ−1/2(y − µ)

= {Σ−1/2(y − µ)}T {Σ−1/2(y − µ)}︸ ︷︷ ︸
≡z

= zT z,

where Σ−1/2 = (Σ1/2)−1, and Σ1/2 is the unique symmetric square root
of Σ (see p. 51 of these notes). Since z = Σ−1/2(y − µ) ∼ Nn(0, In), we
have that zT z = (y − µ)T Σ−1(y − µ) ∼ χ2(n).
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We’d like to generalize these results on the distribution of quadratic forms
to obtain the the distribution of yT Ay for y ∼ Nn(µ,Σ) for A a matrix
of constants. We can do this, but first we need a couple of results.

Theorem: If y ∼ Nn(µ, Σ) then the m.g.f. of yT Ay is

myT Ay(t) = |In − 2tAΣ|−1/2 exp
[
−1

2
µT {In − (In − 2tAΣ)−1}Σ−1µ

]
.

Proof: Again, the proof of this result “simply” involves evaluating the
expectation,

E(etyT Ay) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
etyT Ay fy(y)︸ ︷︷ ︸

a multi’normal density

dy1 . . . dyn.

See Searle, 1971, p.55, for details.

We also need a couple of eigenvalue results that we probably should have
stated earlier:

Result: If λ is an eigenvalue of A and x is the corresponding eigenvector
of A, then for scalars c and k, (cλ+ k,x) is an eigenvalue-eigenvector pair
of the matrix cA + kI.

Proof: Because (λ,x) is an eigen-pair for A, they satisfy Ax = λx which
implies

cAx = cλx.

Adding kx to both sides of this equation we have

cAx + kx = cλx + kx

⇒ (cA + kI)x = (cλ + k)x,

so that (cλ+ k,x) is an eigenvalue-eigenvector pair of the matrix cA+ kI.
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Result: If all of the eigenvalues of A satisfy −1 < λ < 1, then

(I−A)−1 = I + A + A2 + A3 + · · · = I +
∞∑

k=1

Ak. (∗)

Proof: This can be verified by multiplying I−A times (I +
∑∞

k=1 Ak) to
obtain the identity matrix. Note that −1 < λ < 1 for all eigenvalues of A
ensures limk→∞Ak → 0 so that

∑∞
k=1 Ak converges.

Previously, we established that a projection matrix PV onto a subspace
V ∈ Rn where dim(V ) = k has k eigenvalues equal to 1, and n − k
eigenvalues equal to 0.

Recall that a projection matrix is symmetric and idempotent. More gen-
erally, this result can be extended to all idempotent matrices.

Theorem: If A is an n × n idempotent matrix of rank r, then A has r
eigenvalues equal to 1, and n− r eigenvalues equal to 0.

Proof: In general, if λ is an eigenvalue for A, then λ2 is an eigenvalue for
A2 since

A2x = A(Ax) = Aλx = λAx = λλx = λ2x.

Since A2 = A, we have A2x = Ax = λx. Equating the right sides of
A2x = λ2x and A2x = λx, we have

λx = λ2x, or (λ− λ2)x = 0.

But x 6= 0, so λ − λ2 = 0, from which λ must be either 0 or 1. Since A
is idempotent, it must be p.s.d., so the number of nonzero eigenvalues is
equal to rank(A) = r and therefore, r eigenvalues are 1 and n− r are 0.

Now we are ready to state our main result:

Theorem: Let y ∼ Nn(µ,Σ) and A be a n × n symmetric matrix of
constants with rank(A) = r. Let λ = 1

2µT Aµ. Then

yT Ay ∼ χ2(r, λ) if and only if AΣ is idempotent.
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Proof: From the theorem on p. 81, the moment generating function of
yT Ay is

myT Ay(t) = |In − 2tAΣ|−1/2 exp
[
−1

2
µT {In − (In − 2tAΣ)−1}Σ−1µ

]
.

By the result on p. 81, the eigenvalues of In − 2tAΣ are 1 − 2tλi, i =
1, . . . , n, where λi is an eigenvalue of AΣ. Since the determinant equals
the product of the eigenvalues, we have |In − 2tAΣ| = ∏n

i=1(1− 2tλi). In
addition, by (*) we have (In−2tAΣ)−1 = In +

∑∞
k=1(2t)k(AΣ)k provided

that −1 < 2tλi < 1 for all i. Thus myT Ay(t) can be written as

myT Ay(t) =

(
n∏

i=1

(1− 2tλi)−1/2

)
exp

[
−1

2
µT {−

∞∑

k=1

(2t)k(AΣ)k}Σ−1µ

]
.

Now suppose AΣ is idempotent of rank r = rank(A). Then (AΣ)k = AΣ
and r of the λi’s are equal to 1, and n − r of the λi’s are equal to 0.
Therefore,

myT Ay(t) =

(
r∏

i=1

(1− 2t)−1/2

)
exp[−1

2
µT {−

∞∑

k=1

(2t)k}AΣΣ−1µ]

= (1− 2t)−r/2 exp[−1
2
µT {1− (1− 2t)−1}Aµ],

provided that −1 < 2t < 1 or − 1
2 < t < 1

2 , which is compatible with the
requirement that the m.g.f. exist for t in a neighborhood of 0. (Here we
have used the series expansion 1/(1− x) = 1 +

∑∞
k=1 xk for −1 < x < 1.)

Thus,

myT Ay(t) =
exp[− 1

2µT Aµ{1− 1/(1− 2t)}]
(1− 2t)r/2

,

which is the m.g.f. of a χ2(r, 1
2µT Aµ) random variable.

For a proof of the converse (that yT Ay ∼ χ2(r, λ) implies AΣ idempo-
tent), see Searle (1971, pp. 57–58).
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Several useful results follow easily from the previous theorem as corollaries:

Corollary 1: If y ∼ Nn(0, σ2I), then 1
σ2 yT Ay ∼ χ2(r) if and only if A

is idempotent of rank r.

Corollary 2: If y ∼ Nn(µ, σ2I), then 1
σ2 yT Ay ∼ χ2(r, 1

2σ2 µT Aµ) if and
only if A is idempotent of rank r.

Corollary 3: Suppose y ∼ Nn(µ, σ2In) and let PV be the projection
matrix onto a subspace V ∈ Rn of dimension r ≤ n. Then

1
σ2

yT PV y =
1
σ2
‖p(y|V )‖2 ∼ χ2(r,

1
2σ2

µT PV µ) = χ2(r,
1

2σ2
‖p(µ|V )‖2).

Corollary 4: Suppose y ∼ N(µ, Σ) and let c be an n × 1 vector of
constants. Then

(y − c)T Σ−1(y − c) ∼ χ2(n, λ) for λ =
1
2
(µ− c)T Σ−1(µ− c).

The classical linear model has the form y ∼ Nn(µ, σ2In), where µ is
assumed to lie in a subspace V = L(x1, . . . ,xk) = C(X). That is, µ = Xβ
for some β ∈ Rk.

Therefore, we’ll be interested in statistical properties of ŷV = p(y|V ), the
projection of y onto V , and of functions of ŷV and the residual vector
y − ŷV = p(y|V ⊥).

• The distributional form (normal, chi-square, etc.) of functions of y
(e.g., ŷV ) are determined by the distributional form of y (usually
assumed normal).

• The expectation of linear functions of y is determined solely by
E(y) = µ.

• The expectation of quadratic functions of y (e.g., ‖ŷV ‖2) is deter-
mined by µ and var(y).
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In particular, we have the following results

Theorem: Let V be a k−dimensional subspace of Rn, and let y be a
random vector in Rn with mean E(y) = µ. Then

1. E{p(y|V )} = p(µ|V );

2. if var(y) = σ2In then

var{p(y|V )} = σ2PV and E
{‖p(y|V )‖2} = σ2k + ‖p(µ|V )‖2;

and

3. if we assume additionally that y is m’variate normal i.e., y ∼ Nn(µ, σ2In),
then

p(y|V ) ∼ Nn(p(µ|V ), σ2PV ),

and

1
σ2
‖p(y|V )‖2 =

1
σ2

yT PV y ∼ χ2(k,
1

2σ2
µT PV µ︸ ︷︷ ︸

=‖p(µ|V )‖2
).

Proof:

1. Since the projection operation is linear, E{p(y|V )} = p(E(y)|V ) =
p(µ|V ).

2. p(y|V ) = PV y so var{p(y|V )} = var(PV y) = PV σ2InPT
V = σ2PV .

In addition, ‖p(y|V )‖2 = p(y|V )T p(y|V ) = (PV y)T PV y = yT PV y.
So, E(‖p(y|V )‖2) = E(yT PV y) is the expectation of a quadratic
form and therefore equals

E(‖p(y|V )‖2) = tr(σ2PV ) + µT PV µ = σ2tr(PV ) + µT PT
V PV µ

= σ2k + ‖p(µ|V )‖2.

3. Result 3 is just a restatement of corollary 3 above, and follows im-
mediately from the Theorem on the bottom of p. 82.
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So, we have distributional results for a projection and for the squared
length of that projection. In linear models we typically decompose the
sample space by projecting onto the model space V to form ŷV = p(y|V )
and onto its orthogonal complement V ⊥ to form the residual e = y− ŷV .
In some cases we go further and decompose the model space by projecting
onto subspaces within the model space.

What’s the joint distribution of such projections?

Well, it turns out that if the subspaces are orthogonal and if the conditions
of the classical linear model (normality, independence, and homoscedas-
ticity) hold, then the projections onto these subspaces are independent
normal random vectors, and their squared lengths (the sums of squares in
an ANOVA) are independent chi-square random variables.

So, if we understand the geometry underlying our linear model (e.g., un-
derlying an ANOVA we’d like to do for a particular linear model), then
we can use the following result:

Theorem: Let V1, . . . , Vk be mutually orthogonal subspaces of Rn with
dimensions d1, . . . , dk, respectively, and let y be a random vector taking
values in Rn which has mean E(y) = µ. Let Pi be the projection matrix
onto Vi so that ŷi = p(y|Vi) = Piy and let µi = Piµ, i = 1, . . . , n. Then

1. if var(y) = σ2In then cov(ŷi, ŷj) = 0, for i 6= j; and

2. if y ∼ Nn(µ, σ2In) then ŷ1, . . . , ŷk are independent, with

ŷi ∼ N(µi, σ
2Pi);

and

3. if y ∼ Nn(µ, σ2In) then ‖ŷ1‖2, . . . , ‖ŷk‖2 are independent, with

1
σ2
‖ŷi‖2 ∼ χ2(di,

1
2σ2

‖µi‖2).

86



Proof: Part 1: For i 6= j, cov(ŷi, ŷj) = cov(Piy,Pjy) = Picov(y,y)Pj =
Piσ

2IPj = σ2PiPj = 0. (For any z ∈ Rn, PiPjz = 0 ⇒ PiPj = 0.)

Part 2: If y is m’variate normal then ŷi = Piy, i = 1, . . . , k, are jointly
multivariate normal and are therefore independent if and only if cov(ŷi, ŷj) =
0, i 6= j. The mean and variance-covariance of ŷi are E(ŷi) = E(Piy) =
Piµ = µi and var(ŷi) = Piσ

2IPT
i = σ2Pi.

Part 3: If ŷi = Piy, i = 1, . . . , k, are mutually independent, then any
(measurable*) functions fi(ŷi), i = 1, . . . , k, are mutually independent.
Thus ‖ŷi‖2, i = 1, . . . , k, are mutually independent. That σ−2‖ŷi‖2 ∼
χ2(di,

1
2σ2 ‖µi‖2) follows from part 3 of the previous theorem.

Alternatively, we can take an algebraic approach to determining whether
projections and their squared lengths (in, for example, an ANOVA) are
independent. The geometric approach is easier, perhaps, but only if you
understand the geometry. But we will describe the algebraic approach as
well (next).

Independence of Linear and Quadratic Forms:

Here we consider the statistical independence of:

1. a linear form and a quadratic form (e.g., consider whether ȳ and s2 in
a one sample problem are independent; or consider the independence
of β̂ and s2 in a regression setting);

2. two quadratic forms (e.g., consider the independence of the sum of
squares due to regression and the error sum of squares in a regression
problem); and

3. several quadratic forms (e.g., consider the joint distribution of SSA,
SSB , SSAB , SSE in a two-way layout analysis of variance).

* All continuous functions, and most “well-behaved” functions are
measurable
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Before proceeding, we need a Lemma and its corollary:

Lemma: If y ∼ Nn(µ,Σ), then

cov(y,yT Ay) = 2ΣAµ.

Proof: Using the definition of covariance and the expectation of a quadratic
form, we have

cov(y,yT Ay) = E[(y − µ){yT Ay − E(yT Ay)}]
= E[(y − µ){yT Ay − tr(AΣ)− µT Aµ}].

Now using the algebraic identity yT Ay − µT Aµ = (y − µ)T A(y − µ) +
2(y − µ)T Aµ, we obtain

cov(y,yT Ay) = E[(y − µ){(y − µ)T A(y − µ) + 2(y − µ)T Aµ− tr(AΣ)}]
= E{(y − µ)(y − µ)T A(y − µ)}+ 2E{(y − µ)(y − µ)T Aµ}
− E{(y − µ)tr(AΣ)}

= 0 + 2ΣAµ− 0.

The first term equals 0 here because all third central moments of the
multivariate normal distribution are 0.

Corollary: Let B be a k×n matrix of constants and y ∼ Nn(µ, Σ). Then

cov(By,yT Ay) = 2BΣAµ.

Now we are ready to consider (1.):

Theorem: Suppose B is a k × n matrix of constants, A a n × n sym-
metric matrix of constants, and y ∼ Nn(µ,Σ). Then By and yT Ay are
independent if and only if BΣA = 0k×n.

Proof: We prove this theorem under the additional assumption that A is
a projection matrix (that is, assuming A is idempotent as well as symmet-
ric), which is the situation in which we’re most interested in this course.
See Searle (1971, p.59) for the complete proof.
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Assuming A is symmetric and idempotent, then we have

yT Ay = yT AT Ay = ‖Ay‖2.

Now suppose BΣA = 0. Then By and Ay are each normal, with

cov(By,Ay) = BΣA = 0.

Therefore, By and Ay are independent of one another. Furthermore,
By is independent of any (measureable) function of Ay, so that By is
independent of ‖Ay‖2 = yT Ay.
Now for the converse. Suppose By and yT Ay are independent. Then
cov(By,yT Ay) = 0 so

0 = cov(By,yT Ay) = 2BΣAµ,

by the corollary to the lemma above. Since this holds for all possible µ, it
follows that BΣA = 0.

Corollary: If y ∼ Nn(µ, σ2I), then By and yT Ay are independent if
and only if BA = 0.

Example: Suppose we have a random sample y = (y1, . . . , yn)T ∼ Nn(µ, σ2In),
and consider

ȳ =
1
n

n∑

i=1

yi =
1
n
jTny

and

s2 =
1

n− 1

n∑

i=1

(yi − ȳ)2 =
1

n− 1
‖PL(jn)⊥y‖2

where PL(jn)⊥ = In − 1
n jnjTn . By the above corollary, ȳ and s2 are inde-

pendent because

1
n
jTnPL(jn)⊥ =

1
n

(PT
L(jn)⊥jn)T = (PL(jn)⊥jn)T =

1
n

(0)T = 0T .
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Theorem: Let A and B be symmetric matrices of constants. If y ∼
Nn(µ,Σ), then yT Ay and yT By are independent if and only if AΣB = 0.

Proof: Again, we consider the special case when A and B are symmetric
and idempotent (projection matrices), and we only present the “if” part
of the proof (see Searle, 1971, pp. 59–60, for complete proof).

Suppose A and B are symmetric and idempotent and that AΣB = 0.
Then yT Ay = ‖Ay‖2, yT By = ‖By‖2. If AΣB = 0 then

cov(Ay,By) = AΣB = 0.

Each of Ay and By are multivariate normal and they have covariance 0,
hence they’re independent. Furthermore, any (measurable) functions of
Ay and By are independent, so that ‖Ay‖2 and ‖By‖2 are independent.

Corollary: If y ∼ Nn(µ, σ2I) then yT Ay and yT By are independent if
and only if AB = 0.

Finally, we have a theorem and corollary concerning the mutual indepen-
dence of several quadratic forms in normal random vectors:

Theorem: Let y ∼ Nn(µ, σ2In), let Ai be symmetric of rank ri, i =
1, . . . , k, and let A =

∑k
i=1 Ai with rank r so that yT Ay =

∑k
i=1 yT Aiy.

Then

1. yT Aiy/σ2 ∼ χ2(ri, µ
T Aiµ/{2σ2}), i = 1, . . . , k; and

2. yT Aiy and yT Ajy are independent for all i 6= j; and
3. yT Ay/σ2 ∼ χ2(r,µT Aµ/{2σ2});

if and only if any two of the following statements are true:

a. each Ai is idempotent;
b. AiAj = 0 for all i 6= j;
c. A is idempotent;

or if and only if (c) and (d) are true where (d) is as follows:

d. r =
∑k

i=1 ri.
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Proof: See Searle (1971, pp. 61–64).

• Note that any two of (a), (b), and (c) implies the third.

• The previous theorem concerned the partitioning of a weighted sum
of squares yT Ay into several components. We now state a corollary
that treats the special case where A = I and the total (unweighted
sum of squares) yT y is decomposed into a sum of quadratic forms.

Corollary: Let y ∼ Nn(µ, σ2I), let Ai be symmetric of rank ri, i =
1, . . . , k, and suppose that yT y =

∑k
i=1 yT Aiy (i.e.,

∑k
i=1 Ai = I). Then

1. each yT Aiy ∼ χ2(ri, µ
T Aiµ/{2σ2}); and

2. the yT Aiy’s are mutually independent;

if and only if any one of the following statements holds:

a. each Ai is idempotent;
b. AiAj = 0 for all i 6= j;
c. n =

∑k
i=1 ri.

• This theorem subsumes “Cochran’s Theorem” which is often cited
as the justification for independence of sums of squares in a decom-
position of the total sum of squares in an analysis of variance.
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F -Distribution: Let

U1 ∼ χ2(n1, λ), U2 ∼ χ2(n2) (central)

be independent. Then

V =
U1/n1

U2/n2

is said to have a noncentral F distribution with noncentrality parameter
λ, and n1 and n2 degrees of freedom.

• For λ = 0, V is said to have a central F distribution with degrees of
freedom n1 and n2.

• The noncentral F has three parameters: λ, the noncentrality param-
eter, n1, the numerator degrees of freedom, and n2, the denominator
degrees of freedom. The central F has two parameters, the numera-
tor and denominator degrees of freedom, n1 and n2.

• We’ll denote the noncentral F by F (n1, n2, λ) and the central F by
F (n1, n2). The 100γth percentile of the F (n1, n2) distribution will
be denoted Fγ(n1, n2).

• The p.d.f. of the noncentral F is an ugly looking thing not worth
reproducing here. It has the form of a Poisson mixture of central
F ’s.

• The mean of the noncentral F (n1, n2, λ) is n2
n2−2 (1 + 2λ/n1). Its

variance is much more complicated (see Stapleton, p.67, if you’re
interested).
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t-Distribution: Let

W ∼ N(µ, 1), Y ∼ χ2(m)

be independent random variables. Then

T =
W√
Y/m

is said to have a (Student’s) t distribution with noncentrality parameter
µ and m degrees of freedom.

• We’ll denote this distribution as t(m,µ).

• If the numerator random variable W has distribution N(µ, σ2) then
the noncentrality parameter becomes µ/σ since W/σ ∼ (µ/σ, 1).

• Again, when the noncentrality parameter µ is zero, we get the central
t distribution, t(m) ≡ t(m, 0). The 100γth percentile of the central t
will be denoted tγ(m).

• The p.d.f. of the noncentral t is too complicated to be worth becom-
ing familiar with. It may be found in Stapleton, p.68.

• The mean and variance of the central t(m) distribution are 0, and
m/(m − 2), respectively. For the noncentral t, these moments are
not so simple.

• We can think of the central t(m) has a more dispersed version of
the standard normal distribution with fatter tails. As m → ∞,
m/(m− 2) → 1, so the t(m) converges to the N(0, 1).

Notice the important relationship that the square of a r.v. with a t(m)
distribution has an F (1,m) distribution:

If
T =

W√
Y/m

∼ t(m),

then

T 2 =
W 2/1
Y/m

∼ F (1,m).
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Example: Let Y1, . . . , Yn be a random sample from a N(µ, σ2) distribu-
tion. The following results should be familiar to you from earlier course-
work (we will prove them in the following theorem): For Ȳ = 1

n

∑n
i=1 Yi,

and S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2,

Ȳ ∼ N

(
µ,

σ2

n

)
,

(n− 1)S2

σ2
∼ χ2(n− 1), and Ȳ , S2 are independent.

Let µ0 be a constant, and define θ = µ−µ0
σ/
√

n
. Then

T =
Ȳ − µ0

S/
√

n
∼

{
t(n− 1), if µ0 = µ;
t(n− 1, θ), otherwise.

Here’s the theorem establishing these results, and providing the basis for
the one-sample t−test.

Theorem: Let Y1, . . . , Yn be a random sample (i.i.d. r.v.’s) from a
N(µ, σ2) distribution, and let Ȳ , S2, and T be defined as above. Then

1. Ȳ ∼ N(µ, σ2/n);

2. V = S2(n−1)
σ2 = 1

σ2

∑n
i=1(Yi − Ȳ )2 ∼ χ2(n− 1);

3. Ȳ and S2 are independent; and

4. T = Ȳ−µ0
S/
√

n
∼ t(n− 1, λ) where λ = µ−µ0

σ/
√

n
for any constant µ0.

Proof: Part 1: By assumption, y = (Y1, . . . , Yn)T ∼ Nn(µjn, σ2In).
Let V = L(jn), a 1-dimensional subspace of Rn. Then p(y|V ) = Ȳ jn.
Ȳ = n−1jTny is an affine transformation of y so it is normal, with mean
n−1jTnE(y) = µ and variance n−2jTnσ2Injn = σ2/n.
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Part 3: By part 2 of the theorem on p. 86, p(y|V ⊥) = (Y1−Ȳ , . . . , Yn−Ȳ )T

is independent of p(y|V ) = Ȳ jn, and hence independent of Ȳ . Thus, S2,
a function of p(y|V ⊥), and Ȳ are independent. Alternatively, we could
use the corollary on p. 89 giving the necessary and sufficient condition
for independence of a linear form (Ȳ ) and a quadratic form (S2). See the
example on p. 89.

Part 2: Here we use part 3 of the theorem on p. 85. That result implies
that 1

σ2 S2(n− 1) = 1
σ2 ‖p(y|V ⊥)‖2 ∼ χ2(dim(V ⊥), λ) = χ2(n− 1, λ) and

λ =
1

2σ2
‖p(E(y)|V ⊥)‖2 =

1
2σ2

‖ p(µjn︸︷︷︸
∈V

|V ⊥)

︸ ︷︷ ︸
=0

‖2 = 0.

Part 4: Let U = Ȳ−µ0
σ/
√

n
. Then U ∼ N

(
µ−µ0
σ/
√

n
, 1

)
. From part 3 of this

theorem, U and V are independent. Note that T can be written as

T =
Ȳ − µ0

S/
√

n
=

Ȳ−µ0
σ/
√

n√
S2/σ2

=
U√

V/(n− 1)
,

so by the definition of the noncentral t distribution, T ∼ t
(
n− 1, µ−µ0

σ/
√

n

)
.
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Finally, the following theorem puts together some of our results on in-
dependence of squared lengths of projections (quadratic forms) and the
definition of the F distribution to give the distribution of F -tests in the
ANOVA:

Theorem: Let y = Xβ + e, where X is n × k with rank r ≤ k. and
e ∼ Nn(0, σ2In). Let V1 be a subspace of C(X) with dim(V1) = r1 which
is smaller than dim(C(X)) = r. Let ŷ = p(y|C(X)). Then the random
variable

F =
‖p(y|V1)‖2/r1

‖y − ŷ‖2/(n− r)
∼ F (r1, n− r, ‖p(Xβ|V1)‖2/{2σ2}).

Proof: Since y − ŷ = p(y|C(X)⊥), it follows from part 3 of the theorem
on p. 86 that Q1 ≡ ‖p(y|V1)‖2 and Q2 ≡ ‖p(y|C(X)⊥)‖2 = ‖y − ŷ‖2 are
independent random variables and Q1/σ2 ∼ χ2(r1, ‖p(Xβ|V1)‖2/{2σ2})
and Q2/σ2 ∼ χ2(n − r). Thus, by the definition of the non-central F
distribution, the result follows.
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The Linear Model

The Full Rank Case: Multiple Linear Regression

Suppose that on a random sample of n units (patients, animals, trees, etc.)
we observe a response variable Y and explanatory variables X1, . . . , Xk.

Our data are then (yi, xi1, . . . , xik), i = 1, . . . , n, or, in vector/matrix form
y,x1, . . . ,xk where y = (y1, . . . , yn) and xj = (x1j , . . . , xnj)T ; or y,X
where X = (x1, . . . ,xk).

Either by design or by conditioning on their observed values, x1, . . . ,xk

are regarded as vectors of known constants.

The linear model in its classical form makes the following assumptions:

A1. (additive error) y = µ + e where e = (e1, . . . , en)T is an unobserved
random vector with E(e) = 0. This implies that µ = E(y) is the
unknown mean of y.

A2. (linearity) µ = β1x1+· · ·+βkxk = Xβ where β1, . . . , βk are unknown
parameters. This assumption says that E(y) = µ ∈ L(x1, . . . ,xk) =
C(X) lies in the column space of X; i.e., it is a linear combination
of explanatory vectors x1, . . . ,xk with coefficients the unknown pa-
rameters in β = (β1, . . . , βk)T .

• Linear in β1, . . . , βk not in the x’s.

A3. (independence) e1, . . . , en are independent random variables (and
therefore so are y1, . . . , yn).

A4. (homoscedasticity) e1, . . . , en all have the same variance σ2; that
is, var(e1) = · · · = var(en) = σ2 which implies var(y1) = · · · =
var(yn) = σ2.

A5. (normality) e ∼ Nn(0, σ2In).
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• Taken together, assumptions (A3) and (A4) say var(y) = var(e) =
σ2In. We say that y (and e) has a spherical variance-covariance
matrix.

• Note that assumption (A5) subsumes (A3) and (A4), but we can
obtain many useful results without invoking normality, so its useful
to separate the assumptions of independence, homoscedasticity, and
normality.

• Taken together, all five assumptions can be stated more succinctly
as y ∼ Nn(Xβ, σ2I).

• The unknown parameters of the model are β1, . . . , βk, σ2.

• In multiple linear regression models, there is typically an intercept
term in the model. That is, one of the explanatory variables is equal
to 1, for all i.

• This could be accommodated by just setting x1 = jn and letting β1

represent the intercept. However, we’ll follow our book’s convention
and include the intercept as an additional term. Our model then
becomes

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik, i = 1, . . . , n,

or




y1

y2
...

yn


 =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk




︸ ︷︷ ︸
=X




β0

β1
...

βk




︸ ︷︷ ︸
=β

+




e1

e2
...

en




or
y = Xβ + e,

where e ∼ Nn(0, σ2I).
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• In multiple regression, it is typical for the explanatory vectors jn,x1,
x2, . . . ,xk to be LIN. At times this is violated, but usually because of
the data we happen to observe rather than because of the structure
of the model. That is, in contrast to ANOVA models, there is usually
no structural dependence among the explanatory vectors in multiple
regression. Therefore, we will (for now) assume that X is of
full rank.

• Note that our model assumes that we can re-express E(y) = µ ∈ Rn

as Xβ ∈ C(X) where dim(C(X)) = k + 1. Therefore, as long as
n > k + 1, our model involves some reduction or summarization by
assuming that the n-element vector µ falls in a k + 1 dimensional
subspace of Rn.

• We will assume n > k + 1 throughout our discussion of the linear
model. If n = k + 1 (when there are as many parameters in β as
there are data points), then the model involves no data reduction
at all, only a data transformation. A linear model with k + 1 > n
parameters is useless.

Interpretation of the βj ’s: The elements of β in a multiple linear regres-
sion model are usually called simply regression coefficients, but are more
properly termed partial regression coefficients.

In the model
y = β0 + β1x1 + β2x2 + · · ·+ βkxk︸ ︷︷ ︸

=µ

+e,

note that ∂µ
∂xk

= βj . That is, βj represents the change in E(y) = µ
associated with a unit change in xj , assuming all of the other xk’s are
held constant.

In addition, this effect depends upon what other explanatory variables are
present in the model. For example, β0 and β1 in the model

y = β0jn + β1x1 + β2x2 + e

will typically be different than β∗0 and β∗1 in the model

y = β∗0 jn + β∗1x1 + e∗.
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• For example, consider again our reading ability and height example.
If I regressed reading ability (r) on height (h) for children from grades
1–5,

ri = β0 + β1hi + ei i = 1, . . . , n,

I would expect to obtain a large positive (and significant) estimate
β̂1. However, if we were to add age (a) to our model:

ri = β∗0 + β∗1hi + β∗2ai + e∗i i = 1, . . . , n,

I would expect β̂∗1 ≈ 0.

• The issue here is very similar to the distinction between correlation
and partial correlation. However, regression coefficients quantify as-
sociation between a random y and a fixed xj . Correlation coefficients
regard both y and xj as random.

Estimation in the Full-Rank Linear Model

Recall in the classical linear model (CLM) we assume

y = µ + e, for µ = Xβ for some β ∈ Rk+1, and e ∼ Nn(0, σ2In).

• Sometimes we are interested only in estimating E(y) = µ (e.g., when
focused on prediction).

• More often, however, the parameters β0, β1, . . . , βk, or some subset
or function of the parameters are of interest in and of themselves as
interpretable, meaningful quantities to be estimated. Therefore, we
will focus on estimation of β rather than µ.

• However, the relationship between the mean parameter µ and the
regression parameter β is µ = Xβ, so we can always estimate µ once
we estimate β as µ̂ = Xβ̂.

• In addition, in the X of full rank case, we can write β in terms of µ:
β = (XT X)−1XT µ, so we could just as well focus on estimation of
µ and then obtain β̂ as (XT X)−1XT µ̂.
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Least-Squares Estimation:

Recall that the projection of y onto C(X), the set of all vectors of the
form Xb for b ∈ Rk+1, yields the closest point in C(X) to y. That is,
p(y|C(X)) yields the minimizer of

Q(β) = ‖y −Xβ‖2 (the least squares criterion)

This leads to the estimator β̂ given by the solution of

XT Xβ = XT y (the normal equations)

or
β̂ = (XT X)−1XT y.

All of this has already been established back when we studied projections
(see pp. 30–31). Alternatively, we could use calculus:

To find a stationary point (maximum, minimum, or saddle point) of Q(β),
we set the partial derivative of Q(β) equal to zero and solve:

∂

∂β
Q(β) =

∂

∂β
(y −Xβ)T (y −Xβ) =

∂

∂β
(yT y − 2yT Xβ + βT (XT X)β)

= 0− 2XT y + 2XT Xβ

Here we’ve used the vector differentiation formulas ∂
∂zc

T z = c and ∂
∂zz

T Az =
2Az (see §2.14 of our text).

Setting this result equal to zero, we obtain the normal equations, which
has solution β̂ = (XT X)−1XT y. That this is a minimum rather than
a max, or saddle point can be verified by checking the second derivative
matrix of Q(β):

∂2Q(β)
∂β

= 2XT X

which is positive definite (result 7, p. 54), therefore β̂ is a minimum.
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Example — Simple Linear Regression

Consider the case k = 1:

yi = β0 + β1xi + ei, i = 1, . . . , n

where e1, . . . , en are i.i.d. each with mean 0 and variance σ2. Then the
model equation becomes




y1

y2
...

yn


 =




1 x1

1 x2
...

...
1 xn




︸ ︷︷ ︸
=X

(
β0

β1

)

︸ ︷︷ ︸
=β

+




e1

e2
...

en


 .

It follows that

XT X =
(

n
∑

i xi∑
i xi

∑
i x2

i

)
, XT y =

( ∑
i yi∑

i xiyi

)

(XT X)−1 =
1

n
∑

i x2
i − (

∑
i xi)2

( ∑
i x2

i −∑
i xi

−∑
i xi n

)
.

Therefore, β̂ = (XT X)−1XT y yields

β̂ =
(

β̂0

β̂1

)
=

1
n

∑
i x2

i − (
∑

i xi)2

(
(
∑

i x2
i )(

∑
i yi)− (

∑
i xi)(

∑
i xiyi)

−(
∑

i xi)(
∑

i yi) + n
∑

i xiyi

)
.

After a bit of algebra, these estimators simplify to

β̂1 =
∑

i(xi − x̄)(yi − ȳ)∑
i(xi − x̄)2

=
Sxy

Sxx

and β̂0 = ȳ − β̂1x̄

102



In the case that X is of full rank, β̂ and µ̂ are given by

β̂ = (XT X)−1XT y, µ̂ = Xβ̂ = X(XT X)−1XT y = PC(X)y.

• Notice that both β̂ and µ̂ are linear functions of y. That is, in each
case the estimator is given by some matrix times y.

Note also that

β̂ = (XT X)−1XT y = (XT X)−1XT (Xβ + e) = β + (XT X)−1XT e.

From this representation several important properties of the least squares
estimator β̂ follow easily:

1. (unbiasedness):

E(β̂) = E(β + (XT X)−1XT e) = β + (XT X)−1XT E(e)︸︷︷︸
=0

= β.

2. (var-cov matrix)

var(β̂) = var(β + (XT X)−1XT e) = (XT X)−1XT var(e)︸ ︷︷ ︸
=σ2I

X(XT X)−1

= σ2(XT X)−1

3. (normality) β̂ ∼ Nk(β, σ2(XT X)−1) (if e is assumed normal).

• These three properties require increasingly strong assumptions. Prop-
erty (1) holds under assumptions A1 and A2 (additive error and
linearity).

• Property (2) requires, in addition, the assumption of sphericity.

• Property (3) requires assumption A5 (normality). However, later we
will present a central limit theorem-like result that establishes the
asymptotic normality of β̂ under certain conditions even when e is
not normal.
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Example — Simple Linear Regression (Continued)

Result 2 on the previous page says for var(y) = σ2I, var(β̂) = σ2(XT X)−1.
Therefore, in the simple linear regression case,

var
(

β̂0

β̂1

)
= σ2(XT X)−1

=
σ2

n
∑

i x2
i − (

∑
i xi)2

( ∑
i x2

i −∑
i xi

−∑
i xi n

)

=
σ2

∑
i(xi − x̄)2

(
n−1

∑
i x2

i −x̄
−x̄ 1

)
.

Thus,

var(β̂0) =
σ2

∑
i x2

i /n∑
i(xi − x̄)2

= σ2

[
1
n

+
x̄2

∑
i(xi − x̄)2

]
,

var(β̂1) =
σ2

∑
i(xi − x̄)2

,

and cov(β̂0, β̂1) =
−σ2x̄∑

i(xi − x̄)2

• Note that if x̄ > 0, then cov(β̂0, β̂1) is negative, meaning that the
slope and intercept are inversely related. That is, over repeated
samples from the same model, the intercept will tend to decrease
when the slope increases.
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Gauss-Markov Theorem:

We have seen that in the spherical errors, full-rank linear model, the least-
squares estimator β̂ = (XT X)−1XT y is unbiased and it is a linear esti-
mator.

The following theorem states that in the class of linear and unbiased esti-
mators, the least-squares estimator is optimal (or best) in the sense that
it has minimum variance among all estimators in this class.

Gauss-Markov Theorem: Consider the linear model y = Xβ+e where
X is n × (k + 1) of rank k + 1, where n > k + 1, E(e) = 0, and var(e) =
σ2I. The least-squares estimators β̂j , j = 0, 1, . . . , k (the elements of
β̂ = (XT X)−1XT y have minimum variance among all linear unbiased
estimators.

Proof: Write β̂j as β̂j = cT β̂ where c is the indicator vector containing a 1
in the (j +1)st position and 0’s elsewhere. Then β̂j = cT (XT X)−1XT y =
aT y where a = X(XT X)−1c. The quantity being estimated is βj = cT β =
cT (XT X)−1XT µ = aT µ where µ = Xβ.

Consider an arbitrary linear estimator β̃j = dT y of βj . For such an esti-
mator to be unbiased, it must satisfy E(β̃j) = E(dT y) = dT µ = aT µ for
any µ ∈ C(X). I.e.,

dT µ− aT µ = 0 ⇒ (d− a)T µ = 0 for all µ ∈ C(X),

or (d− a) ⊥ C(X). Then

β̃j = dT y = aT y + (d− a)T y = β̂j + (d− a)T y.

The random variables on the right-hand side, β̂j and (d − a)T y, have
covariance

cov(aT y, (d− a)T y) = aT var(y)(d− a) = σ2aT (d− a) = σ2(dT a− aT a).

Since dT µ = aT µ for any µ ∈ C(X) and a = X(XT X)−1c ∈ C(X), it
follows that dT a = aT a so that

cov(aT y, (d− a)T y) = σ2(dT a− aT a) = σ2(aT a− aT a) = 0.
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It follows that

var(β̃j) = var(β̂j) + var((d− a)T y) = var(β̂j) + σ2||d− a||2.

Therefore, var(β̃j) ≥ var(β̂j) with equality if and only if d = a, or equiva-
lently, if and only if β̃j = β̂j .

Comments:

1. Notice that nowhere in this proof did we make use of the specific
form of c as an indicator for one of the elements of β. That is,
we have proved a slightly more general result than that given in the
statement of the theorem. We have proved that cT β̂ is the minimum
variance estimator in the class of linear unbiased estimators of cT β
for any vector of constant c.

2. The least-squares estimator cT β̂ where β̂ = (XT X)−1XT y is often
called the B.L.U.E. (best linear unbiased estimator) of cT β. Some-
times, it is called the Gauss-Markov estimator.

3. The variance of the BLUE is

var(cT β̂) = σ2‖a‖2 = σ2
[
X(XT X)−1c

]T
X(XT X)−1c = σ2

[
cT (XT X)−1c

]
.

Note that this variance formula depends upon X through (XT X)−1.
Two implications of this observation are:

– If the columns of the X matrix are mutually orthogonal, then
(XT X)−1 will be diagonal, so that the elements of β̂ are un-
correlated.

– Even for a given set of explanatory variables, the values at
which the explanatory variable are observed will affect the vari-
ance (precision) of the resulting parameter estimators.

4. What is remarkable about the Gauss-Markov Theorem is its distri-
butional generality. It does not require normality! It says that β̂ is
BLUE regardless of the distribution of e (or y) as long as we have
mean zero, spherical errors.
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An additional property of least-squares estimation is that the estimated
mean µ̂ = X(XT X)−1XT y is invariant to (doesn’t change as a result of)
linear changes of scale in the explanatory variables.

That is, consider the linear models

y =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk




︸ ︷︷ ︸
=X

β + e

and

y =




1 c1x11 c2x12 · · · ckx1k

1 c1x21 c2x22 · · · ckx2k
...

...
...

. . .
...

1 c1xn1 c2xn2 · · · ckxnk




︸ ︷︷ ︸
=Z

β∗ + e

Then, µ̂, the least squares estimator of E(y), is the same in both of these
two models. This follows from a more general theorem:

Theorem: In the linear model y = Xβ + e where E(e) = 0 and X is of
full rank, µ̂, the least-squares estimator of E(y) is invariant to a full rank
linear transformation of X.

Proof: A full rank linear transformation of X is given by

Z = XH

where H is square and of full rank. In the original (untransformed) linear
model µ̂ = X(XT X)−1XT y = PC(X)y. In the transformed model y =
Zβ∗+e, µ̂ = Z(ZT Z)−1ZT y = PC(Z)y = PC(XH)y. So, it suffices to show
that PC(X) = PC(XH). This is true because if x ∈ C(XH) then x = XHb
for some b, ⇒ x = Xc where c = Hb ⇒ x ∈ C(X) ⇒ C(XH) ⊂ C(X).
In addition, if x ∈ C(X) then x = Xd for some d ⇒ x = XHH−1d =
XHa where a = H−1d ⇒ x ∈ C(XH) ⇒ C(X) ⊂ C(XH). Therefore,
C(X) = C(XH).

• The simple case described above where each of the xj ’s is rescaled
by a constant cj occurs when H = diag(1, c1, c2, . . . , ck).
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Maximum Likelihood Estimation:

Least-squares provides a simple, intuitively reasonable criterion for esti-
mation. If we want to estimate a parameter describing µ, the mean of
y, then choose the parameter value that minimizes the squared distance
between y and µ. If var(y) = σ2I, then the resulting estimator is BLUE
(optimal, in some sense).

• Least-squares is based only on assumptions concerning the mean and
variance-covaraince matrix (the first two moments) of y.

• Least-squares tells us how to estimate parameters associated with
the mean (e.g., β) but nothing about how to estimate parameters
describing the variance (e.g., σ2) or other aspects of the distribution
of y.

An alternative method of estimation is maximum likelihood estimation.

• Maximum likelihood requires the specification of the entire distribu-
tion of y (up to some unknown parameters), rather than just the
mean and variance of that distribution.

• ML estimation provides a criterion of estimation for any parameter
describing the distribution of y, including parameters describing the
mean (e.g., β), variance (σ2), or any other aspect of the distribution.

• Thus, ML estimation is simultaneously more general and less general
than least squares in certain senses. It can provide estimators of
all sorts of parameters in a broad array of model types, including
models much more complex than those for which least-squares is
appropriate; but it requires stronger assumptions than least-squares.
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ML Estimation:

Suppose we have a discrete random variable Y (possibly a vector) with
observed value y. Suppose Y has probability mass function

f(y; γ) = Pr(Y = y; γ)

which depends upon an unknown p× 1 parameter vector γ taking values
in a parameter space Γ.

The likelihood function, L(γ; y) is defined to equal the probability mass
function but viewed as a function of γ, not y:

L(γ; y) = f(y; γ)

Therefore, the likelihood at γ0, say, has the interpretation

L(γ0; y) = Pr(Y = y when γ = γ0)

= Pr(observing the obtained data when γ = γ0)

Logic of ML: choose the value of γ that makes this probability largest ⇒
γ̂, the Maximum Likelihood Estimator or MLE.

We use the same procedure when Y is continuous, except in this context
Y has a probability density function f(y; γ), rather than a p.m.f.. Never-
theless, the likelihood is defined the same way, as L(γ; y) = f(y; γ), and
we choose γ to maximize L.

Often, our data come from a random sample so that we observe y corre-
sponding to Yn×1, a random vector. In this case, we either

(i) specify a multivariate distribution for Y directly and then the like-
lihood is equal to that probability density function (e.g. we assume
Y is multivariate normal and then the likelihood would be equal to
a multivariate normal density), or

(ii) we use an assumption of independence among the components of
Y to obtain the joint density of Y as the product of the marginal
densities of its components (the Yi’s).
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Under independence,

L(γ;y) =
n∏

i=1

f(yi; γ)

Since its easier to work with sums than products its useful to note that in
general

arg max
γ

L(γ; y) = arg max
γ

log L(γ; y)︸ ︷︷ ︸
≡`(γ;y)

Therefore, we define a MLE of γ as a γ̂ so that

`(γ̂, y) ≥ `(γ; y) for all γ ∈ Γ

If Γ is an open set, then γ̂ must satisfy (if it exists)

∂`(γ̂)
∂γj

= 0, j = 1, . . . , p

or in vector form

∂`(γ̂; y)
∂γ

=




∂`(γ̂)
∂γ1

...
∂`(γ̂)
∂γp


 = 0, (the likelihood equation, a.k.a. score equation)
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In the classical linear model, the unknown parameters of the model are β
and σ2, so the pair (β, σ2) plays the role of γ.

Under the assumption A5 that e ∼ Nn(0, σ2In), it follows that y ∼
Nn(Xβ, σ2In), so the likelihood function is given by

L(β, σ2;y) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
‖y −Xβ‖2

}

for β ∈ Rk+1 and σ2 > 0.

The log-likelihood is a bit easier to work with, and has the same maximiz-
ers. It is given by

`(β, σ2;y) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
‖y −Xβ‖2.

We can maximize this function with respect to β and σ2 in two steps:
First maximize with respect to β treating σ2 as fixed, then second plug
that estimator back into the loglikelihood function and maximize with
respect to σ2.

For fixed σ2, maximizing `(β, σ2;y) is equivalent to maximizing the third
term − 1

2σ2 ‖y−Xβ‖2 or, equivalently, minimizing ‖y−Xβ‖2. This is just
what we do in least-squares, and leads to the estimator β̂ = (XT X)−1XT y.

Next we plug this estimator back into the loglikelihood (this gives what’s
known as the profile loglikelihood for σ2):

`(β̂, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
‖y −Xβ̂‖2

and maximize with respect to σ2.
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Since the 2 exponent in σ2 can be a little confusing when taking derivatives,
let’s change symbols from σ2 to φ. Then taking derivatives and setting
equal to zero we get the (profile) likelihood equation

∂`

∂φ
=
−n/2

φ
+

(1/2)‖y −Xβ̂‖2
φ2

= 0,

which has solution

φ̂ = σ̂2 =
1
n
‖y −Xβ̂‖2 =

1
n

n∑

i=1

(yi − xT
i β̂)2,

where xT
i is the ith row of X.

• Note that to be sure that the solution to this equation is a maximum
(rather than a minimum or saddle-point) we must check that ∂2`

∂φ2 is
negative. I leave it as an exercise for you to check that this is indeed
the case.

Therefore, the MLE of (β, σ2) in the classical linear model is (β̂, σ̂2) where

β̂ = (XT X)−1XT y

and
σ̂2 =

1
n
‖y −Xβ̂‖2

=
1
n
‖y − µ̂‖2,

where µ̂ = Xβ̂.

• Note that

σ̂2 =
1
n
‖y − p(y|C(X))‖2 =

1
n
‖p(y|C(X)⊥)‖2.
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Estimation of σ2:

• Maximum likelihood estimation provides a unified approach to esti-
mating all parameters in the model, β and σ2.

• In contrast, least squares estimation only provides an estimator of
β.

We’ve seen that the LS and ML estimators of β coincide. However, the
MLE of σ2 is not the usually preferred estimator of σ2 and is not the
estimator of σ2 that is typically combined with LS estimation of β.

Why not?

Because σ̂2 is biased.

That E(σ̂2) 6= σ2 can easily be established using our results for taking
expected values of quadratic forms:

E(σ̂2) = E
(

1
n
‖PC(X)⊥y‖2

)
=

1
n

E
{
(PC(X)⊥y)T PC(X)⊥y

}
=

1
n

E(yT PC(X)⊥y)

=
1
n





σ2 dim(C(X)⊥) + ‖PC(X)⊥Xβ︸ ︷︷ ︸
=0, because Xβ ∈ C(X)

‖2





=
σ2

n
dim(C(X)⊥)

=
σ2

n
{n− dim(C(X))︸ ︷︷ ︸

=rank(X)

} =
σ2

n
{n− (k + 1)}

Therefore, the MLE σ̂2 is biased by a multiplicative factor of {n−k−1}/n
and an alternative unbiased estimator of σ2 can easily be constructed as

s2 ≡ n

n− k − 1
σ̂2 =

1
n− k − 1

‖y −Xβ̂‖2,

or more generally (that is, for X not necessarily of full rank),

s2 =
1

n− rank(X)
‖y −Xβ̂‖2.
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• s2 rather than σ̂2 is generally the preferred estimator of σ2. In fact,
it can be shown that in the spherical errors linear model, s2 is the
best (minimum variance) estimator of σ2 in the class of quadratic
(in y) unbiased estimators.

• In the special case that Xβ = µjn (i.e., the model contains only
an intercept, or constant term), so that C(X) = L(jn), we get β̂ =
µ̂ = ȳ, and rank(X) = 1. Therefore, s2 becomes the usual sample
variance from the one-sample problem:

s2 =
1

n− 1
‖y − ȳjn‖2 =

1
n− 1

n∑

i=1

(yi − ȳ)2.

If e has a normal distribution, then by part 3 of the theorem on p. 85,

‖y −Xβ̂‖2/σ2 ∼ χ2(n− rank(X))

and, since the central χ2(m) has mean m and variance 2m,

s2 =
σ2

n− rank(X)
‖y −Xβ̂‖2/σ2

︸ ︷︷ ︸
∼χ2(n−rank(X))

implies

E(s2) =
σ2

n− rank(X)
{n− rank(X)} = σ2,

and

var(s2) =
σ4

{n− rank(X)}2 2{n− rank(X)} =
2σ4

n− rank(X)
.
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Our model is the classical linear model with normal errors:

y = Xβ + e, e ∼ N(0, σ2In)

We first need the concept of a complete sufficient statistic:

Sufficiency: Let y be random vector with p.d.f. f(y; θ) depending on an
unknown k × 1 parameter θ. Let T(y) be an r × 1 vector-valued statistic
that is a function of y. Then T(y) is said to be a sufficient statistic for
θ if and only if the conditional distribution of y given the value of T(y)
does not depend upon θ.

• If T is sufficient for θ then, loosely, T summarizes all of the informa-
tion in the data y relevant to θ. Once we know T, there’s no more
information in y about θ.

The property of completeness is needed as well, but it is somewhat tech-
nical. Briefly, it ensures that if a function of the sufficient statistic exists
that is unbiased for the quantity being estimated, then it is unique.

Completeness: A vector-valued sufficient statistic T(y) is said to be
complete if and only if E{h(T(y))} = 0 for all θ implies Pr{h(T(y)) =
0} = 1 for all θ.

Theorem: If T(y) is a complete sufficient statistic, then f(T(y)) is a
minimum variance unbiased estimator of E{f(T(y))}.

Proof: This theorem is known as the Lehmann-Scheffé Theorem and its
proof follows easily from the Rao-Blackwell Theorem. See, e.g., Bickel and
Doksum, p. 122, or Casella and Berger, p. 320.

In the linear model, the p.d.f. of y depends upon β and σ2, so the pair
(β, σ2) plays the role of θ.
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Is there a complete sufficient statistic for (β, σ2) in the classical linear
model?

Yes, by the following result:

Theorem: Let θ = (θ1, . . . , θr)T and let y be a random vector with
probability density function

f(y) = c(θ) exp

{
r∑

i=1

θiTi(y)

}
h(y).

Then T(y) = (T1(y), . . . , Tr(y))T is a complete sufficient statistic provided
that neither θ nor T(y) satisfy any linear constraints.

• The density function in the above theorem describes the exponential
family of distributions. For this family, which includes the normal
distribution, then it is easy to find a complete sufficient statistic.

Consider the classical linear model

y = Xβ + e, e ∼ N(0, σ2In)

The density of y can be written as

f(y; β, σ2) = (2π)−n/2(σ2)−n/2 exp{−(y −Xβ)T (y −Xβ)/(2σ2)}
= c1(σ2) exp{−(yT y − 2βT XT y + βT XT Xβ)/(2σ2)

= c2(β, σ2) exp[{(−1/(2σ2))yT y + (σ−2βT )(XT y)}

If we reparameterize in terms of θ where

θ1 = − 1
2σ2

,




θ2
...

θk+2


 =

1
σ2

β,

then this density can be seen to be of the exponential form, with vector-
valued complete sufficient statistic

(
yT y
XT y

)
.
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So, since cT β̂ = cT (XT X)−1XT y, is a function of XT y and is an unbi-
ased estimator of cT β, it must be minimum variance among all unbiased
estimators.

In addition, s2 = 1
n−k−1 (y −Xβ̂)T (y −Xβ̂) is an unbiased estimator of

σ2 and can be written as a function of the complete sufficient statistic as
well:

s2 =
1

n− k − 1
[(In −PC(X))y]T [(In −PC(X))y]

=
1

n− k − 1
yT (In −PC(X))y =

1
n− k − 1

{yT y − (yT X)(XT X)−1(XT y)}.

Therefore, s2 is a minimum variance unbiased estimator as well.

Taken together, these results prove the following theorem:

Theorem: For the full rank, classical linear model with y = Xβ + e,
e ∼ Nn(0, σ2In), s2 is a minimum variance unbiased estimator of σ2,
and cT β̂ is a minimum variance unbiased estimator of cT β, where β̂ =
(XT X)−1XT y is the least squares estimator (MLE) of β.
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Generalized Least Squares

Up to now, we have assumed var(e) = σ2I in our linear model. There are
two aspects to this assumption: (i) uncorrelatedness (var(e) is diagonal),
and (ii) homoscedasticity (the diagonal elements of var(e) are all the same.

Now we relax these assumptions simultaneously by considering a more
general variance-covaraince structure. We now consider the linear model

y = Xβ + e, where E(e) = 0, var(e) = σ2V,

where X is full rank as before, and where V is a known positive definite
matrix.

• Note that we assume V is known, so there still is only one variance-
covariance parameter to be estimated, σ2.

• In the context of least-squares, allowing V to be unknown compli-
cates things substantially, so we postpone discussion of this case. V
unknown can be handled via ML estimation and we’ll talk about
that later. Of course, V unknown is the typical scenario in practice,
but there are cases when V would be known.

• A good example of such a situation is the simple linear regression
model with uncorrelated, but heteroscedastic errors:

yi = β0 + β1xi + ei,

where the ei’s are independent, each with mean 0, and var(ei) =
σ2xi. In this case, var(e) = σ2V where V = diag(x1, . . . , xn), a
known matrix of constants.
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Estimation of β and σ2 when var(e) = σ2V:

A nice feature of the model

y = Xβ + e where var(e) = σ2V (1)

is that, although it is not a Gauss-Markov (spherical errors) model, it is
simple to transform this model into a Gauss-Markov model. This allows
us to apply what we’ve learned about the spherical errors case to obtain
methods and results for the non-spherical case.

Since V is known and positive definite, it is possible to find a matrix Q
such that V = QQT (e.g., QT could be the Cholesky factor of V).

Multiplying on both sides of the model equation in (1) by the known matrix
Q−1, it follows that the following transformed model holds as well:

Q−1y = Q−1Xβ + Q−1e

or ỹ = X̃β + ẽ where var(ẽ) = σ2I (2)

where ỹ = Q−1y, X̃ = Q−1X and ẽ = Q−1e.

• Notice that model (2) is a Gauss-Markov model because

E(ẽ) = Q−1E(e) = Q−10 = 0

and
var(ẽ) = Q−1var(e)(Q−1)T = σ2Q−1V(Q−1)T

= σ2Q−1QQT (Q−1)T = σ2I
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The least-squares estimator based on the transformed model minimizes

ẽT ẽ = eT (Q−1)T Q−1e = (y −Xβ)T (QQT )−1(y −Xβ)

= (y −Xβ)T V−1(y −Xβ) (The GLS Criterion)

• So the generalized least squares estimates of β from model (1) mini-
mize a squared statistical (rather than Euclidean) distance between
y and Xβ that takes into account the differing variances among the
yi’s and the covariances (correlations) among the yi’s.

• There is some variability in terminology here. Most authors refer to
this approach as generalized least-squares when V is an arbitrary,
known, positive definite matrix and use the term weighted least-
squares for the case in which V is diagonal. Others use the terms
interchangeably.

Since GLS estimators for model (1) are just ordinary least squares estima-
tors from model (2), many properties of GLS estimators follow easily from
the properties of ordinary least squares.

Properties of GLS Estimators:

1. The best linear unbiased estimator of β in model (1) is

β̂ = (XT V−1X)−1XT V−1y.

Proof: Since model (2) is a Gauss-Markov model, we know that (X̃T X̃)−1X̃T ỹ
is the BLUE of β. But this estimator simplifies to

(X̃T X̃)−1X̃T ỹ = [(Q−1X)T (Q−1X)]−1(Q−1X)T (Q−1y)

= [XT (Q−1)T Q−1X]−1XT (Q−1)T Q−1y

= [XT (QQT )−1X]−1XT (QQT )−1y

= (XT V−1X)−1XT V−1y.
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2. Since µ = E(y) = Xβ in model (1), the estimated mean of y is

µ̂ = Xβ̂ = X(XT V−1X)−1XT V−1y.

In going from the var(e) = σ2I case to the var(e) = σ2V case, we’ve
changed our estimate of the mean from

X(XT X)−1XT y = PC(X)y

to
X(XT V−1X)−1XT V−1y.

Geometrically, we’ve changed from using the Euclidean (or orthogo-
nal) projection matrix PC(X) to using a non-Euclidean (or oblique)
projection matrix X(XT V−1X)−1XT V−1. The latter accounts for
correlation and heteroscedasticity among the elements of y when
projecting onto C(X)

3. The var-cov matrix of β̂ is

var(β̂) = σ2(XT V−1X)−1.

Proof:

var(β̂) = var{(XT V−1X)−1XT V−1y}
= (XT V−1X)−1XT V−1 var(y)︸ ︷︷ ︸

=σ2V

V−1X(XT V−1X)−1

= σ2(XT V−1X)−1.
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4. An unbiased estimator of σ2 is

s2 =
(y −Xβ̂)T V−1(y −Xβ̂)

n− k − 1

=
yT [V−1 −V−1X(XT V−1X)−1XT V−1]y

n− k − 1
,

where β̂ = (XT V−1X)−1XT V−1y.

Proof: Homework.

5. If e ∼ N(0, σ2V), then the MLEs of β and σ2 are

β̂ = (XT V−1X)−1XT V−1y

σ̂2 =
1
n

(y −Xβ̂)T V−1(y −Xβ̂).

Proof: We already know that β̂ is the OLS estimator in model (2) and that
the OLS estimator and MLE in such a Gauss-Markov model coincide, so β̂
is the MLE of β. In addition, the MLE of σ2 is the MLE of this quantity
in model (2), which is

σ̂2 =
1
n
||(I− X̃(X̃T X̃)−1X̃T )ỹ||2

=
1
n

(y −Xβ̂)T V−1(y −Xβ̂)

after plugging in X̃ = Q−1X, ỹ = Q−1y and some algebra.
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Misspecification of the Error Structure:

Q: What happens if we use OLS when GLS is appropriate?

A: The OLS estimator is still linear and unbiased, but no longer best.
In addition, we need to be careful to compute the var-cov matrix of our
estimator correctly.

Suppose the true model is

y = Xβ + e, E(e) = 0, var(e) = σ2V.

The BLUE of β here is the GLS estimator β̂ = (XT V−1X)−1XT V−1y,
with var-cov matrix σ2(XT V−1X)−1.

However, suppose we use OLS here instead of GLS. That is, suppose we
use the estimator

β̂∗ = (XT X)−1XT y

Obviously, this estimator is still linear, and it is unbiased because

E(β̂∗) = E{(XT X)−1XT y} = (XT X)−1XT E(y)

= (XT X)−1XT Xβ = β.

However, the variance formula var(β̂∗) = σ2(XT X)−1 is no longer correct,
because this was derived under the assumption that var(e) = σ2I (see p.
103). Instead, the correct var-cov of the OLS estimator here is

var(β̂∗) = var{(XT X)−1XT y} = (XT X)−1XT var(y)︸ ︷︷ ︸
=σ2V

X(XT X)−1

= σ2(XT X)−1XT VX(XT X)−1. (∗)

In contrast, if we had used the GLS estimator (the BLUE), the var-cov
matrix of our estimator would have been

var(β̂) = σ2(XT V−1X)−1. (∗∗)
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Since β̂ is the BLUE, we know that the variances from (*) will be ≥ the
variances from (**), which means that the OLS estimator here is a less
efficient (precise), but not necessarily much less efficient, estimator under
the GLS model.

Misspecification of E(y):

Suppose that the true model is y = Xβ+e where we return to the spherical
errors case: var(e) = σ2I. We want to consider what happens when we
omit some explanatory variable is X and when we include too many x’s.
So, let’s partition our model as

y = Xβ + e = (X1,X2)
(

β1

β2

)
+ e

= X1β1 + X2β2 + e. (†)

• If we leave out X2β2 when it should be included (when β2 6= 0) then
we are underfitting.

• If we include X2β2 when it doesn’t belong in the true model (when
β2 = 0) then we are overfitting.

• We will consider the effects of both overfitting and underfitting on the
bias and variance of β̂. The book also consider effects on predicted
values and on the MSE s2.
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Underfitting:

Suppose model (†) holds, but we fit the model

y = X1β
∗
1 + e∗, var(e∗) = σ2I. (♣)

The following theorem gives the bias and var-cov matrix of β̂∗1 the OLS
estimator from ♣.

Theorem: If we fit model ♣ when model (†) is the true model, then the
mean and var-cov matrix of the OLS estimator β̂∗1 = (XT

1 X1)−1XT
1 y are

as follows:

(i) E(β̂∗1) = β1 + Aβ2, where A = (XT
1 X1)−1XT

1 X2.

(ii) var(β̂∗1) = σ2(XT
1 X1)−1.

Proof:

(i)
E(β̂∗1) = E[(XT

1 X1)−1XT
1 y] = (XT

1 X1)−1XT
1 E(y)

= (XT
1 X1)−1XT

1 (X1β1 + X2β2)
= β1 + Aβ2.

(ii)
var(β̂∗1) = var[(XT

1 X1)−1XT
1 y]

= (XT
1 X1)−1XT

1 (σ2I)X1(XT
1 X1)−1

= σ2(XT
1 X1)−1.

• This result says that when underfitting, β̂∗1 is biased by an amount
that depends upon both the omitted and included explanatory vari-
ables.

Corollary If XT
1 X2 = 0, i.e.. if the columns of X1 are orthogonal to the

columns of X2, then β̂∗1 is unbiased.
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Note that in the above theorem the var-cov matrix of β̂∗1 , σ2(XT
1 X1)−1

is not the same as the var-cov matrix of β̂1, the corresponding portion of
the OLS estimator β̂ = (XT X)−1XT y from the full model. How these
var-cov matrices differ is established in the following theorem:

Theorem: Let β̂ = (XT X)−1XT y from the full model (†) be partitioned
as

β̂ =
(

β̂1

β̂2

)

and let β̂∗1 = (XT
1 X1)−1XT

1 y be the estimator from the reduced model ♣.
Then

var(β̂1)− var(β̂∗1) = AB−1AT

a n.n.d. matrix. Here, A = (XT
1 X1)−1XT

1 X2 and B = XT
2 X2 −XT

2 X1A.

• Thus var(β̂j) ≥ var(β̂∗j ), meaning that underfitting results in smaller
variances of the β̂j ’s and overfitting results in larger variances of the
β̂j ’s.

Proof: Partitioning XT X to conform to the partitioning of X and β, we
have

var(β̂) = var
(

β̂1

β̂2

)
= σ2(XT X)−1 = σ2

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)−1

= σ2

(
H11 H12

H21 H22

)−1

= σ2

(
H11 H12

H21 H22

)
,

where Hij = XT
i Xj and Hij is the corresponding block of the inverse

matrix (XT X)−1 (see p. 54).

So, var(β̂1) = σ2H11. Using the formulas for inverses of partitioned ma-
trices,

H11 = H−1
11 + H−1

11 H12B−1H21H−1
11 ,

where
B = H22 −H21H−1

11 H12.

127



In the previous theorem, we showed that var(β̂∗1) = σ2(XT
1 X1)−1 =

σ2H−1
11 . Hence,

var(β̂1)− var(β̂∗1) = σ2(H11 −H−1
11 )

= σ2(H−1
11 + H−1

11 H12B−1H21H−1
11 −H−1

11 )

= σ2(H−1
11 H12B−1H21H−1

11 )

= σ2[(XT
1 X1)−1(XT

1 X2)B−1(XT
2 X1)(XT

1 X1)−1]

= σ2AB−1AT .

We leave it as homework for you to show that AB−1AT is n.n.d.

• To summarize, we’ve seen that underfitting reduces the variances of
regression parameter estimators, but introduces bias. On the other
hand, overfitting produces unbiased estimators with increased vari-
ances. Thus it is the task of a regression model builder to find an
optimum set of explanatory variables to balance between a biased
model and one with large variances.
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The Model in Centered Form

For some purposes it is useful to write the regression model in centered
form; that is, in terms of the centered explanatory variables (the explana-
tory variables minus their means).

The regression model can be written

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ei

= α + β1(xi1 − x̄1) + β2(xi2 − x̄2) + · · ·+ βk(xik − x̄k) + ei,

for i = 1, . . . , n, where

α = β0 + β1x̄1 + β2x̄2 + · · ·+ βkx̄k, (♥)

and where x̄j = 1
n

∑n
i=1 xij .

In matrix form, the equivalence between the original model and centered
model that we’ve written above becomes

y = Xβ + e = (jn,Xc)
(

α
β1

)
+ e,

where β1 = (β1, . . . , βk)T , and

Xc = (I− 1
n
Jn,n)

︸ ︷︷ ︸
=PL(jn)⊥

X1 =




x11 − x̄1 x12 − x̄2 · · · x1k − x̄k

x21 − x̄1 x22 − x̄2 · · · x2k − x̄k
...

...
. . .

...
xn1 − x̄1 xn2 − x̄2 · · · xnk − x̄k


 ,

and X1 is the matrix consisting of all but the first columns of X, the
original model matrix.

• PL(jn)⊥ = (I− 1
nJn,n) is sometimes called the centering matrix.

Based on the centered model, the least squares estimators become:
(

α̂
β̂1

)
= [(jn,Xc)T (jn,Xc)]−1(jn,Xc)T y =

(
n 0
0 XT

c Xc

)−1 (
jTn
XT

c

)
y

=
(

n−1 0
0 (XT

c Xc)−1

)(
nȳ

XT
c y

)
=

(
ȳ

(XT
c Xc)−1XT

c y

)
,
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or
α̂ = ȳ, and

β̂1 = (XT
c Xc)−1XT

c y.

β̂1 here is the same as the usual least-squares estimator. That is, it is
the same as β̂1, . . . , β̂k from β̂ = (XT X)−1XT y. However, the intercept
α̂ differs from β̂0. The relationship between α̂ and β̂ is just what you’d
expect from the reparameterization (see (♥)):

α̂ = β̂0 + β̂1x̄1 + β̂2x̄2 + · · ·+ β̂kx̄k.

From the expression for the estimated mean based on the centered model:

Ê(yi) = α̂ + β̂1(xi1 − x̄1) + β̂2(xi2 − x̄2) + · · ·+ β̂k(xik − x̄k)

it is clear that the fitted regression plane passes through the point of
averages: (ȳ, x̄1, x̄2, . . . , x̄k).

In general, we can write SSE, the error sum of squares, as

SSE = (y −Xβ̂)T (y −Xβ̂) = (y −PC(X)y)T (y −PC(X)y)

= yT y − yT PC(X)y − yT PC(X)y + yT PC(X)y

= yT y − yT PC(X)y = yT y − β̂T XT y.

From the centered model we see that Ê(y) = Xβ̂ = [ jn,Xc]
(

α̂
β̂1

)
, so

SSE can also be written as

SSE = yT y − (α̂, β̂T
1 )

(
jTn
XT

c

)
y

= yT y − ȳ jTny − β̂T
1 XT

c y

= (y − ȳ jn)T y − β̂T
1 XT

c y

= (y − ȳ jn)T (y − ȳ jn)− β̂T
1 XT

c y

=
n∑

i=1

(yi − ȳ)2 − β̂T
1 XT

c y (∗)
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R2, the Estimated Coefficient of Determination

Rearranging (*), we obtain a decomposition of the total variability in the
data:

n∑

i=1

(yi − ȳ)2 = β̂T
1 XT

c y + SSE

or SST = SSR + SSE

• Here SST is the (corrected) total sum of squares. The term “cor-
rected” here indicates that we’ve taken the sum of the squared y’s
after correcting, or adjusting, them for the mean. The uncorrected
sum of squares would be

∑n
i=1 y2

i , but this quantity arises less fre-
quently, and by “SST” or “total sum of squares” we will generally
mean the corrected quantity unless stated otherwise.

• Note that SST quantifies the total variability in the data (if we added
a 1

n−1 multiplier in front, SST would become the sample variance).

• The first term on the right-hand side is called the regression sum of
squares. It represents the variability in the data (the portion of SST)
that can be explained by the regression terms β1x1+β2x2+ · · ·βkxk.

• This interpretation can be seen by writing SSR as

SSR = β̂T
1 XT

c y = β̂T
1 XT

c Xc(XT
c Xc)−1XT

c y = (Xcβ̂1)T (Xcβ̂1).

The proportion of the total sum of squares that is due to regression is

R2 =
SSR
SST

=
β̂T

1 XT
c Xcβ̂1∑n

i=1(yi − ȳ)2
=

β̂T XT y − nȳ2

yT y − nȳ2
.

• This quantity is called the coefficient of determination, and it
is usually denoted as R2. It is the sample estimate of the squared
multiple correlation coefficient we discussed earlier (see p. 77).
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Facts about R2:

1. The range of R2 is 0 ≤ R2 ≤ 1, with 0 corresponding to the explana-
tory variables x1, . . . , xk explaining none of the variability in y and
1 corresponding to x1, . . . , xk explaining all of the variability in y.

2. R, the multiple correlation coefficient or positive square root of R2,
is equal to the sample correlation coefficient between the observed
yi’s and their fitted values, the ŷi’s. (Here the fitted value is just the
estimated mean: ŷi = Ê(yi) = xT

i β̂.)

3. R2 will always stay the same or (typically) increase if an explanatory
variable xk+1 is added to the model.

4. If β1 = β2 = · · · = βk = 0, then

E(R2) =
k

n− 1
.

• From properties 3 and 4, we see that R2 tends to be higher for
a model with many predictors than for a model with few pre-
dictors, even if those models have the same explanatory power.
That is, as a measure of goodness of fit, R2 rewards complexity
and penalizes parsimony, which is certainly not what we would
like to do.

• Therefore, a version of R2 that penalizes for model complexity
was developed, known as R2

a or adjusted R2:

R2
a =

(
R2 − k

n−1

)
(n− 1)

n− k − 1
=

(n− 1)R2 − k

n− k − 1
.

132



5. Unless the xj ’s j = 1, . . . , k are mutually orthogonal, R2 cannot be
written as a sum of k components uniquely attributable to x1, . . . , xk.
(R2 represents the joint explanatory power of the xj ’s not the sum
of the explanatory powers of each of the individual xj ’s.)

6. R2 is invariant to a full-rank linear transformation of X and to a
scale change on y (but not invariant to a joint linear transformation
on [y,X]).

7. Geometrically, R, the multiple correlation coefficient, is equal to R =
cos(θ) where θ is the angle between y and ŷ corrected for their means,
ȳ jn. This is depicted in the picture below.
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Inference in the Multiple Regression Model

Testing a Subset of β: Testing Nested Models

All testing of linear hypotheses (nonlinear hypotheses are rarely encoun-
tered in practice) in linear models reduces essentially to putting linear
constraints on the model space. The test amounts to comparing the re-
sulting constrained model against the original unconstrained model.

We start with a model we know (assume, really) to be valid:

y = µ + e, where µ = Xβ ∈ C(X) ≡ V, e ∼ Nn(0, σ2In)

and then ask the question of whether or not a simpler model holds corre-
sponding to µ ∈ V0 where V0 is a proper subset of V . (E.g., V0 = C(X0)
where X0 is a matrix consisting of a subset of the columns of X.)

For example, consider the second order response surface model

yi = β0 +β1xi1 +β2xi2 +β3x
2
i1 +β4x

2
i2 +β5xi1xi2 +ei, i = 1, . . . , n. (†)

This model says that E(y) is a quadratic function of x1 and x2.

A hypothesis we might be interested in here is that the second-order terms
are unnecessary; i.e., we might be interested in H0 : β3 = β4 = β5 = 0,
under which the model is linear in x1 and x2:

yi = β∗0 + β∗1xi1 + β∗2xi2 + e∗i , i = 1, . . . , n. (‡)

• Testing H0 : β3 = β4 = β5 = 0 is equivalent to testing H0 :model (‡)
holds versus H1 :model (†) holds but (‡) does not.

• I.e., we test H0 : µ ∈ C([ jn,x1,x2]) versus

H1 : µ ∈ C([ jn,x1,x2,x1∗x1,x2∗x2,x1∗x2]) and µ /∈ C([ jn,x1,x2]).

Here ∗ denotes the element-wise product and µ = E(y).
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Without loss of generality, we can always arrange the linear model so the
terms we want to test appear last in the linear predictor. So, we write our
model as

y = Xβ + e = (X1,X2)
(

β1

β2

)
+ e

= X1︸︷︷︸
n×(k+1−h)

β1 + X2︸︷︷︸
n×h

β2 + e, e ∼ N(0, σ2I) (FM)

where we are interested in the hypothesis H0 : β2 = 0.

Under H0 : β2 = 0 the model becomes

y = X1β
∗
1 + e∗, e∗ ∼ N(0, σ2I) (RM)

The problem is to test

H0 : µ ∈ C(X1) (RM) versus H1 : µ /∈ C(X1)

under the maintained hypothesis that µ ∈ C(X) = C([X1,X2]) (FM).

We’d like to find a test statistic whose size measures the strength of the
evidence against H0. If that evidence is overwhelming (the test statistic
is large enough) then we reject H0.

The test statistic should be large, but large relative to what?

Large relative to its distribution under the null hypothesis.

How large?

That’s up to the user, but an α−level test rejects H0 if, assuming H0 is
true, the probability of getting a test statistic at least as far from expected
as the one obtained (the p−value) is less than α.
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• E.g., suppose we compute a test statistic and obtain a p−value of
p = 0.02. This says that assuming H0 is true, the results that we
obtained were very unlikely (results this extreme should happen only
2% of the time). If these results are so unlikely assuming H0 is true,
perhaps H0 is not true. The cut-off for how unlikely our results must
be before we’re willing to reject H0 is the significance level α. (We
reject if p < α.)

So, we want a test statistic that measures the strength of the evidence
against H0 : µ ∈ C(X1) (i.e., one that is small for µ ∈ C(X1) and large
for µ /∈ C(X1)) whose distribution is available.

• This will lead to an F test which is equivalent to the likelihood ratio
test, and which has some optimality properties.

Note that under RM, µ ∈ C(X1) ⊂ C(X) = C([X1,X2]). Therefore, if
RM is true, then FM must be true as well. So, if RM is true, then the
least squares estimates of the mean µ: PC(X1)y and PC(X)y are estimates
of the same thing.

This suggests that the difference between the two estimates

PC(X)y −PC(X1)y = (PC(X) −PC(X1))y

should be small under H0 : µ ∈ C(X1).

• Note that PC(X) −PC(X1) is the projection matrix onto C(X1)⊥ ∩
C(X), the orthogonal complement of C(X1) with respect to C(X),
and C(X1) ⊕ [C(X1)⊥ ∩ C(X)] = C(X). (See bottom of p. 43 of
these notes.)

So, under H0, (PC(X) − PC(X1))y should be “small”. A measure of the
“smallness” of this vector is its squared length:

‖(PC(X) −PC(X1))y‖2 = yT (PC(X) −PC(X1))y.
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By our result on expected values of quadratic forms,

E[yT (PC(X) −PC(X1))y] = σ2 dim[C(X1)⊥ ∩ C(X)] + µT (PC(X) −PC(X1))µ

= σ2h + [(PC(X) −PC(X1))µ]T [(PC(X) −PC(X1))µ]

= σ2h + (PC(X)µ−PC(X1)µ)T (PC(X)µ−PC(X1)µ)

Under H0, µ ∈ C(X1) and µ ∈ C(X), so

(PC(X)µ−PC(X1)µ) = µ− µ = 0.

Under H1,
PC(X)µ = µ, but PC(X1)µ 6= µ.

I.e., letting µ0 denote p(µ|C(X1)),

E[yT (PC(X) −PC(X1))y] =
{

σ2h, under H0;
σ2h + ‖µ− µ0‖2, under H1.

• That is, under H0 we expect the squared length of

PC(X)y −PC(X1)y ≡ ŷ − ŷ0

to be small, on the order of σ2h. If H0 is not true, then the squared
length of ŷ− ŷ0 will be larger, with expected value σ2h+‖µ−µ0‖2.

Therefore, if σ2 is known

‖ŷ − ŷ0‖2
σ2h

=
‖ŷ − ŷ0‖2/h

σ2

{≈ 1, under H0

> 1, under H1

is an appropriate test statistic for testing H0.
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Typically, σ2 will not be known, so it must be estimated. The appropriate
estimator is s2 = ‖y− ŷ‖2/(n− k− 1), the mean squared error from FM,
the model which is valid under H0 and under H1. Our test statistic then
becomes

F =
‖ŷ − ŷ0‖2/h

s2
=

‖ŷ − ŷ0‖2/h

‖y − ŷ‖2/(n− k − 1)

{≈ 1, under H0

> 1, under H1.

By the theorems on pp. 84–85, the following results on the numerator and
denominator of F hold:

Theorem: Suppose y ∼ N(Xβ, σ2I) where X is n × (k + 1) of full rank
where Xβ = X1β1+X2β2, and X2 is n×h. Let ŷ = p(y|C(X)) = PC(X)y,
ŷ0 = p(y|C(X1)) = PC(X1)y, and µ0 = p(µ|C(X1)) = PC(X1)µ. Then

(i) 1
σ2 ‖y − ŷ‖2 = 1

σ2 yT (I−PC(X))y ∼ χ2(n− k − 1);

(ii) 1
σ2 ‖ŷ − ŷ0‖2 = 1

σ2 yT (PC(X) −PC(X1))y ∼ χ2(h, λ1), where

λ1 =
1

2σ2
‖(PC(X) −PC(X1))µ‖2 =

1
2σ2

‖µ− µ0‖2;

and

(iii) 1
σ2 ‖y − ŷ‖2 and 1

σ2 ‖ŷ − ŷ0‖2 are independent.

Proof: Parts (i) and (ii) folllow immediately from part (3) of the theorem
on p. 84. Part (iii) follows because

‖y − ŷ‖2 = ||p(y|C(X)⊥)||2

and
‖ŷ − ŷ0‖2 = ||p(y|C(X1)⊥ ∩ C(X)︸ ︷︷ ︸

⊂C(X)

)||2

are squared lengths of projections onto orthogonal subspaces, so they are
independent according to the theorem on p. 85.
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From this result, the distribution of our test statistic F follows easily:

Theorem: Under the conditions of the previous theorem,

F =
‖ŷ − ŷ0‖2/h

s2
=

yT (PC(X) −PC(X1))y/h

yT (I−PC(X))y/(n− k − 1)

∼
{

F (h, n− k − 1), under H0; and
F (h, n− k − 1, λ1), under H1,

where λ1 is as given in the previous theorem.

Proof: Follows the previous theorem and the definition of the F distribu-
tion.

Therefore, the α−level F−test for H0 : β2 = 0 versus H1 : β2 6= 0
(equivalently, of RM vs. FM) is:

reject H0 if F > F1−α(h, n− k − 1).

• It is worth noting that the numerator of this F test can be obtained
as the difference in the SSE’s under FM and RM divided by the
difference in the dfE (degrees of freedom for error) for the two models.
This is so because the Pythagorean Theorem yields

‖ŷ − ŷ0‖2 = ‖y − ŷ0‖2 − ‖y − ŷ‖2 = SSE(RM)− SSE(FM).

The difference in the dfE’s is (n − h − k − 1) − (n − k − 1) = h.
Therefore,

F =
[SSE(RM)− SSE(FM)]/[dfE(RM)− dfE(FM)]

SSE(FM)/dfE(FM)
.

• In addition, because SSE = SST− SSR,

‖ŷ − ŷ0‖2 = SSE(RM)− SSE(FM)
= SST− SSR(RM)− [SST− SSR(FM)]
= SSR(FM)− SSR(RM) ≡ SS(β2|β1)

which we denote as SS(β2|β1), and which is known as the “extra”
regression sum of squares due to β2 after accounting for β1.
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The results leading to the F -test for H0 : β2 = 0 that we have just
developed can be summarized in an ANOVA table:

Source of Sum of df Mean F
Variation Squares Squares

Due to β2 SS(β2|β1) h
SS(β2|β1)

h
MS(β2|β1)

MSE
adjusted for β1 = yT (PC(X) −PC(X1))y

Error SSE n− k − 1 SSE
n−k−1

= yT (I−PC(X))y

Total (Corr.) SST
= yT y − nȳ2

An additional column is sometimes added to the ANOVA table for E(MS),
or expected mean squares. The expected mean squares here are

E{MS(β2|β1)} =
1
h

E{SS(β2|β1)} =
σ2

h
E{SS(β2|β1)/σ2}

=
σ2

h
{h + 2λ1} = σ2 +

1
h
||µ− µ0||2

and

E(MSE) =
1

n− k − 1
E(SSE) =

1
n− k − 1

(n− k − 1)σ2 = σ2.

These expected mean squares give additional insight into why F is an
appropriate test of H0 : β2 = 0. Any mean square can be thought of as
an estimate of its expectation. Therefore, MSE estimates σ2 (always),
and MS(β2|β1) estimates σ2 under H0, and estimates σ2 plus a positive
quantity under H1. Therefore, our test statistic F will behave as

F

{≈ 1, under H0

> 1, under H1

where how much larger F is than 1 depends upon “how false” H0 is.
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Overall Regression Test:

An important special case of the test of H0 : β2 = 0 that we have just
developed is when we partition β so that β1 contains just the intercept
and when β2 contains all of the regression coefficients. That is, if we write
the model as

y = X1β1 + X2β2 + e

= β0jn +




x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk




︸ ︷︷ ︸
=X2




β1

β2
...

βk




︸ ︷︷ ︸
=β2

+e

then our hypothesis H0 : β2 = 0 is equivalent to

H0 : β1 = β2 = · · · = βk = 0,

which says that the collection of explanatory variables x1, . . . , xk have no
linear effect on (do not predict) y.

The test of this hypothesis is called the overall regression test and
occurs as a special case of the test of β2 = 0 that we’ve developed. Under
H0,

ŷ0 = p(y|C(X1)) = p(y|L(jn)) = ȳ jn

and h = k, so the numerator of our F -test statistic becomes

1
k
yT (PC(X) −PL(jn))y =

1
k

(yT PC(X)y − yT PL(jn)y)

=
1
k
{(PC(X)y)T y − yT PT

L(jn) PL(jn)y︸ ︷︷ ︸
=ȳjn

}

=
1
k

(β̂T XT y − nȳ2) = SSR/k ≡ MSR
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Thus, the test statistic of overall regression is given by

F =
SSR/k

SSE/(n− k − 1)
=

MSR

MSE

∼
{

F (k, n− k − 1), under H0 : β1 = · · · = βk = 0
F (k, n− k − 1, 1

2σ2 βT
2 XT

2 PL(jn)⊥X2β2), otherwise.

The ANOVA table for this test is given below. This ANOVA table is
typically part of the output of regression software (e.g., PROC REG in
SAS).

Source of Sum of df Mean F
Variation Squares Squares

Regression SSR k SSR
k

MSR
MSE

= β̂T XT y − nȳ2

Error SSE n− k − 1 SSE
n−k−1

= yT (I−PC(X))y

Total (Corr.) SST
= yT y − nȳ2
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F test in terms of R2:

The F test statistics we have just developed can be written in terms of R2,
the coefficient of determination. This relationship is given by the following
theorem.

Theorem: The F statistic for testing H0 : β2 = 0 in the full rank model
y = X1β1 + X2β2 + e (top of p. 138) can be written in terms of R2 as

F =
(R2

FM −R2
RM )/h

(1−R2
FM )/(n− k − 1)

,

where R2
FM corresponds to the full model y = X1β1+X2β2+e, and R2

RM

corresponds to the reduced model y = X1β
∗
1 + e∗.

Proof: Homework.

Corollary: The F statistic for overall regression (for testing H0 : β1 =
β2 = · · · = βk = 0) in the full rank model, yi = β0+β1xi1+· · ·+βkxik +ei,

i = 1, . . . , n, e1, . . . , en
iid∼ N(0, σ2) can be written in terms of R2, the

coefficient of determination from this model as follows:

F =
R2/k

(1−R2)/(n− k − 1)
.

Proof: For this hypothesis h, the dimension of the regression parameter
being tested, is k. In addition, the reduced model here is

y = jnβ0 + e,

so (Xβ̂)RM , the estimated mean of y, under the reduced model is (Xβ̂)RM =
jnȳ. So, R2

RM in the previous theorem is (cf. p. 131):

R2
RM =

[(Xβ̂)T
RMy − nȳ2]

yT y − nȳ2

=
[ȳ

=nȳ︷︸︸︷
jTny −nȳ2]

yT y − nȳ2
= 0.

The result now follows from the previous theorem.
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The General Linear Hypothesis H0 : Cβ = t

The hypothesis H0 : Cβ = t is called the general linear hypothesis. Here
C is a q × (k + 1) matrix of (known) coefficients with rank(C) = q. We
will consider the slightly simpler case H : Cβ = 0 (i.e., t = 0) first.

Most of the questions that are typically asked about the coefficients of a
linear model can be formulated as hypotheses that can be written in the
form H0 : Cβ = 0, for some C. For example, the hypothesis H0 : β2 = 0
in the model

y = X1β1 + X2β2 + e, e ∼ N(0, σ2I)

can be written as

H0 : Cβ = ( 0︸︷︷︸
h×(k+1−h)

, Ih)
(

β1

β2

)
= β2 = 0.

The test of overall regression can be written as

H0 : Cβ = ( 0︸︷︷︸
k×1

, Ik)




β0


β1
...

βk





 =




β1
...

βk


 = 0.

Hypotheses encompassed by H:Cβ = 0 are not limitted to ones in which
certain regression coefficients are set equal to zero. Another example that
can be handled is the hypothesis H0 : β1 = β2 = · · · = βk. For example,
suppose k = 4, then this hypothesis can be written as

H0 : Cβ =




0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1







β0

β1

β2

β3

β4


 =




β1 − β2

β2 − β3

β3 − β4


 = 0.

Another equally good choice for C in this example is

C =




0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1



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The test statistic for H0 : Cβ = 0 is based on comparing Cβ̂ to its null
value 0, using a squared statistical distance (quadratic form) of the form

Q = {Cβ̂ − E0(Cβ̂)︸ ︷︷ ︸
=0

}T {v̂ar0(Cβ̂)}−1{Cβ̂ − E0(Cβ̂)}

= (Cβ̂)T {v̂ar0(Cβ̂)}−1(Cβ̂).

• Here, the 0 subscript is there to indicate that the expected value and
variance are computed under H0.

Recall that β̂ ∼ Nk+1(β, σ2(XT X)−1). Therefore,

Cβ̂ ∼ Nq(Cβ, σ2C(XT X)−1CT ).

We estimate σ2 using s2 = MSE = SSE/(n− k − 1), so

v̂ar0(Cβ̂) = s2C(XT X)−1CT

and Q becomes

Q = (Cβ̂)T {s2C(XT X)−1CT }−1Cβ̂

=
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂

SSE/(n− k − 1)
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To use Q to form a test statistic, we need its distribution, which is given
by the following theorem:

Theorem: If y ∼ Nn(Xβ, σ2In) where X is n × (k + 1) of full rank and
C is q × (k + 1) of rank q ≤ k + 1, then

(i) Cβ̂ ∼ Nq[Cβ, σ2C(XT X)−1CT ];
(ii) (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂/σ2 ∼ χ2(q, λ), where

λ = (Cβ)T [C(XT X)−1CT ]−1Cβ/(2σ2);

(iii) SSE/σ2 ∼ χ2(n− k − 1); and
(iv) (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂ and SSE are independent.

Proof: Part (i) follows from the normality of β̂ and that Cβ̂ is an affine
transformation of a normal. Part (iii) has been proved previously (p. 138).

(ii) Recall the theorem on the bottom of p. 82 (thm 5.5A in our text).
This theorem said that if y ∼ Nn(µ,Σ) and A was n× n of rank r,
then yT Ay ∼ χ2(r, 1

2µT Aµ) iff AΣ is idempotent. Here Cβ̂ plays
the role of y, Cβ plays the role of µ, σ2C(XT X)−1CT plays the role
of Σ, and {σ2C(XT X)−1CT }−1 plays the role of A. Then the result
follows because AΣ = {σ2C(XT X)−1CT }−1σ2C(XT X)−1CT = I
is obviously idempotent.

(iv) Since β̂ and SSE are independent (p. 115) then (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂

(a function of β̂) and SSE must be independent.

Therefore,

F = Q/q =
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂/q

SSE/(n− k − 1)
=

SSH/q

SSE/(n− k − 1)

has the form of a ratio of independent χ2’s each divided by its d.f.

• Here, SSH denotes (Cβ̂)T {C(XT X)−1CT }−1Cβ̂, the sum of squares
due to the Hypothesis H0.
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Theorem: If y ∼ Nn(Xβ, σ2In) where X is n × (k + 1) of full rank and
C is q × (k + 1) of rank q ≤ k + 1, then

F =
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂/q

SSE/(n− k − 1)

=
SSH/q

SSE/(n− k − 1)

∼
{

F (q, n− k − 1), if H0 : Cβ = 0 is true;
F (q, n− k − 1, λ), if H0 : Cβ = 0 is false,

where λ is as in the previous theorem.

Proof: Follows from the previous theorem and the definition of the F
distribution.

So, to conduct a hypothesis test of H0 : Cβ = 0, we compute F and reject
at level α if F > F1−α(q, n− k − 1) (F1−α denotes the (1− α)th quantile,
or upper αth quantile of the F distribution).
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The general linear hypothesis as a test of nested models:

We have seen that the test of β2 = 0 in the model y = X1β1 + X2β2 + e
can be formulated as a test of Cβ = 0. Therefore, special cases of the
general linear hypothesis correspond to tests of nested (full and reduced)
models. In fact, all F tests of the general linear hypothesis H0 : Cβ = 0
can be formulated as tests of nested models.

Theorem: The F test for the general linear hypothesis H0 : Cβ = 0 is a
full-and-reduced-model test.

Proof: The book, in combination with a homework problem, provides a
proof based on Lagrange multipliers. Here we offer a different proof based
on geometry.

Under H0,

y = Xβ + e and Cβ = 0

⇒ C(XT X)−1XT Xβ = 0

⇒ C(XT X)−1XT µ = 0

⇒ TT µ = 0 where T = X(XT X)−1CT .

That is, under H0, µ = Xβ ∈ C(X) = V and µ ⊥ C(T), or

µ ∈ [C(T)⊥ ∩ C(X)] = V0

where V0 = C(T)⊥ ∩ C(X) is the orthogonal complement of C(T) with
respect to C(X).

• Thus, under H0 : Cβ = 0, µ ∈ V0 ⊂ V = C(X), and under H1 :
Cβ 6= 0, µ ∈ V but µ /∈ V0. That is, these hypotheses correspond
to nested models. It just remains to establish that the F test for
these nested models is the F test for the general linear hypothesis
H0 : Cβ = 0 given on p. 147.
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The F test statistic for nested models given on p. 139 is

F =
yT (PC(X) −PC(X1))y/h

SSE/(n− k − 1)

Here, we replace PC(X1) by the projection matrix onto V0:

PV0 = PC(X) −PC(T)

and replace h with dim(V ) − dim(V0), the reduction in dimension of the
model space when we go from the full to the reduced model.

Since V0 is the orthogonal complement of C(T) with respect to C(X),
dim(V0) is given by

dim(V0) = dim(C(X))− dim(C(T)) = rank(X)− rank(T) = k + 1− q

Here, rank(T) = q by the following argument:

rank(T) = rank(TT ) ≥ rank(TT X) = rank(C(XT X)−1XT X) = rank(C) = q

and

rank(T) = rank(TT T) = rank(C(XT X)−1XT X(XT X)−1CT )

= rank(C(XT X)−1CT

︸ ︷︷ ︸
q×q

) ≤ q.

Therefore, q ≤ rank(T) ≤ q ⇒ rank(T) = q.

So,
h = dim(V )− dim(V0) = (k + 1)− [(k + 1)− q] = q.
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Thus the full vs. reduced model F statistic becomes

F =
yT [PC(X) −PV0 ]y/q

SSE/(n− k − 1)
=

yT [PC(X) − (PC(X) −PC(T))]y/q

SSE/(n− k − 1)

=
yT PC(T)y/q

SSE/(n− k − 1)

where

yT PC(T)y = yT T(TT T)−1TT y

= yT X(XT X)−1CT {C(XT X)−1XT X(XT X)−1CT }−1C(XT X)−1XT y

= yT X(XT X)−1

︸ ︷︷ ︸
=

ˆβT

CT {C(XT X)−1CT }−1C (XT X)−1XT y︸ ︷︷ ︸
=

ˆβ

= β̂T CT {C(XT X)−1CT }−1Cβ̂

which is our test statistic for the general linear hypothesis H0 : Cβ = 0
from p. 147.

The case H0 : Cβ = t where t 6= 0:

Extension to this case is straightforward. The only requirement is that the
system of equations Cβ = t be consistent, which is ensured by C having
full row rank q.

Then the F test statistic for H0 : Cβ = t is given by

F =
(Cβ̂ − t)T [C(XT X)−1CT ]−1(Cβ̂ − t)/q

SSE/(n− k − 1)
∼

{
F (q, n− k − 1), under H0

F (q, n− k − 1, λ), otherwise,

where λ = (Cβ − t)T [C(XT X)−1CT ]−1(Cβ − t)/(2σ2).
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Tests on βj and on aT β:

Tests of H0 : βj = 0 or H0 : aT β = 0 occur as special cases of the tests
we have already considered. To test H0 : aT β = 0, we use aT in place of
C in our test of the general linear hypothesis Cβ = 0. In this case q = 1
and the test statistic becomes

F =
(aT β̂)T [aT (XT X)−1a]−1aT β̂

SSE/(n− k − 1)
=

(aT β̂)2

s2aT (XT X)−1a

∼ F (1, n− k − 1) under H0 : aT β = 0.

• Note that since t2(ν) = F (1, ν), an equivalent test of H0 : aT β = 0
is given by the t-test with test statistic

t =
aT β̂

s
√

aT (XT X)−1a
∼ t(n− k − 1) under H0.

An important special case of the hypothesis H0 : aT β = 0 occurs when
a = (0, . . . , 0, 1, 0, . . . , 0)T where the 1 appears in the j+1th position. This
is the hypothesis H0 : βj = 0, and it says that the jth explanatory variable
xj has no partial regression effect on y (no effect above and beyond the
effects of the other explanatory variables in the model).

The test statistic for this hypothesis simplifies from that given above to
yield

F =
β̂2

j

s2gjj
∼ F (1, n− k − 1) under H0 : βj = 0,

where gjj is the jth diagonal element of (XT X)−1. Equivalently, we could
use the t test statistic

t =
β̂j

s
√

gjj
=

β̂j

s.e.(β̂j)
∼ t(n− k − 1) under H0 : βj = 0.
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Confidence and Prediction Intervals

Hypothesis tests and confidence regions (e.g., intervals) are really two dif-
ferent ways to look at the same problem.

• For an α-level test of a hypothesis of the form H0 : θ = θ0, a
100(1 − α)% confidence region for θ is given by all those values of
θ0 such that the hypothesis would not be rejected. That is, the
acceptance region of the α-level test is the 100(1 − α)% confidence
region for θ.

• Conversely, θ0 falls outside of a 100(1−α)% confidence region for θ
iff an α level test of H0 : θ = θ0 is rejected.

• That is, we can invert the statistical tests that we have derived to
obtain confidence regions for parameters of the linear model.

Confidence Region for β:

If we set C = Ik+1 and t = β in the F statistic on the bottom of p. 150,
we obtain

(β̂ − β)T XT X(β̂ − β)/(k + 1)
s2

∼ F (k + 1, n− k − 1)

From this distributional result, we can make the probability statement,

Pr

{
(β̂ − β)T XT X(β̂ − β)

s2(k + 1)
≤ F1−α(k + 1, n− k − 1)

}
= 1− α.

Therefore, the set of all vectors β that satisfy

(β̂ − β)T XT X(β̂ − β) ≤ (k + 1)s2F1−α(k + 1, n− k − 1)

forms a 100(1− α)% confidence region for β.
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• Such a region is an ellipse, and is only easy to draw and make easy
interpretation of for k = 1 (e.g., simple linear regression).

• If one can’t plot the region and then plot a point to see whether its
in or out of the region (i.e., for k > 1) then this region isn’t any more
informative than the test of H0 : β = β0. To decide whether β0 is
in the region, we essentially have to perform the test!

• More useful are confidence intervals for the individual βj ’s and for
linear combinations of the form aT β.

Confidence Interval for aT β:

If we set C = aT and t = aT β in the F statistic on the bottom of p. 150,
we obtain

(aT β̂ − aT β)2

s2aT (XT X)−1a
∼ F (1, n− k − 1)

which implies
(aT β̂ − aT β)

s
√

aT (XT X)−1a
∼ t(n− k − 1).

From this distributional result, we can make the probability statement,

Pr





tα/2(n− k − 1)︸ ︷︷ ︸
−t1−α/2(n−k−1)

≤ (aT β̂ − aT β)
s
√

aT (XT X)−1a
≤ t1−α/2(n− k − 1)





= 1− α.

Rearranging this inequality so that aT β falls in the middle, we get

Pr
{
aT β̂ − t1−α/2(n− k − 1)s

√
aT (XT X)−1a ≤ aT β

≤ aT β̂ + t1−α/2(n− k − 1)s
√

aT (XT X)−1a
}

= 1− α.

Therefore, a 100(1− α)% CI for aT β is given by

aT β̂ ± t1−α/2(n− k − 1)s
√

aT (XT X)−1a.
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Confidence Interval for βj:

A special case of this interval occurs when a = (0, . . . , 0, 1, 0, . . . , 0)T ,
where the 1 is in the j + 1th position. In this case aT β = βj , aT β̂ = β̂j ,
and aT (XT X)−1a = {(XT X)−1}jj ≡ gjj . The confidence interval for βj

is then given by
β̂j ± t1−α/2(n− k − 1)s

√
gjj .

Confidence Interval for E(y):

Let x0 = (1, x01, x02, . . . , x0k)T denote a particular choice of the vector
of explanatory variables x = (1, x1, x2, . . . , xk)T and let y0 denote the
corresponding response.

We assume that the model y = Xβ + e, e ∼ N(0, σ2I) applies to (y0,x0)
as well. This may be because (y0,x0) were in the original sample to which
the model was fit (i.e., xT

0 is a row of X), or because we believe that
(y0,x0) will behave similarly to the data (y,X) in the sample. Then

y0 = xT
0 β + e0, e0 ∼ N(0, σ2)

where β and σ2 are the same parameters in the fitted model y = Xβ + e.

Suppose we wish to find a CI for

E(y0) = xT
0 β.

This quantity is of the form aT β where a = x0, so the BLUE of E(y0) is
xT

0 β̂ and a 100(1− α)% CI for E(y0) is given by

xT
0 β̂ ± t1−α/2(n− k − 1)s

√
xT

0 (XT X)−1x0.
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• This confidence interval holds for a particular value xT
0 β. Sometimes,

it is of interest to form simultaneous confidence intervals around each
and every point xT

0 β for all x0 in the range of x. That is, we some-
times desire a simultaneous confidence band for the entire regression
line (or plane, for k > 1). The confidence interval given above, if
plotted for each value of x0, does not give such a simultaneous band;
instead it gives a “point-wise” band. For discussion of simultaneous
intervals see §8.6.7 of our text.

• The confidence interval given above is for E(y0), not for y0 itself.
E(y0) is a parameter, y0 is a random variable. Therefore, we can’t
estimate y0 or form a confidence interval for it. However, we can pre-
dict its value, and an interval around that prediction that quantifies
the uncertainty associated with that prediction is called a prediction
interval.

Prediction Interval for an Unobserved y-value:

For an unobserved value y0 with known explanatory vector x0 assumed to
follow our linear model y = Xβ + e, we predict y0 by

ŷ0 = xT
0 β̂.

• Note that this predictor of y0 coincides with our estimator of E(y0).
However, the uncertainty associated with the quantity xT

0 β̂ as a
predictor of y0 is different from (greater than) its uncertainty as an
estimator of E(y0). Why? Because observations (e.g., y0) are more
variable than their means (e.g., E(y0)).
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To form a CI for the estimator xT
0 β̂ of E(y0) we examine the variance of

the error of estimation:

var{E(y0)− xT
0 β̂} = var(xT

0 β̂).

In contrast, to form a PI for the predictor xT
0 β̂ of y0, we examine the

variance of the error of prediction:

var(y0 − xT
0 β̂) = var(y0) + var(xT

0 β̂)− 2 cov(y0,xT
0 β̂)︸ ︷︷ ︸

0

= var(xT
0 β + e0) + var(xT

0 β̂)

= var(e0) + var(xT
0 β̂) = σ2 + σ2xT

0 (XT X)−1x0.

Since σ2 is unknown, we must estimate this quantity with s2, yielding

v̂ar(y0 − ŷ0) = s2{1 + xT
0 (XT X)−1x0}.

It’s not hard to show that
y0 − ŷ0

s
√

1 + xT
0 (XT X)−1x0

∼ t(n− k − 1),

therefore

Pr

{
−t1−α/2(n− k − 1) ≤ y0 − ŷ0

s
√

1 + xT
0 (XT X)−1x0

≤ t1−α/2(n− k − 1)

}
= 1−α.

Rearranging,

Pr
{

ŷ0 − t1−α/2(n− k − 1)s
√

1 + xT
0 (XT X)−1x0 ≤ y0

≤ ŷ0 + t1−α/2(n− k − 1)s
√

1 + xT
0 (XT X)−1x0

}
= 1− α.

Therefore, a 100(1− α)% prediction interval for y0 is given by

ŷ0 ± t1−α/2(n− k − 1)s
√

1 + xT
0 (XT X)−1x0.

• Once again, this is a point-wise interval. Simultaneous prediction
intervals for predicting multiple y-values with given coverage proba-
bility are discussed in §8.6.7.
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Equivalence of the F−test and Likelihood Ratio Test:

Recall that for the classical linear model y = Xβ + e, with normal, ho-
moscedastic errors, the likelihood function is given by

L(β, σ2;y) = (2πσ2)−n/2 exp{−‖y −Xβ‖2/(2σ2)},

or expressing the likelihood as a function of µ = Xβ instead of β:

L(µ, σ2;y) = (2πσ2)−n/2 exp{−‖y − µ‖2/(2σ2)}.

• L(µ, σ2;y) gives the probability of observing y for specified values
of the parameters µ and σ2 (to be more precise, the probability that
the response vector is “close to” the observed value y).

– or, roughly, it measures how likely the data are for given values
of the parameters.

The idea behind a likelihood ratio test (LRT) for some hypothesis H0 is to
compare the likelihood function maximized over the parameters subject to
the restriction imposed by H0 (the constrained maximum likelihood) with
the likelihood function maximized over the parameters without assuming
H0 is true (the unconstrained maximum likelihood).

• That is, we compare how probable the data are under the most favor-
able values of the parameters subject to H0 (the constrained MLEs),
with how probable the data are under the most favorable values of
the parameters under the maintained hypothesis (the unconstrained
MLEs).

• If assuming H0 makes the data substantially less probable than not
assuming H0, then we reject H0.

157



Consider testing H0 : µ ∈ V0 versus H1 : µ /∈ V0 under the maintained
hypothesis that µ is in V . Here V0 ⊂ V and dim(V0) = k+1−h ≤ k+1 =
dim(V ).

Let ŷ = p(y|V ) and ŷ0 = p(y|V0). Then the unconstrained MLEs of
(µ, σ2) are µ̂ = ŷ and σ̂2 = ‖y − ŷ‖2/n and the constrained MLEs are
µ̂0 = ŷ0 and σ̂2

0 = ‖y − ŷ0‖2/n.

Therefore, the likelihood ratio statistic is

LR =
supµ∈V0

L(µ,σ2;y)
supµ∈V L(µ, σ2;y)

=
L(ŷ0, σ̂

2
0)

L(ŷ, σ̂2)

=
(2πσ̂2

0)−n/2 exp{−‖y − ŷ0‖2/(2σ̂2
0)}

(2πσ̂2)−n/2 exp{−‖y − ŷ‖2/(2σ̂2)}

=
(

σ̂2
0

σ̂2

)−n/2 exp(−n/2)
exp(−n/2)

=
(

σ̂2
0

σ̂2

)−n/2

• We reject for small values of LR. Typically in LRTs, we work with
λ = −2 log(LR) so that we can reject for large values of λ. In this
case, λ = n log

(
σ̂2

0/σ̂2
)
.

• Equivalently we reject for large values of
(
σ̂2

0/σ̂2
)

where

(
σ̂2

0

σ̂2

)
=
‖y − ŷ0‖2
‖y − ŷ‖2 =

‖y − ŷ‖2 + ‖ŷ − ŷ0‖2
‖y − ŷ‖2

= 1 +
‖ŷ − ŷ0‖2
‖y − ŷ‖2 = 1 +

(
h

n− k − 1

)
F

a monotone function of F (cf. the F statistic on the top of p. 138).

Therefore, large values of λ correspond to large values of F and the decision
rules based on LR and on F are the same.

• Therefore, the LRT and the F−test are equivalent.
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Analysis of Variance Models: The Non-Full Rank Linear Model

• To this point, we have focused exclusively on the case when the
model matrix X of the linear model is of full rank. We now consider
the case when X is n× p with rank(X) = k < p.

• The basic ideas behind estimation and inference in this case are the
same as in the full rank case, but the fact that (XT X)−1 doesn’t
exist and therefore the normal equations have no unique solution
causes a number of technical complications.

• We wouldn’t bother to dwell on these technicalities if it weren’t for
the fact that the non-full rank case does arise frequently in applica-
tions in the form of analysis of variance models .

The One-way Model:

Consider the balanced one-way layout model for yij a response on the jth

unit in the ith treatment group. Suppose that there are a treatments and n
units in the ith treatment group. The cell-means model for this situation
is

yij = µi + eij , i = 1, . . . , a, j = 1, . . . , n,

where the eij ’s are i.i.d. N(0, σ2).

An alternative, but equivalent, linear model is the effects model for the
one-way layout:

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n,

with the same assumptions on the errors.
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The cell means model can be written in vector notation as

y = µ1x1 + µ2x2 + · · ·+ µaxa + e, e ∼ N(0, σ2I),

and the effects model can be written as

y = µjN + α1x1 + α2x2 + · · ·+ αaxa + e, e ∼ N(0, σ2I),

where xi is an indicator for treatment i, and N = an is the total sample
size.

• That is, the effects model has the same model matrix as the cell-
means model, but with one extra column, a column of ones, in the
first position.

• Notice that
∑

i xi = jN . Therefore, the columns of the model matrix
for the effects model are linearly dependent.

Let X1 denote the model matrix in the cell-means model, X2 = (jN ,X1)
denote the model matrix in the effects model.

• Note that C(X1) = C(X2).

In general, two linear models y = X1β1+e1, y = X2β2+e2 with the same
assumptions on e1 and e2 are equivalent linear models if C(X1) = C(X2).

Why?

Because the mean vectors µ1 = X1β1 and µ2 = X2β2 in the two cases
are both restricted to fall in the same subspace C(X1) = C(X2).

In addition,
µ̂1 = p(y|C(X1)) = p(y|C(X2)) = µ̂2

is the same in both models, and

S2 =
1

n− dim(C(X1))
‖y − µ̂1‖2 =

1
n− dim(C(X2))

‖y − µ̂2‖2

is the same in both models.
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• The cell-means and effects models are simply reparameterizations of
one-another. The relationship between the parameters in this case
is very simple: µi = µ + αi, i = 1, . . . , a.

• Let V = C(X1) = C(X2). In the case of the cell-means model,
rank(X1) = a = dim(V ) and β1 is a × 1. In the case of the effects
model, rank(X2) = a = dim(V ) but β2 is (a + 1) × 1. The effects
model is overparameterized.

To understand overparameterization, consider the model

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n.

This model says that E(yij) = µ + αi = µi, or

E(y1j) = µ + α1 = µ1 j = 1, . . . , n,

E(y2j) = µ + α2 = µ2 j = 1, . . . , n,

...

Suppose the true treatment means are µ1 = 10 and µ2 = 8. In terms of
the parameters of the effects model, µ and the αi’s, these means can be
represented in an infinity of possible ways,

E(y1j) = 10 + 0 j = 1, . . . , n,

E(y2j) = 10 + (−2) j = 1, . . . , n,

(µ = 10, α1 = 0, and α2 = −2), or

E(y1j) = 8 + 2 j = 1, . . . , n,

E(y2j) = 8 + 0 j = 1, . . . , n,

(µ = 8, α1 = 2, and α2 = 0), or

E(y1j) = 1 + 9 j = 1, . . . , n,

E(y2j) = 1 + 7 j = 1, . . . , n,

(µ = 1, α1 = 9, and α2 = 7), etc.
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Why would we want to consider an overparameterized model like the
effects model?

In a simple case like the one-way layout, I would argue that we wouldn’t.

The most important criterion for choice of parameterization of a model is
interpretability. Without imposing any constraints, the parameters of the
effects model do not have clear interpretations.

However, subject to the constraint
∑

i αi = 0, the parameters of the
effects model have the following interpretations:

µ =grand mean response across all treatments
αi =deviation from the grand mean placing µi (the ith treatment
mean) up or down from the grand mean; i.e., the effect of the ith

treatment.

Without the constraint, though, µ is not constrained to fall in the center
of the µi’s. µ is in no sense the grand mean, it is just an arbitrary baseline
value.

In addition, adding the constraint
∑

i αi = 0 has essentially the effect of
reparameterizing from the overparameterized (non-full rank) effects model
to a just-parameterized (full rank) model that is equivalent (in the sense
of having the same model space) as the cell means model.

To see this consider the one-way effects model with a = 3, n = 2. Then∑a
i=1 αi = 0 implies α1 + α2 + α3 = 0 or α3 = −(α1 + α2). Subject to the

constraint, the effects model is

y = µjN + α1x1 + α2x2 + α3x3 + e, where α3 = −(α1 + α2),
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or
y = µjN + α1x1 + α2x2 + (−α1 − α2)x3 + e

= µjN + α1(x1 − x3) + α2(x2 − x3) + e

= µ




1
1
1
1
1
1




+ α1




1
1
0
0
−1
−1




+ α2




0
0
1
1
−1
−1




+ e,

which has the same model space as the cell-means model.

Thus, when faced with a non-full rank model like the one-way effects
model, we have three ways to proceed:

(1) Reparameterize to a full rank model.

– E.g., switch from the effects model to the cell-means model.

(2) Add constraints to the model parameters to remove the overparam-
eterization.

– E.g., add a constraint such as
∑a

i=1 αi = 0 to the one-way
effects model.

– Such constraints are usually called side-conditions.

– Adding side conditions essentially accomplishes a reparameter-
ization to a full rank model as in (1).

(3) Analyze the model as a non-full rank model, but limit estimation and
inference to those functions of the (overparameterized) parameters
that can be uniquely estimated.

– Such functions of the parameters are called estimable.

– It is only in this case that we are actually using an overparam-
eterized model, for which some new theory is necessary. (In
cases (1) and (2) we remove the overparameterization some-
how.)
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Why would we choose option (3)?

Three reasons:

i. We can. Although we may lose nice parameter interpretations in
using an unconstrained effects model or other unconstrained, non-
full-rank model, there is no theoretical or methodological reason to
avoid them (they can be handled with a little extra trouble).

ii. It is often easier to formulate an appropriate (and possibly overpa-
rameterized) model without worrying about whether or not its of full
rank than to specify that model’s “full-rank version” or to identify
and impose the appropriate constraints on the model to make it full
rank. This is especially true in modelling complex experimental data
that are not balanced.

iii. Non-full rank model matrices may arise for reasons other than the
structure of the model that’s been specified. E.g., in an observational
study, several explanatory variables may be colinear.

So, let’s consider the overparameterized (non-full-rank) case.

• In the non-full-rank case, it is not possible to obtain linear unbiased
estimators of all of the components of β.

To illustrate this consider the effects version of the one-way layout model
with no parameter constraints.

Can we find an unbiased linear estimator of α1?

To be linear, such an estimator (call it T ) would be of the form T =∑
i

∑
j dijyij for some coefficients {dij}. For T to be unbiased we require

E(T ) = α1. However,

E(T ) = E(
∑

i

∑

j

dijyij) =
∑

i

∑

j

dij(µ + αi) = µd·· +
∑

i

di·αi

Thus, the unbiasedness requirement E(T ) = α1 implies d·· = 0, d1· = 1,
d2· = · · · = da· = 0. This is impossible!
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• So, α1 is non-estimable. In fact, all of the parameters of the uncon-
strained one-way effects model are non-estimable. More generally,
in any non-full rank linear model, at least one of the individual pa-
rameters of the model is not estimable.

If the parameters of a non-full rank linear model are non-estimable,
what does least-squares yield?

Even if X is not of full rank, the least-squares criterion is still a reasonable
one for estimation, and it still leads to the normal equation:

XT Xβ̂ = XT y. (♣)

Theorem: For X and n× p matrix of rank k < p ≤ n, (♣) is a consistent
system of equations.

Proof: By the Theorem on p. 60 of these notes, (♣) is consistent iff

XT X(XT X)−XT y = XT y.

But this equation holds by result 3, on p. 57.

So (♣) is consistent, and therefore has a non-unique (for X not of full
rank) solution given

β̂ = (XT X)−XT y,

where (XT X)− is some (any) generalized inverse of XT X.

What does β̂ estimate in the non-full rank case?

Well, in general a statistic estimates its expectation, so for a particular
generalized inverse (XT X)−, β̂ estimates

E(β̂) = E{(XT X)−XT y} = (XT X)−XT E(y) = (XT X)−XT Xβ 6= β.

• That is, in the non-full rank case, β̂ = (XT X)−XT y is not unbiased
for β. This is not surprising given that we said earlier that β is not
estimable.
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• Note that E(β̂) = (XT X)−XT Xβ depends upon which (of many
possible) generalized inverses (XT X)− is used in β̂ = (XT X)−XT y.
That is, β̂, a solution of the normal equations, is not unique, and
each possible choice estimates something different.

• This is all to reiterate that β is not estimable, and β̂ is not an esti-
mator of β in the not-full rank model. However, certain linear com-
binations of β are estimable, and we will see that the corresponding
linear combinations of β̂ are BLUEs of these estimable quantities.

Estimability: Let λ = (λ1, . . . , λp)T be a vector of constants. The pa-
rameter λT β =

∑
j λjβj is said to be estimable if there exists a vector a

in Rn such that

E(aT y) = λT β, for all β ∈ Rp. (†)

Since (†) is equivalent to aT Xβ = λT β for all β, it follows that λT β is
estimable if and only if there exists a such that XT a = λ (i.e., iff λ lies in
the row space of X).

This and two other necessary and sufficient conditions for estimability of
λT β are given in the following theorem:

Theorem: In the model y = Xβ + e, where E(y) = Xβ and X is n × p
of rank k < p ≤ n, the linear function λT β is estimable if and only if any
one of the following conditions hold:

(i) λ lies in the row space of X. I.e., λ ∈ C(XT ), or, equivalently, if
there exists a vector a such that

λ = XT a.

(ii) λ ∈ C(XT X). I.e., if there exists a vector r such that

λ = (XT X)r.

(iii) λ satisfies
XT X(XT X)−λ = λ,

where (XT X)− is any symmetric generalized inverse of XT X.
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Proof: Part (i) follows from the comment directly following the definition
of estimability. That is, (†), the definition of estimability, is equivalent to
aT Xβ = λT β for all β, which happens iff aT X = λT ⇔ λ = XT a, ⇔
λ ∈ C(XT ).

Now, condition (iii) is equivalent to condition (i) because (i) implies (iii):
(i) implies

λT (XT X)−XT X = aT X(XT X)−XT X︸ ︷︷ ︸
=X

= aT X = λT

which, taking transposes of both sides, implies (iii); and (iii) implies (i):
(iii) says

λ = XT X(XT X)−λ︸ ︷︷ ︸
=a

which is of the form XT a for a = X(XT X)−λ.

Finally, condition (ii) is equivalent to condition (iii) because (ii) implies
(iii): (ii) implies

XT X(XT X)−λ = XT X(XT X)−XT Xr = XT Xr = λ;

and (iii) implies (ii): (iii) says

λ = XT X (XT X)−λ︸ ︷︷ ︸
=a

which is of the form XT Xa for a = (XT X)−λ.
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Example: Let x1 = (1, 1, 1, 1)T , x2 = (1, 1, 1, 0)T and x3 = 3x1 − 2x2 =
(1, 1, 1, 3)T . Then X = (x1,x2,x3) is 4× 3 but has rank of only 2.

Consider the linear combination η = 5β1 + 3β2 + 9β3 = λT β, where
λ = (5, 3, 9)T . η is estimable because λ is in the row space of X:

λ =




5
3
9


 =




1 1 1 1
1 1 1 0
1 1 1 3




︸ ︷︷ ︸
=XT




1
1
1
2




The parameters β1 and β1−β2 are not estimable. Why? Because for λT β
to be estimable, there must exist an a so that

XT a = λ

or
xT

1 a = λ1

xT
2 a = λ2 and

3xT
1 a− 2xT

2 a = λ3

which implies 3λ1 − 2λ2 = λ3 must hold for λT β to be estimable. This
equality does not hold for β1 = 1β1 + 0β2 + 0β3 or for β1 − β2 = 1β1 +
(−1)β2 + 0β3. It does hold for λ = (5, 3, 9)T because 3(5)− 2(3) = 9.
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Theorem: In the non-full rank linear model y = Xβ + e, the number of
linearly independent estimable functions of β is the rank of X.

Proof: This follows from the fact that estimable functins λβ must satisfy
λ ∈ C(XT ) and dim{C(XT )} = rank(XT ) = rank(X).

• Let xT
i be the ith row of X. Since each xi is in the row space of X,

it follows that every xT
i β (every element of µ = Xβ) is estimable,

i = 1, . . . , n.

• Similarly, from the theorem on p. 165, every row (element) of XT Xβ
is estimable, and therefore XT Xβ itself is estimable.

• In fact, all estimable functions can be obtained from Xβ or XT Xβ.

Theorem: In the model y = Xβ + e, where E(y) = Xβ and X is n × p
of rank k < p ≤ n, any estimable function λT β can be obtained by taking
a linear combination of the elements of Xβ or of the elements of XT Xβ.

Proof: Follows directly from the theorem on p. 166.

Example: The one-way layout model (effects version).

Consider again the effects version of the (balanced) one way layout model:

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n.

Suppose that a = 3 and n = 2. Then, in matrix notation, this model is




y11

y12

y21

y22

y31

y32




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1







µ
α1

α2

α3


 + e.
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The previous theorem says that any estimable function of β can be ob-
tained as a linear combination of the elements of Xβ. In addition, by the
theorem on p. 166, vice versa (any linear combination of the elements of
Xβ is estimable).

So, any linear combination aT Xβ for some a is estimable.

Examples:

aT = (1, 0,−1, 0, 0, 0) ⇒ aT Xβ = (0, 1,−1, 0)β
= α1 − α2

aT = (0, 0, 1, 0,−1, 0) ⇒ aT Xβ = (0, 0, 1,−1)β
= α2 − α3

aT = (1, 0, 0, 0,−1, 0) ⇒ aT Xβ = (0, 1, 0,−1)β
= α1 − α3

aT = (1, 0, 0, 0, 0, 0) ⇒ aT Xβ = (1, 1, 0, 0)β
= µ + α1

aT = (0, 0, 1, 0, 0, 0) ⇒ aT Xβ = (1, 0, 1, 0)β
= µ + α2

aT = (0, 0, 0, 0, 1, 0) ⇒ aT Xβ = (1, 0, 0, 1)β
= µ + α3

• So, all treatment means (quantities of the form µ+αi) are estimable,
and all pairwise differences in the treatment effects (quantities of the
form αi − αj are estimable in the one-way layout model. Actually,
any contrast in the treatment effects is estimable. A contrast is a
linear combination whose coefficients sum to zero.

• Thus, even though the individual parameters (µ, α1, α2, . . .) of the
one-way layout model are non-estimable, it is still useful, because
all of the quantities of interest in the model (treatment means and
contrasts) are estimable.
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Estimation in the non-full rank linear model:

A natural candidate for an estimator of an estimable function λT β is λT β̂,
where β̂ is a solution of the least squares normal equation XT Xβ̂ = XT y
(that is, where β̂ = (XT X)−XT y for some generalized inverse (XT X)−).

The following theorem shows that this estimator is unbiased, and even
though β̂ is not unique, λT β̂ is.

Theorem: Let λT β be an estimable function of β in the model y =
Xβ + e, where E(y) = Xβ and X is n × p of rank k < p ≤ n. Let β̂ be
any solution of the normal equation XT Xβ̂ = XT y. Then the estimator
λT β̂ has the following properties:

(i) (unbiasedness) E(λT β̂) = λT β; and

(ii) (uniqueness) λT β̂ is invariant to the choice of β̂ (to the choice of
generalized inverse (XT X)− in the formula β̂ = (XT X)−XT y.

Proof: Part (i):

E(λT β̂) = λT E(β̂) = λT (XT X)−XT Xβ = λT β

where the last equality follows from part (iii) of the theorem on p. 165.

Part (ii): Because λT β is estimable, λ = XT a for some a. Therefore,

λT β̂ = aT X(XT X)−XT y = aT PC(X)y.

The result now follows from the fact that projection matrices are unique
(see pp. 57–58).

• Note that λT β̂ can be written as λT β̂ = rT XT y for r a solution of
XT Xr = λ. (This fact is used quite a bit in our book).
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Theorem: Under the conditions of the previous theorem, and where
var(e) = var(y) = σ2I, the variance of λT β̂ is unique, and is given by

var(λT β̂) = σ2λT (XT X)−λ,

where (XT X)− is any generalized inverse of XT X.

Proof:

var(λT β̂) = λT var((XT X)−XT y)λ

= λT (XT X)−XT σ2IX{(XT X)−}T λ

= σ2 λT (XT X)−XT X︸ ︷︷ ︸
=λT

{(XT X)−}T λ

= σ2λT {(XT X)−}T λ

= σ2aT X{(XT X)−}T XT a (for some a)

= σ2aT X(XT X)−XT a = σ2λT (XT X)−λ.

Uniqueness: since λT β is estimable λ = XT a for some a. Therefore,

var(λT β̂) = σ2λT (XT X)−λ

= σ2aT X(XT X)−XT a = σ2aT PC(X)a

Again, the result follows from the fact that projection matrices are unique.

Theorem: Let λT
1 β and λT

2 β be two estimable function in the model
considered in the previous theorem (the spherical errors, non-full-rank lin-
ear model). Then the covariance of the least-squares estimators of these
quantities is

cov(λT
1 β̂, λT

2 β̂) = σ2λT
1 (XT X)−λ2.

Proof: Homework.
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In the full rank linear model, the Gauss-Markov theorem established that
λT β̂ = λT (XT X)−1XT y was the BLUE of its mean λT β. This result
holds in the non-full rnak linear model as well, as long as λT β is estimable.

Theorem: (Gauss-Markov in the non-full rank case) If λT β is estimable
in the spherical errors non-full rank linear model y = Xβ + e, then λT β̂
is its BLUE.

Proof: Since λT β is estimable, λ = XT a for some a. λT β̂ = aT Xβ̂ is a
linear estimator because it is of the form

λT β̂ = aT X(XT X)−XT y = aT PC(X)y = cT y

where c = PC(X)a. We have already seen that λT β̂ is unbiased. Consider
any other linear estimator dT y of λT β. For dT y to be unbiased, the mean
of dT y, which is E(dT y) = dT Xβ, must satisfy E(dT y) = λT β, for all β,
or equivalently, it must satisfy dT Xβ = λT β, for all β, which implies

dT X = λT .

The covariance between λT β̂ and dT y is

cov(λT β̂,dT y) = cov(cT y,dT y) = σ2cT d

= σ2λT (XT X)−XT d = σ2λT (XT X)−λ.

Now

0 ≤ var(λT β̂ − dT y) = var(λT β̂) + var(dT y)− 2cov(λT β̂,dT y)

= σ2λT (XT X)−λ + var(dT y)− 2σ2λT (XT X)−λ

= var(dT y)− σ2λT (XT X)−λ︸ ︷︷ ︸
=var(λT ˆβ)

Therefore,
var(dT y) ≥ var(λT β̂)

with equality holding iff dT y = λT β̂. I.e., an arbitrary linear unbiased
estimator dT y has variance ≥ to that of the least squares estimator with
equality iff the arbitrary estimator is the least squares estimator.
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ML Estimation:

In the not-necessarily-full-rank model with normal errors:

y = Xβ + e, e ∼ Nn(0, σ2In), (∗)

where X is n× p with rank k ≤ p ≤ n, the ML estimators of β, σ2 change
as expected from their values in the full rank case. That is, we replace
inverses with generalized inverses in the formulas for the MLEs β̂ and σ̂2,
and the MLE of β coincides with the OLS estimator, which is BLUE.

Theorem: In model (*) MLEs of β and σ2 are given by

β̂ = (XT X)−XT y,

σ̂2 =
1
n

(y −Xβ̂)T (y −Xβ̂) =
1
n
||y −Xβ̂||2.

Proof: As in the full rank case, the loglikelihood is

`(β, σ2;y) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
‖y −Xβ‖2

(cf. p. 110). By inspection, it is clear that the maximum of `(β, σ2;y)
with respect to β is the same as the minimizer of ‖y − Xβ‖2, which is
the least-squares criterion. Differentiating the LS criterion w.r.t. β gives
the normal equations, which we know has solution β̂ = (XT X)−XT y.
Plugging β̂ back into `(β, σ2;y) gives the profile loglikelihood for σ2, which
we then maximize w.r.t. σ2. These steps follow exactly as in the full rank
case, leading to σ̂2 = 1

n ||y −Xβ̂||2.

• Note that β̂ is not the (unique) MLE, but is an MLE of β corre-
sponding to one particular choice of generalized inverse (XT X)−.

• σ̂2 is the unique MLE of σ2, though, because σ̂2 is a function of
Xβ̂ = X(XT X)−XT y = p(y|C(X)), which is invariant to the choice
of (XT X)−.
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s2 = MSE is an unbiased estimator of σ2:

As in the full rank case, the MLE σ̂2 is biased as an estimator of σ2, and
is therefore not the preferred estimator. The bias of σ̂2 can be seen as
follows:

E(σ̂2) =
1
n

E{(y −Xβ̂)T (y −Xβ̂)}

=
1
n

E{[(I−X(XT X)−XT )y]T (I−X(XT X)−XT )︸ ︷︷ ︸
P

C(X)⊥

y}

=
1
n

E{yT PC(X)⊥y}

=
1
n
{σ2 dim[C(X)⊥] + (Xβ)PC(X)⊥ (Xβ)︸ ︷︷ ︸

∈C(X)

=
1
n

σ2(n− dim[C(X)]) + 0 =
1
n

σ2(n− rank(X)) = σ2 n− k

n
.

Therefore, an unbiased estimator of σ2 is

s2 =
n

n− k
σ̂2 =

1
n− k

(y −Xβ̂)T (y −Xβ̂) =
SSE
dfE

= MSE.

Theorem: In the model y = Xβ + e, E(e) = 0, var(e) = σ2I, and where
X is n× p of rank k ≤ p ≤ n, we have the following properties of s2:

(i) (unbiasedness) E(s2) = σ2.
(ii) (uniqueness) s2 is invariant to the choice of β̂ (i.e., to the choice of

generalized inverse (XT X)−).

Proof: (i) follows from the construction of s2 as nσ̂2/(n− k) and the bias
of σ̂2. (ii) follows from the uniqueness (invariance) of σ̂2.
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Distributions of β̂ and s2:

In the normal-errors, not-necessarily full rank model (*), the distribution
of β̂ and s2 can be obtained. These distributional results are essentially
the same as in the full rank case, except for the mean and variance of β̂:

Theorem: In model (*),

(i) For any given choice of (XT X)−,

β̂ ∼ Np[(XT X)−XT Xβ, σ2(XT X)−XT X{(XT X)−}T ],

(ii) (n− k)s2/σ2 ∼ χ2(n− k), and

(iii) For any given choice of (XT X)−, β̂ and s2 are independent.

Proof: Homework. Proof is essentially the same as in the full rank case.
Adapt the proof on p. 115.

• In the full rank case we saw that with normal with spherical var-cov
structure, β̂ and s2 were minimimum variance unbiased estimators.
This result continues to hold in the not-full-rank case.
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Reparameterization:

The idea in reparameterization is to transform from the vector of non-
estimable parameters β in the model y = Xβ + e where X is n × p with
rank k < p ≤ n, to a vector of linearly independent estimable functions of
β: 



uT
1 β

uT
2 β
...

uT
k β


 = Uβ ≡ γ.

Here U is the k × p matrix with rows uT
1 , . . . ,uT

k , so that the elements of
γ = Uβ are a “full set” of linearly independent estimable functions of β.

The new full-rank model is

y = Zγ + e, (∗)
where Z is n× k of full rank, and Zγ = Xβ (the mean under the non-full
rank model is the same as under the full rank model, we’ve just changed
the parameterization; i.e., switched from β to γ.)

To find the new (full rank) model matrix Z, note that Zγ = Xβ and
γ = Uβ for all β imply

ZUβ = Xβ, for all β, ⇒ ZU = X

⇒ ZUUT = XUT

⇒ Z = XUT (UUT )−1.

• Note that U is of full rank, so (UUT )−1 exists.

• Note also that we have constructed Z to be of full rank:

rank(Z) ≥ rank(ZU) = rank(X) = k

but
rank(Z) ≤ k, because Z is n× k.

Therefore, rank(Z) = k.
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Thus the reparameterized model (*) is a full rank model, and we can obtain
the BLUE of E(y) as

µ̂ = PC(Z)y = Z(ZT Z)−1ZT y,

and the BLUE of γ as
γ̂ = (ZT Z)−1ZT y.

If we are interested in any other estimable function of the original param-
eter β than those given by γ = Uβ, such quantities are easily estimated
from γ̂. Any estimable function λT β must satisfy λT = aT X for some a.
So

λT β = aT Xβ = aT Zγ = bT γ

for b = ZT a. Therefore, any estimable function λT β can be written as
bT γ for some b and the BLUE of λT β is given by

λ̂T β = bT γ̂.

• Note that the choice of a “full set” of linearly independent estimable
functions Uβ = γ is not unique. We could choose another set of LIN
estimable functions Vβ = δ, and then reparameterize to a different
full rank linear model y = Wδ + e where Wδ = Zγ = Xβ. Any
reparameterization leads to the same estimator of λT β.
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Example: The Two-way ANOVA Model

In a two-way layout, observations are taken at all combinations of the
levels of two treatment factors. Suppose factor A has a levels and factor B
has b levels, then in a balanced two-way layout n observations are obtained
in each of the ab treatments (combinations of A and B).

Let yijk = the kth observation at the ith level of A combined with the jth

level of B.

One way to think about the analysis of a two-way layout, is that if we
ignore factors A and B, then what we have is really just a one-way experi-
ment with ab treatments. Therefore, a one-way layout-type model, with a
mean for each treatment can be used. This leads to the cell-means model
for the two-way layout, which is a full-rank model:

yijk = µij + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n.

Often, an effects model is used instead for the two-way layout. In the
effects model, the (i, j)th treatment mean is decomposed into a constant
term plus additive effects for factor A, factor B, and factor A combined
with factor B:

µij = µ + αi + βj + (αβ)ij

This leads to the effects model for the two-way layout:

yijk = µ + αi + βj + (αβ)ij + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , n.
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Suppose a = 2, b = 3 and n = 2. Then the effects model is




y111

y112

y121

y122

y131

y132

y211

y212

y221

y222

y231

y232




= µ




1
1
1
1
1
1
1
1
1
1
1
1




+ α1




1
1
1
1
1
1
0
0
0
0
0
0




+ α2




0
0
0
0
0
0
1
1
1
1
1
1




+ β1




1
1
0
0
0
0
1
1
0
0
0
0




+ β2




0
0
1
1
0
0
0
0
1
1
0
0




+ β3




0
0
0
0
1
1
0
0
0
0
1
1




+ (I6 ⊗
(

1
1

)
)




(αβ)11
(αβ)12
(αβ)13
(αβ)21
(αβ)22
(αβ)23




+ e,

or
y = Xβ + e,

where

X =




1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1




β =




µ
α1

α2

β1

β2

β3

(αβ)11
(αβ)12
(αβ)13
(αβ)21
(αβ)22
(αβ)23




.
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Obviously, the effects model is overparameterized and X is not of full rank.
In fact, rank(X) = ab = 6.

One way to reparameterize the effects model is to choose γ to be the vector
of treatment means. That is, take

γ =




γ1

γ2

γ3

γ4

γ5

γ6




=




µ + α1 + β1 + (αβ)11
µ + α1 + β2 + (αβ)12
µ + α1 + β3 + (αβ)13
µ + α2 + β1 + (αβ)21
µ + α2 + β2 + (αβ)22
µ + α2 + β3 + (αβ)23




=




1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1







µ
α1

α2

β1

β2

β3

(αβ)11
(αβ)12
(αβ)13
(αβ)21
(αβ)22
(αβ)23




= Uβ.

To reparameterize in terms of γ, we can use

Z =




1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1




= I6 ⊗
(

1
1

)
.
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I leave it to you to verify that Zγ = Xβ, and that ZU = X.

• Note that this choice of γ and Z amounts to a reparameteriza-
tion from the effects model y = Xβ + e to the cell-means model
y = Zγ + e. That is, γ = (γ1, . . . , γ6)T is just a relabelling of
(µ11, µ12, µ13, µ21, µ22, µ23)T .

• Any estimable function λT β can be obtained as bT γ for some b.
For example, the main effect of A corresponds to

λT β = {α1 +
1
3
[(αβ)11 + (αβ)12 + (αβ)13]} − {α2 +

1
3
[(αβ)21 + (αβ)22 + (αβ)23]}

= {α1 + ¯(αβ)1·} − {α2 + ¯(αβ)2·}

(that is, λ = (0, 1,−1, 0, 0, 0, 1
3 , 1

3 , 1
3 ,− 1

3 ,− 1
3 ,− 1

3 )T ),which can be
written as bT γ for b = ( 1

3 , 1
3 , 1

3 ,− 1
3 ,− 1

3 ,− 1
3 )T .

Side Conditions:

Another approach for removing the rank deficiency of X in the non-full
rank case is to impose linear constraints on the parameters, called side
conditions. We have already seen one example (pp. 162–163): the one-
way effects model with effects that sum to zero

yij = µ + αi + eij ,
∑

j

αj = 0,

for i = 1, . . . , a, j = 1, . . . , n.

Consider the case a = 3 and n = 2. Then the model can be written as




y11

y12

y21

y22

y31

y32




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




︸ ︷︷ ︸
=X




µ
α1

α2

α3


 + e, where α1 + α2 + α3 = 0.
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Imposing the constraint α3 = −(α1 + α2) on the model equation, we can
rewrite it as

y =




1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1




︸ ︷︷ ︸
=X̃




µ
α1

α2


 + e,

where now we are back in the full rank case with the same model space,
since C(X) = C(X̃).

Another Example - The Two-way Layout Model w/o Interaction:

We have seen that there are two equivalent models for the two-way layout
with interaction: the cell-means model,

yijk = µij + eijk,

i = 1, . . . , a
j = 1, . . . , b
k = 1, . . . , nij

(∗)

and the effects model

yijk = µ + αi + βj + γij + eijk. (∗∗)

• Model (**) is overparameterized and has a non-full rank model ma-
trix. Model (*) is just-parameterized and has a full rank model
matrix. However, they both have the same model space, and are
therefore equivalent.

• We’ve now developed theory that allows us to use model (**) “as
is” by restricting attention to estimable functions, using generalized
inverses, etc.

• We’ve also seen that we can reparameterize from model (**) to model
(*) by identifying the µij ’s where µij = µ+αi +βj +γij as a full set
of LIN estimable functions of the parameters in (**).
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Another way to get around the overparameterization of (**) is to impose
side conditions. Side conditions are not unique; there are lots of valid
choices. But in this model, the set of side conditions that is most comonly
used is

∑

i

αi = 0,
∑

j

βj = 0,

∑

i

γij = 0 for each j, and
∑

j

γij = 0 for each i.

As in the one-way effects model example, substituting these constraints
into the model equation leads to an equivalent full rank model.

• These side conditions, and those considered in the one-way model,
are often called the “sum-to-zero constraints”, or the “usual con-
straints”, or sometimes “the anova constraints”.

• The sum-to-zero constraints remove the rank deficiency in the model
matrix, but they also give the parameters nice interpretations. E.g.,
in the on-way layout model, the constraint

∑
i αi = 0 forces µ to fall

in the middle of all of the µ+αi’s, rather than being some arbitrary
constant. Thus, µ is the overall mean response averaged over all of
the treatment groups, and the αi’s are deviations from this “grand
mean” associated with the ith treatment.

In both the one-way model and the two-way model with interaction, there’s
an obvious alternative (the cell-means model) to reparameterize to, so per-
haps these aren’t the best examples to motivate the use of side conditions.

A better example is the two-way model with no interaction. That is,
suppose we want to assume that there is no interaction between the two
treatment factors. That is, we want to assume that the difference between
any two levels of factor A is the same across levels of factor B.
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How could we formulate such a model?

The easiest way is just to set the interaction effects γij in the effects model
(**) to 0, yielding the (still overparameterized) model

yijk = µ + αi + βj + eijk (∗ ∗ ∗)

• In contrast, it is not so easy to see how a no-interaction, full-rank
version of the cell-means model can be formed. And, therefore, repa-
rameterization from (***) is not an easy option, since its not so
obvious what the model is that we would like to reparameterize to.

Side conditions are a much easier option to remove the overparameteriza-
tion in (***). Again, the “sum-to-zero” constraints are convenient because
they remove the rank deficiency and give the parameters nice interpreta-
tions.

Under the sum-to-zero constraints, model (***) becomes

yijk = µ + αi + βj + eijk,

∑
i αi = 0∑
j βj = 0 (†)

In model (†) we can substitute

αa = −
a−1∑

i=1

αi and βb = −
b−1∑

j=1

βj

into the model equation

yijk = µ + αi + βj + eijk,

i = 1, . . . , a
j = 1, . . . , b
k = 1, . . . , nij
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For example, consider the following data from an unbalanced two-way
layout in which rats were fed diets that differed in factor A, protein level
(high and low), and factor B, food type (beef, cereal, pork). The response
is weight gain.

High Protein Low Protein

Beef Cereal Pork Beef Cereal Pork

73 98 94 90 107 49
102 74 79 76 95 82

56 90

Letting αi represent the effect of the ith level of protein and βj be the effect
of the jth food type, the model matrix for model (***) (the unconstrained
version of model (†)) based on these data is

X =




1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 1 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 1 0 0 1



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If we add the constraints so that we use the full-rank model (†) instead of
(***) we can substitute

α2 = −α1, and β3 = −β1 − β2

so that the model mean becomes

X




µ
α1

−α1

β1

β2

−β1 − β2




= X




1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −1







µ
α1

β1

β2




Therefore, the constrained model (†) is equivalent to a model with uncon-
strained parameter vector (µ, α1, β1, β2)T and full rank model matrix

X̃ = X




1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −1




=




1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1
1 1 0 1
1 1 −1 −1
1 1 −1 −1
1 −1 1 0
1 −1 1 0
1 −1 1 0
1 −1 0 1
1 −1 0 1
1 −1 −1 −1
1 −1 −1 −1




• Another valid set of side conditions in this model is

α2 = 0, β3 = 0.

I leave it to you to derive the reduced model matrix (the model ma-
trix under the side conditions) for these conditions, and to convince
yourself that these side consitions, like the sum-to-zero constraints,
leave the model space unchanged.
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• In the previous example, note that the two sets of side conditions
were

(
0 1 1 0 0 0
0 0 0 1 1 1

)



µ
α1

α2

β1

β2

β3




=
(

α1 + α2

β1 + β2 + β3

)
=

(
0
0

)

and

(
0 0 1 0 0 0
0 0 0 0 0 1

)



µ
α1

α2

β1

β2

β3




=
(

α2

β3

)
=

(
0
0

)
.

In each case, the side condition was of the form Tβ = 0 where Tβ
was a vector of non-estimable functions of β.

This result is general. Side conditions must be restrictions on non-estimable
functions of β. If constraints are placed on estimable functions of β then
this actually changes the model space, which is not our goal.

• Note also that in the example the rank deficiency of X was 2 (X had
6 columns but rank equal to 4). Therefore, two side conditions were
necessary to remove this rank deficiency (the number of elements of
Tβ was 2).
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In general, for the linear model

y = Xβ + e, E(e) = 0, var(e) = σ2In,

where X is n × p with rank(X) = k < p ≤ n, we define side conditions
to be a set of constraints of the form Tβ = 0 where T has rank q where
q = p− k (q =the rank deficiency), and

i. rank
(

X
T

)
= p, and

ii. rank
(

X
T

)
= rank(T) + rank(X).

• Note that (i) and (ii) imply Tβ is nonestimable.

Theorem: In the spherical errors linear model y = Xβ + e where X is
n×p of rank k < p, the unique least-squares estimator of β under the side
condition Tβ = 0 is given by

β̂ = (XT X + TT T)−1XT y.

Proof: As in problem 8.19 from your homework, we can use the method
of Lagrange multipliers. Introducing a Lagrange multiplier λ, the con-
strained least squares estimator of β minimizes

u = (y −Xβ)T (y −Xβ) + λT (Tβ − 0)

Differentiating u with respect to β and λ leads to the equations

XT Xβ +
1
2
TT λ = XT y

Tβ = 0,

which can be written as the single equation
(

XT X TT

T 0

)(
β
1
2λ

)
=

(
XT y

0

)
.
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Under the conditions for Tβ = 0 to be a side condition, it can be shown

that
(

XT X TT

T 0

)
is nonsingular with inverse given by

(
XT X TT

T 0

)−1

=
(

H−1XT XH−1 H−1TT

TH−1 0

)
,

where H = XT X+TT T. (See Wang and Chow, Advanced Linear Models,
§5.2, for details.)

Therefore, the constrained least-squares equations have a unique solution
given by

(
β̂
1
2 λ̂

)
=

(
H−1XT XH−1 H−1TT

TH−1 0

)(
XT y

0

)

=
(

H−1XT XH−1XT y
TH−1XT y

)
=

(
H−1XT y

0

)

Here, the last equality follows because

i. XT XH−1XT = XT and
ii. TH−1XT = 0.
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To show (i) and (ii) let X1 be a k × p matrix containing the linearly

independent rows of X and let L =
(

X1

T

)
. Then L is a p×p nonsingular

matrix.

There exists an n×k matrix C such that X = CX1 = (C,0)L. In addition,
we can write T = 0X1 + T = (0, Iq)L.

Therefore,

XT X = LT

(
CT C 0

0 0

)
L, and TT T = LT

(
0 0
0 Iq

)
L.

Note that CT C is nonsingular (this follows from result 3 on rank, p. 15),
so direct calculation gives

XT X(XT X + TT T)−1XT = LT

(
CT C 0

0 0

)
L

{
LT

(
CT C 0

0 Iq

)
L

}−1

XT

= LT

(
CT C 0

0 0

)
L

{
L−1

(
(CT C)−1 0

0 Iq

)
(LT )−1

}
XT

= LT

(
Ik 0
0 0

)
(LT )−1XT = LT

(
Ik 0
0 0

)
(LT )−1LT

(
CT

0

)

= LT

(
Ik 0
0 0

)(
CT

0

)
= LT

(
CT

0

)
= XT

establishing (i) and

T(XT X + TT T)−1XT

= (0, Iq)L
{
L−1

(
(CT C)−1 0

0 Iq

)
(LT )−1

}
LT

(
CT

0

)
= 0

which establishes (ii).
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Example - Weight Gain in Rats (Continued):

Returning to the data of p. 186, we now have two equivalent methods of
obtaining the unique least-squares parameter estimates of the constrained
model:

yijk = µ + αi + βj + eijk,

∑
i αi = 0∑
j βj = 0 (†)

First, we can solve the constraints to yield

α2 = −α1, and β3 = −β1 − β2.

Substituting into the model equation gives the full rank model matrix X̃
given on p. 187. Thus the least-squares estimate for the unconstrained
parameter vector δ = (µ, α1, β1, β2)T based on model (†) is given by

δ̂ = (X̃T X̃)−1X̃T y =




82.733
−0.941
3.278
3.455




Alternatively, we can use the method of Lagrange multipliers to obtain the
least-squares estimate of the original parameter vector β = (µ, α1, α2, β1, β2, β3)T

subject to the constraints. This estimator is given by

β̂ = (XT X + TT T)−1XT y (‡)
where T is the constraint matrix given on the top of p. 187:

T =
(

0 1 1 0 0 0
0 0 0 1 1 1

)

Substituting the original model matrix X from p. 186 and T into (‡) we
obtain

β̂ =




82.733
−0.941
0.941
3.278
3.455
−6.733




.
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• Note that the solution β̂ is one (of infinitely many) valid solutions
to the unconstrained model (***). It corresponds to one possible
choice of generalized inverses for XT X.

• In particular it corresponds to choosing (XT X + TT T)−1 as the
generalized inverse of XT X. That (XT X+TT T)−1 is a generalized
inverse of XT X follows from result (i) on p.190. By (i),

XT X(XT X + TT T)−1XT

︸ ︷︷ ︸
=XT

X = XT X

which is the defining property of a generalized inverse.

• Whichever approach we take, we obtain the same estimate of µ =
Xβ and of any estimable functions of β (for example, α1 − α2, the
difference in treatment effects for high and low protein) in our orig-
inal overparameterized model. See ratsexamp.txt.

Hypothesis Testing:

For inference, we need distributional assumptions, so throughout this sec-
tion we assume the non-full rank linear model with normal errors:

y = Xβ + e, e ∼ Nn(0, σ2In), (♠)

where X is n× p with rank k < p ≤ n.
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Testable hypotheses:

Suppose we are interested in testing a hypothesis of the form

H0 : Cβ = 0.

• Not all such hypothesis are testable. E.g., if Cβ is nonestimable (is
a vector with non-estimable elements) then H0 cannot be tested.

• This should come as no surprise. E.g., in the one-way layout model
yij = µ + αi + eij without any constraints, we cannot test µ = µ0

because µ is not identifiable. µ could be any one of an infinite number
of values without changing the model (as long as we change the αi’s
accordingly), therefore how could we test whether its equal to a given
null value?

A hypothesis is said to be testable when we can calculate an F−statistic
that is suitable for testing it. There are three conditions that C must
satisfy for H0 to be testable:

1. Cβ must be estimable (must have estimable elements).
⇒ CT must lie in the row space of X.
⇒ there must exist a A so that CT = XT A or, equivalently, C =
AT X for some A.
(It would be meaningless to test hypotheses on nonestimable hy-
potheses anyway.)
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2. C must have full row rank. I.e., for C m×p, we require rank(C) = m.
⇒ this ensures that the hypothesis contains no redundant state-
ments.

– E.g., suppose β is 3 × 1 and we wish to test the hypothesis
that β1 = β2 = β3. We can express this hypothesis in the form
H0 : Cβ for (infinitely) many choices of C. A valid choice of
C is

C =
(

1 −1 0
0 1 −1

)

Notice that this 2× 3 matrix has row rank 2.

An invalid choice of C is

C =




1 −1 0
0 1 −1
1 0 −1




Notice that the last row is redundant (given that β1 = β2 and
β2 = β3 its redundant to require that β1 = β3), and rank(C) =
2.

3. C must have no more than rank(X) = k rows.
This is because, in general, one can only construct up to rank(X)
linearly independent estimable functions.

Subject to these conditions, H0 is testable. As in the full rank case, there
are two equivalent approaches to testing H0:

1. Formulate a test statistic based on a comparison between Cβ̂ and
its null value 0.

2. Recast the null hypothesis H0 : Cβ = 0 in an equivalent form H0 :
µ ∈ V0 for µ = E(y) = Xβ and an appropriate subspace V0 ⊂ V =
C(X). That is, translate testing H0 into a full vs. reduced model
testing problem.

• In the full rank case we described both of these approaches. Because
of time constraints, we’ll only describe approach 1 in the non-full
rank case, but approach 2 follows in much the same way as before.
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The General Linear Hypothesis:

As in the full rank case, our F test is based on the quadratic form

{Cβ̂ − E0(Cβ̂)}T {v̂ar0(Cβ̂)}−1{Cβ̂ − E0(Cβ̂)}
= (Cβ̂)T {v̂ar0(Cβ̂)}−1(Cβ̂)

(Here the 0 subscript indicates that the expected value and variance are
computed under H0 : Cβ = 0.)

The theorem leading to the F statistic is as follows:

Theorem: In model (♠), if C is m × p of rank m ≤ k = rank(X) such
that Cβ is a set of m LIN estimable functions, and if β̂ = GXT y, for
some generalized inverse G of XT X, then

(i) CGCT is nonsingular and invariant to the choice of G;

(ii) Cβ̂ ∼ Nm(Cβ, σ2CGCT );

(iii) SSH/σ2 = (Cβ̂)T (CGCT )−1Cβ̂/σ2 ∼ χ2(m,λ), where

λ = (Cβ)T (CGCT )−1Cβ/(2σ2);

(iv) SSE/σ2 = yT (I−XGXT )y/σ2 ∼ χ2(n− k); and

(v) SSH and SSE are independent.

Proof:

(i) Since Cβ is a vector of estimable function, there must exist an A so
that C = AT X. Therefore,

CGCT = AT XGXT A = AT PC(X)A,

which is unique. To show CGCT is nonsingular we show that it is
of full rank.

196



In general, we have the following two results about rank: (i) for any
matrix M, rank(MT M) = rank(MT ); and (ii) for any matrices M
and N, rank(MN) ≤ rank(M).

In addition, G can be chosen to be a symmetric generalized inverse
of XT X (this is always possible), so G can be written G = LT L for
some L.

Therefore,

rank(CGCT ) = rank(CLT LCT ) = rank(CLT )

≥ rank(CLT L) = rank(CG) = rank(AT XG)

≥ rank(AT XGXT X) = rank(AT X) = rank(C) = m

So we’ve established that rank(CGCT ) ≥ m. But, since CGCT is
m × m it follows that rank(CGCT ) ≤ m. Together, these results
imply

rank(CGCT ) = m.

(ii) By the theorem on p. 176,

β̂ ∼ Np[GXT Xβ, σ2GXT XG].

Therefore, Since Cβ̂ is an affine transformation of a normal, and
C = AT X for some A,

Cβ̂ ∼ Nm[CGXT Xβ, σ2CGXT XGCT ]

= Nm[AT XGXT X︸ ︷︷ ︸
=X

β, σ2AT XGXT X︸ ︷︷ ︸
=X

GXT A]

= Nm(Cβ, σ2CGCT ].
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(iii) By part (ii), var(Cβ̂) = σ2CGCT . Therefore, SSH/σ2 is a quadratic
form in a normal random vector. Since,

σ2[CGCT ]−1CGCT /σ2 = I,

the result follows from the theorem on the bottom of p. 81.

(iv) This was established in part (ii) of the theorem on p. 176.

(v) Homework.

Putting the results of this theorem together, we obtain the F statistic for
testing H0 : Cβ = 0 for H0 a testable hypothesis:

Theorem: In the setup of the previous theorem, then the F statistic for
testing H0 : Cβ = 0 is as follows:

F =
SSH/m

SSE/(n− k)

=
(Cβ̂)T [CGCT ]−1Cβ̂/m

SSE/(n− k)
∼ F (m,n− k, λ),

where G is a generalized inverse of XT X and

λ =
{

1
2σ2 (Cβ)T (CGCT )−1(Cβ) in general
0 under H0.

Proof: Follows directly from the previous theorem and the definition of
the noncentral F distribution.

• As in the full rank case, this F statistic can be extended to test a
hypothesis of the form H0 : Cβ = t for t a vector of constants,
Cβ estimable, and C of full row rank. The resulting test statistic is
identical to F above, but with Cβ̂ replaced by Cβ̂ − t.
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Breaking up Sums of Squares:

Consider again the problem of testing a full versus reduced model. That
is suppose we are interested in testing the hypothesis H0 : β2 = 0 in the
model

y = Xβ + e = (X1,X2)
(

β1

β2

)
+ e

= X1β1 + X2β2 + e, e ∼ N(0, σ2I) (FM)

Under H0 : β2 = 0 the model becomes

y = X1β
∗
1 + e∗, e∗ ∼ N(0, σ2I) (RM)

The problem is to test

H0 : µ ∈ C(X1) (RM) versus H1 : µ /∈ C(X1)

under the maintained hypothesis that µ ∈ C(X) = C([X1,X2]) (FM).

When discussing the full rank CLM, we saw that the appropriate test
statistic for this problem was

F =
‖ŷ − ŷ0‖2/h

s2
=

yT (PC(X) −PC(X1))y/h

yT (I−PC(X))y/(n− p)

∼
{

F (h, n− p), under H0; and
F (h, n− p, λ1), under H1,

where
λ1 =

1
2σ2

‖(PC(X) −PC(X1))µ‖2 =
1

2σ2
‖µ− µ0‖2,

h = dim(β2) = rank(X2) = rank(X) − rank(X1), and p = dim(β) =
rank(X) = the number of columns in X (which we called k+1, previously).
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More generally, in the not-necessarily full rank CLM where X is n×p with
rank(X) = k ≤ p < n, this result generalizes:

F =
‖ŷ − ŷ0‖2/m

s2

=
yT (PC(X) −PC(X1))y/m

yT (I−PC(X))y/(n− k)

∼
{

F (m,n− k), under H0; and
F (m,n− k, λ1), under H1,

where λ1 is as before and m = {rank(X)− rank(X1)}.

Recall that the squared projection length yT (PC(X) − PC(X1))y in the
numerator of this F statistic is equal to

SS(β2|β1) ≡ SSR(FM)− SSR(RM) = SSE(RM)− SSE(FM)

so that F = SS(β2|β1)/m
MSE .

The quantity SS(β2|β1) goes by several different names: the extra regres-
sion sum of squares or the reduction in error sum of squares due to β2

after fitting β1, and several different notations: R(β|β1), SSR(X2|X1),
etc.

Regardless of the notation or terminology, SS(β2|β1) is a sum of squares
that quantifies the amount of variability in y accounted for by adding
X2β2 to the regresion model that includes only X1β1.

That is, it quantifies the contribution to the regression model of the ex-
planatory variables in X2 above and beyond the explanatory variables in
X1.
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The contributions of distinct sets of explanatory variables to the model are
typically captured by breaking up the overall regression (or model) sum
of squares into distinct components.

This is useful quite generally in linear models, but especially in ANOVA
models where the response is modeled in terms of one or more class vari-
ables or factors. In such cases, the model sum of squares is decomposed
into sums of squares for each of the distinct sets of dummy, or indicator,
variables necessary to capture each of the factors in the model.

For example, the following model is appropriate for a randomized complete
block design (RCBD)

yij = µ + βj + αi + eij

where yij is the response from the ith treatment in the jth block, and βj

and αi are block and treatment effects, respectively. This model can also
be written as

y = µjn + β1b1 + · · ·+ βbbb + α1t1 + · · ·+ αata + e (∗)

In this context, the notation SS(α|β, µ) denotes the extra regression sum
of squares due to fitting the αis after fitting µ and the βjs and is given by

SS(α|β, µ) = yT (PC(X) −PC(X1))y

where X1 = (jn,b1, . . . ,bb) and X = (X1, t1, . . . , ta).

• Sums of squares like this one that can be computed by fitting suc-
cessively more complex models and taking the difference in regres-
sion/model sum of squares at each step are called sequential sums of
squares.

• They represent the contribution of each successive group of explana-
tory variables above and beyond those explanatory variables already
in the model.
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Any model that can be written as

y = Xβ + e = X1β1 + X2β2 + X3β3 + · · ·+ e

has a sequential sum of squares decomposition. That is, the regression or
model sum of squares SSModel = yT PC(X)y = ‖PC(X)y‖2 can always be
decomposed as follows:

SSModel = ‖PC(X)y‖2
= ‖PC(X1)y‖2 + ‖(PC(X1,X2) −PC(X1))y‖2

+ ‖(PC(X1,X2,X3) −PC(X1,X2))y‖2 + · · ·
or SSModel = SS(β1) + SS(β2|β1) + SS(β3|β1, β2) + · · ·

• Note that by construction, the projections and squared lengths of
projections in such a decomposition are independent because the
spaces onto which we are projecting are mutually orthogonal.

• Such a decomposition can be extended to any number of terms.
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Consider the RCBD model (*). This model can be written as

y = X1β1 + X2β2 + X3β3 + e

where
X1 = jN , X2 = (b1, . . . ,bb), X3 = (t1, . . . , ta)

and β1 = µ, β2 = (β1, . . . , βb)T , and β3 = (α1, . . . , αa)T .

The sequential break-down of the model sum of squares here is

SSModel = SS(µ) + SS(β|µ) + SS(α|β, µ) (∗∗)

Consider the null hypothesis H0 : α1 = · · · = αa = 0. The null model
corresponding to this hypothesis is yij = µ + βj + eij .

Fitting just the null model we have

SSModel0 = SS(µ) + SS(β|µ).

Note that SSE = SST − SSModel, where SST = ‖y‖2 is the total (uncor-
rected) sum of squares. Therefore, the difference in error sums of squares
between the null model and the maintained model is

SSE0 − SSE = (SST − SSModel0)− (SST − SSModel)

= SSModel − SSModel0 = SS(α|β, µ).

• That is, SS(α|β, µ) is an appropriate sum of squares for the nu-
merator of the F− test for testing yij = µ + βj + eij versus yij =
µ + βj + αi + eij .

• Similarly, we can test yij = µ + eij versus yij = µ + βj + eij using
SS(β|µ) as the numerator sum of squares.

• Finally, we can test yij = µ+ eij versus yij = µ+βj +αi + eij using
SS(α, β|µ) ≡ SS(α|β, µ) + SS(β|µ).
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This last test is a test for significance of the entire model (other than the
constant term), or the overall regression test we have already encountered.

The sequential sums of squares used in decomposition (**) are known as
Type I sums of squares. This terminology is from SAS, but it has taken
hold more generally.

Notice that with Type I (sequential) sums of squares we can decompose
SSModel either as

SSModel = SS(µ) + SS(β|µ) + SS(α|β, µ)

or as
SSModel = SS(µ) + SS(α|µ) + SS(β|α, µ)

• That is, if we happen to add the block effects to the model first, then
the appropriate test statistic is based on SS(α|β, µ). If we happen
to add the treatment effects first then the test is based on SS(α|µ).

• In addition, although SS(α|β, µ) = SS(α|µ) for some models (e.g.,
balanced ANOVA models), such a result is not true, in general.

– Clearly, there’s something dissatisfying about obtaining differ-
ent tests based on the order of the terms in the model.

– There’s an asymmetry in the way that the α’s and β’s are
treated in the Type I SSs.

• In contrast we might choose to always test the α’s based on SS(α|β, µ)
and to test the β’s based on SS(β|α, µ).

• Sums of squares like SS(α|β, µ) and SS(β|α, µ) are called Type II
sums of squares in SAS.
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• Type II SS’s correct the order-dependence of Type I SS’s. In the
RCBD mode, for example, Type II SS’s treat main effects for blocks
(SS(β|α, µ)) and treatments (SS(α|β, µ)) in a symmetric way.

• For a full definition of Type II SS’s we need to understand what a
hierarchical model is.

Hierarchical models: Hierarchical models are models in which the in-
clusion of any interaction effect necessarily implies the inclusion of all
lower-level interactions and main effects involving the factors of the origi-
nal interaction.

• E.g., in the context of a two-way layout, the usual model has main
effects αi and βj for the levels of each of the two factors A and B, and
interaction effects (αβ)ij corresponding to A ∗B. However, there is
nothing to prevent us from considering simpler models.

• The model
yijk = µ + αi + (αβ)ij + eijk

is not a hierachical model, because we have included an A ∗B inter-
action, but no main effect for factor B. In a hierarchical model, the
inclusion of (αβ)ij requires the inclusion of both αi and βj .

• Similarly, suppose we have a three-way layout. The full hierarchical
model is

yijkl = µ+αi +βj + γk +(αβ)ij +(αγ)ik +(βγ)jk +(αβγ)ijk + eijkl

Here, γk is an effect for the kth level of factor C, (αγ)ik and (βγ)jk

are two way interactions for A ∗ C and B ∗ C, and (αβγ)ijk is the
three-way interaction A ∗ B ∗ C. Two examples of non-hierarchical
three-factor models are

yijkl = µ + αi + βj + γk + (αβ)ij + (βγ)jk + (αβγ)ijk + eijkl

and yijkl = µ + αi + γk + (αβ)ij + (αγ)ik + (αβγ)ijk + eijkl
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• I believe (and most statisticians would agree) that, in general, it
is best to restrict attention to hierarchical models unless there is a
compelling reason that in a particular application the omission of a
lower-order term makes sense (e.g., is suggested by some theory or
known fact from the context of the problem).

– This principle is similar to the notion that in a polynomial
regression model: yi = β0 + β1xi + β2x

2
i + · · · + βqx

q
i + ei

one should not consider any model in which a term βkxk
i is

included, but where any of the terms β0, β1xi, . . . , βk−1x
k−1
i

are excluded.

Type II SS’s computes the SS for a factor U , say, as the reduction in SS’s
obtained by adding a term for factor U to the model that is the largest
hierarchical model that does not contain U .

• E.g., in the two-way layout, the Type II SS’s are

SSA = SS(α|β, µ), SSB = SS(β|α, µ), SSAB = SS((αβ)|α, β, µ)

– Notice that there is no longer an order effect. Factor B is
adjusted for A and factor A is adjusted for B.

• Another example: in the three-way layout, the Type II SS’s are

SSA = SS(α|µ, β, γ, (βγ)), SSB = SS(β|µ, α, γ, (αγ)), SSC = SS(γ|µ, α, β, (αβ))
SSAB = SS((αβ)|µ, α, β, γ, (αγ), (βγ)) SSAC = SS((αγ)|µ, α, β, γ, (αβ), (βγ))
SSBC = SS((βγ)|µ, α, β, γ, (αβ), (αγ)) SSABC = SS((αβγ)|µ, α, β, γ, (αβ), (αγ), (βγ))
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Type III SS’s:

When using ANOVA models for the analysis of experimental data, the
scientific focus is often on comparing mean responses across different levels
of the treatment factors (e.g., low, medium high doses of a drug; presence
vs. abscence of fertilizer,; etc.).

In an expperiment with only one treatment factor, the levels of that fac-
tor are the treatments, and means across these treatments are typically of
interest. However, in a factorial design, the treatments are the experimen-
tal conditions corresponding to combinations of the levels of two or more
factors.

• E.g., in a two-way layout with two factors, A and B, with a and b
levels, respectively, we may be interested in comparing means across
the treatments, where the treatment means correspond to the cells
of the following table

Levels of Levels of Factor B
Factor A 1 2 · · · b

1 µ11 µ12 · · · µ1b µ̄1·

2 µ21 µ22 · · · µ2b µ̄2·
...

...
...

. . .
...

...

a µa1 µa2 · · · µab µ̄a·

µ̄·1 µ̄·2 · · · µ̄·b

Here, µij is the population mean for the i, jth treatment, or the treatment
corresponding to the ith level of factor A combinaed with the jth level of
factor B. These µij are the parameters of the full-rank cell means model:

yijk = µij + eijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , nij

or, in terms of the overparameterized effects model,

yijk = µ + αi + βj + (αβ)ij︸ ︷︷ ︸
=µij

+eijk
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While it is often of interest to compare treatment means (e.g., to test
H0 : µij = µi′j′), it also often of interest to compare the mean response
across levels of factor A marginally; that is, after averaging across factor
B (or vice versa).

We define the marginal mean at the ith level of factor A to be µ̄i· =
1
b

∑b
j=1 µij or, in terms of the effects model,

µ̄i· =
1
b

b∑

j=1

(µ + αi + βj + (αβ)ij) = µ + αi + β̄· + ¯(αβ)i·.

• Marginal means for each of the level of factor B are defined similarly.

If we are interested in making comparisons among the marginal means, it
would be nice if our sum of squares for factor A, and for factor B led to
an F test, F = SSA/dfA

MSE , which tested a simple hypothesis of interest like
H0 : µ̄1· = µ̄2· = · · · = µ̄a·.

• It turns out that both the Type I and Type II approach to calculating
SSA do not test such a hypothesis. Type III SS’s, also know as
marginal sums of squares, do.

It can be shown that, in terms of the marginal means, the hypotheses
tested by Type I and Type II SS’s are difficult to interpret, and not at
all the sorts of hypotheses that one would typically be interested in if the
focus of the analysis was to compare treatment means (which it usually
is).
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• For example, in the two-way layout, the hypotheses tested by FA =
SSA/dfA

MSE
for Type I and II versions of SSA are:

Type I: H0 :
b∑

j=1

n1jµ1j

n1·
= · · · =

b∑

j=1

najµaj

na·

Type II: H0 :
b∑

j=1

n1jµ1j =
a∑

i=1

b∑

j=1

n1jnijµij

n·j
, . . . ,

b∑

j=1

najµaj =
a∑

i=1

b∑

j=1

najnijµij

n·j

• These hypotheses (especially those from Type II) are strange. They
correspond to testing whether certain weighted marginal averages of
the treatment means are equal. Testing such hypotheses is seldom
of interest. If one is interested in comparing means across the levels
of factor A, these SS’s are definitely not what one would want to
use.

Type III SS’s are designed to always test simple hypotheses on (un-
weighted) marginal population means. In particular, for the Type III
version of SSA, FA tests the hypothesis

Type III: H0 : µ̄1· = · · · = µ̄a·

Similarly, the Type III version of SSB leads to a test of

Type III: H0 : µ̄·1 = · · · = µ̄·b

• All three types of SS’s lead to the same (reasonable and appropriate)
hypothesis for FAB = MSAB/MSE . Namely,

H0 : (µij − µij′)− (µi′j − µi′j′) = 0, for all i, i′, j, j′
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Type III SS’s also have an interpretation in terms of reduction in SS’s.
For the two way layout model with sum-to-zero restrictions on the
parameters the Type III SS’s are:

SSA = SS(α|µ, β, (αβ)), SSB = SS(β|µ, α, (αβ)), SSAB = SS((αβ)|µ, α, β).

• Note that this interpretation only applies to the sum-to-zero re-
stricted version of the two-way layout model. For other restrictions,
the interpretation would be different. A much better way to un-
derstand Type III SS’s is in terms of the hypotheses tested on the
marginal means, as described above.

Type IV SS’s:

The fourth type of SS’s is useful when there are certain treatment combi-
nations for which nij = 0.

• My recommendation is to avoid the use of Type IV SSs. If factorial
designs are encountered with missing treatments, I suggest instead
the use of a one-way anova model, treating the treatments with data
as levels of a single treatment factor. Interactions and main effects
can be investigated by testing hypotheses on the treatment means.

• If you’re really interested, you can refer to Milliken & Johnson (1992)
or Littell, Freund, & Spector (SAS System for Linear Models, Third
Edition, 1991) for information on Type IV SS’s.
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Relationships Among the Types and Recommendations:

In certain situations, the following equalities among the types of SS’s hold:

I = II = III = IV for balanced data

II = III = IV for no-interaction models

III = IV for all-cells-filled data

If one is interested in model-building (finding a parsimonious well-fitting
model for the data) then

i. use Type I for choosing between models of sequentially increasing
complexity; and

ii. use Type II for choosing between hierarchical models.

If one is interested in testing hypotheses that compare means across the
levels of experimentally controlled factors

iii. use Type III.

• Note that Type I SS’s are the only type of sum of squares that, in
general, lead decompose the total sum of squares. E.g., in the two-
way anova model, they are the only type of SS that guarantee that
SST = SSA + SSB + SSAB + SSE holds, in general.

• However, all four types yield sums of squares that are independent
of SSE and all lead to valid F tests (just of different hypotheses).

• Independence of these SSs from the SSE is guaranteed because all
four types of SSs are squared lengths of projections onto some sub-
space of C(X), whereas SSE is the squared length of a projection
onto C(X)⊥.
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