

1. Let $\mathbf{x} = (x_1, x_2, x_3)^T$ and $\mathbf{y} = (y_1, y_2, y_3)^T$ be independent random vectors with $\mathbf{E}(\mathbf{x}) = (2, 3, 4)^T$, $\mathbf{E}(\mathbf{y}) = (2, 4, 6)^T$,

$$var(\mathbf{x}) = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 9 & 1 \\ 3 & 1 & 5 \end{pmatrix}, \quad var(\mathbf{y}) = \begin{pmatrix} 4 & -2 & 3 \\ -2 & 6 & 2 \\ 3 & 2 & 8 \end{pmatrix}.$$

In addition, let

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Find

- a. $cov(\mathbf{x}, \mathbf{y})$
- b. $var(\mathbf{x} + \mathbf{y})$
- c. $cov(\mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{x})$
- d. $E(\mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y})$
- e. var(Ax)
- f. $corr(\mathbf{A}\mathbf{x}, \mathbf{x})$
- g. corr(Ax, Bx).

2. Problem 4.2 in our text.

3. Let $\mathbf{y} = (y_{11}, y_{12}, y_{13}, y_{21}, y_{22}, y_{23})^T$ be the vector of weights of three pigs from each of two randomly selected litters at 3 months of age. A reasonable model for these variables states that

$$y_{ij} = G_i + e_{ij}, \quad i = 1, 2 \quad j = 1, 2, 3,$$

where y_{ij} represents the weight of the jth pig in the ith litter, $G_1, G_2, e_{11}e_{12}, \ldots, e_{23}$ are independent random variables, with $\mathrm{E}(G_i) = \mu$, $\mathrm{var}(G_i) = \sigma_G^2$, for each i, and $\mathrm{E}(e_{ij}) = 0$, $\mathrm{var}(e_{ij}) = \sigma_e^2$, for $(i,j) = (1,1),\ldots,(2,3)$. Here, G_i can be interpretted as the shared genetic effect for all pigs from the ith litter, while e_{11},\ldots,e_{23} are random deviations from G_i for the individual animals. Find $\mathrm{var}(\mathbf{y})$, $\mathrm{corr}(\mathbf{y})$, and $\mathrm{var}(\mathbf{y}_{\cdot}) = \mathrm{var}(\mathbf{j}_{\mathbf{0}}^T\mathbf{y})$.

4. Let $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{E}(\mathbf{x}) = (2, 3, 4)^T$,

$$var(\mathbf{x}) = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 3 \end{pmatrix},$$

and $Q(\mathbf{x}) = \sum_{i=1}^{3} (x_i - \bar{x})^2$. Find $E\{Q(\mathbf{x})\}$.

- 5. Let X_1, \ldots, X_n be uncorrelated random variables with equal means μ and $\text{var}(X_i) = \sigma_i^2, i = 1, \ldots, n$.
 - a. For $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, use property 5 on p. 65 of our notes to find $var(\bar{X})$.
 - b. Find a constant K_n such that $Q = K_n \sum_{i=1}^n (X_i \bar{X})^2$ is an unbiased estimator of $\text{var}(\bar{X})$. Thus even though that X_i 's have unequal variances, Q is still an unbiased estimator of $\text{var}(\bar{X})$. \bar{X} is not the linear unbiased estimator with the smallest variance, though. To see this, assume the σ_i^2 's are known, take n=2 and find the unbiased linear estimator with the smallest variance.
- 6. Let $\mathbf{x} = (x_1, x_2)^T$ have a bivariate normal distribution with parameters $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ for $-1 < \rho < 1$.
 - a. Show that the density of x is

$$f_{\mathbf{x}}(\mathbf{x}) = \{(2\pi)^2 \sigma_1^2 \sigma_2^2 (1 - \rho^2)\}^{-1/2} \exp\left\{-\frac{1}{2}Q(\mathbf{x})/(1 - \rho^2)\right\},\,$$

for $Q(\mathbf{x}) = z_1^2 + z_2^2 - 2\rho z_1 z_2$ where $z_1 = (x_1 - \mu_1)/\sigma_1$, $z_2 = (x_2 - \mu_2)/\sigma_2$. (This is the bivariate normal density function.)

b. Show that the conditional distribution of x_2 given $x_1 = c$, is

$$N\left(\mu_2 + \rho\sigma_2\left(\frac{c-\mu_1}{\sigma_1}\right), \sigma_2^2(1-\rho^2)\right).$$

Thus, for example, if the heights in inches of fathers (x_1) and sons (x_2) have a bivariate normal distribution with means $\mu_1 = 69, \mu_2 = 70, \sigma_1 = 2, \sigma_2 = 3, \rho = .4$, then the conditional distribution of a son's height given that his father is 73 inches tall (2 s.d.'s above the average) is N(72.4, 7.56) $(0.8 \text{ s.d.'s above average with variance } 0.84\sigma_2^2)$.

7. Problem 4.17 in our text.