- Suppose that a population of married couples have heights in inches X for the wife and Y for the husband. Suppose that $(X,Y)^T$ has a bivariate normal distribution with parameters $\mu_X = 66$, $\mu_Y = 70$, $\sigma_X = 2.5$, $\sigma_Y = 2.7$, and $\rho = .3$. What is the probability that the husband is taller than his wife? Does the probability increase or decrease with ρ ?
- 2. Let X_1, \ldots, X_{n_1} and let Y_1, \ldots, Y_{n_2} be independent random samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively. Find the distributions of the following random variables. In each case, name the distribution and give its parameters.
 - a. $\frac{1}{\sigma_1^2} \sum_{i=1}^{n_1} (X_i \mu_1)^2$, and $\frac{1}{\sigma_1^2} \sum_{i=1}^{n_1} (X_i c_i)^2$, for arbitrary constants c_1, \ldots, c_{n_1} .
 - b. $\frac{n_1}{\sigma_1^2}(\bar{x}-\mu_0)^2$, $\frac{n_1}{\sigma_1^2}(\bar{x}-\mu_1)^2$ (μ_0 here is an arbitrary constant).
 - c. $n_1(\bar{x}-\mu_1)^2/\sigma_1^2+n_2(\bar{y}-\mu_2)^2/\sigma_2^2$.
 - d. $\frac{n_2-1}{n_1} \left[\sum_{i=1}^{n_1} (x_i \mu_0)^2 \right] / \left[\sum_{i=1}^{n_2} (y_i \bar{y})^2 \right]$. Here, assume $\sigma_1^2 = \sigma_2^2 = \sigma^2$ and μ_0 is an arbitrary constant.
- Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a random sample from the bivariate normal distribution with parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$. Find a constant K so that

$$T = K \frac{(\bar{X} - \bar{Y}) - \delta}{\{\sum_{i=1}^{n} [(X_i - Y_i) - (\bar{X} - \bar{Y})]^2\}^{1/2}} \sim t(m, \theta).$$

Express m and θ as functions of the parameters and the constant δ . (Hint: Let $D_i = X_i - Y_i$. Express T as a function of the D_i 's.)

- Problem 5.27 in our text.
- 5. Problem 5.30 in our text.