- Let $\mathbf{x}_1 = \mathbf{j}_4$, $\mathbf{x}_2 = (4, 1, 3, 4)^T$, $\mathbf{y} = (1, 9, 5, 5)^T$. Let $V = \mathcal{L}(\mathbf{x}_1, \mathbf{x}_2)$.
 - a. Find $\hat{\mathbf{y}} = p(\mathbf{y}|V)$ and $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$.
 - b. Find $\hat{\mathbf{y}}_1 = p(\mathbf{y}|\mathbf{x}_1)$ and $\hat{\mathbf{y}}_2 = p(\mathbf{y}|\mathbf{x}_2)$ and show that $\hat{\mathbf{y}} \neq \hat{\mathbf{y}}_1 + \hat{\mathbf{y}}_2$.
 - c. Verify that $\mathbf{e} \perp V$.
 - d. Find $||\mathbf{y}||^2$, $||\hat{\mathbf{y}}||^2$, $||\mathbf{e}||^2$, and verify that the Pythagorean Theorem holds. Compute $||\hat{\mathbf{y}}||^2$ directly from $\hat{\mathbf{y}}$ and also by using the formula $||\hat{\mathbf{y}}||^2 = \mathbf{y}^T \mathbf{P} \mathbf{y}$ where \mathbf{P} is the projection matrix onto V.
 - e. Use Gram-Schmidt orthogonalization to find four mutually orthogonal vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and \mathbf{v}_4 such that $V = \mathcal{L}(\mathbf{v}_1, \mathbf{v}_2)$. Hint: You can choose \mathbf{x}_3 and \mathbf{x}_4 arbitrarily, as long as $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ are LIN.
- **2.** (Simple linear regression.) Let $\mathbf{y} = (y_1, \dots, y_n)^T$, $\mathbf{x} = (x_1, \dots, x_n)^T$, and $V = (x_1, \dots, x_n)^T$ $\mathcal{L}(\mathbf{j}_n, \mathbf{x}).$
 - a. Use Gram-Schmidt orthogonalization on the vectors \mathbf{j}_n , \mathbf{x} (in this order) to find orthogonal vectors $\mathbf{j}_n, \mathbf{x}^*$ spanning V. Express \mathbf{x}^* in terms of \mathbf{j}_n and \mathbf{x} , then find b_0, b_1 such that $\hat{\mathbf{y}} = b_0 \mathbf{j}_n + b_1 \mathbf{x}$. To simplify the notation, let $\mathbf{y}^* = \mathbf{y} - p(\mathbf{y}|\mathbf{j}_n) = \mathbf{y} - \bar{y}\mathbf{j}_n,$

$$S_{xy} = \langle \mathbf{x}^*, \mathbf{y}^* \rangle = \langle \mathbf{x}^*, \mathbf{y} \rangle = \sum_i (x_i - \bar{x})(y_i - \bar{y}) = \sum_i (x_i - \bar{x})y_i = \sum_i x_i y_i - n\bar{x}\bar{y},$$

$$S_{xx} = \langle \mathbf{x}^*, \mathbf{x}^* \rangle = \sum_i (x_i - \bar{x})^2 = \sum_i (x_i - \bar{x})x_i = \sum_i x_i^2 - n\bar{x}^2,$$

$$S_{yy} = \langle \mathbf{y}^*, \mathbf{y}^* \rangle = \sum_i (y_i - \bar{y})^2.$$

- b. Suppose $\hat{\mathbf{y}} = p(\mathbf{y}|V) = a_0 \mathbf{j}_n + a_1 \mathbf{x}^*$. Find formulas for a_1 and a_0 in terms of \bar{y} , S_{xy} , and S_{xx} .
- c. Express \mathbf{x}^* in terms of \mathbf{j}_n and \mathbf{x} , and use this to determine formulas for b_0 and b_1 so that $\hat{\mathbf{y}} = b_0 \mathbf{j}_n + b_1 \mathbf{x}$.
- d. Express $||\hat{\mathbf{y}}||^2$ and $||\mathbf{y} \hat{\mathbf{y}}||^2$ in terms of S_{xy} , S_{xx} and S_{yy} . e. Use the formula $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ for $\mathbf{b} = (b_0, b_1)^T$, and verify that this gives the same answer as in (c).
- f. for $\mathbf{y} = (2, 6, 8, 8)^T$, $\mathbf{x} = (0, 1, 2, 3)^T$ find $a_0, a_1, \hat{\mathbf{y}}, b_0, b_1, ||\mathbf{y}||^2, ||\hat{\mathbf{y}}||^2, ||\mathbf{y}||^2$ $|\hat{\mathbf{y}}||^2$. Verify that $||\hat{\mathbf{y}}||^2 = b_0 \langle \mathbf{y}, \mathbf{j}_4 \rangle + b_1 \langle \mathbf{y}, \mathbf{x} \rangle$ and that $(\mathbf{y} - \hat{\mathbf{y}}) \perp V$.
- Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be a basis of a subspace $V \subset \mathbb{R}^n$. Suppose that $p(\mathbf{y}|V) = \sum_{i=1}^k p(\mathbf{y}|\mathbf{x}_i)$ for every vector $\mathbf{y} \in \mathbb{R}^n$. Prove that $\mathbf{x}_1, \dots, \mathbf{x}_k$ are mutually orthogonal. Hint: Consider the vector $\mathbf{y} = \mathbf{x}_i$ for each i.
- Show that for $\mathbf{W}_{n\times k} = \mathbf{X}_{n\times k}\mathbf{B}_{k\times k}$ with **B** nonsingular and **X** of full rank, $\mathbf{P} =$ $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ remains unchanged if **X** is replaced by **W**. Thus **P** is a function of the subspace spanned by the columns of X, not of the particular basis chosen for this subspace (we can change X without affecting P as long as we haven't changed $C(\mathbf{X})$).
- Σ For each subspace V of \mathbb{R}^3 give the corresponding projection matrix **P**. In each case verify that P is symmetric and idempotent.
 - a. $V = \mathcal{L}(\mathbf{x})$ where $\mathbf{x} = (2, -1, -1)^T$. b. $V = \mathcal{L}(\mathbf{x}_1, \mathbf{x}_2)$ where $\mathbf{x}_1 = (1, 1, 1)^T$, and $\mathbf{x}_2 = (1, -1, 0)^T$.
- $\mathcal{L}_{\mathbf{J}}$ For the subspace $V = \mathcal{L}(\mathbf{j}_n, \mathbf{x})$ of problem 2, what is \mathbf{P}_V ? (Note that $V = \mathbf{r}$ $\mathcal{L}(\mathbf{j}_n, \mathbf{x}^*)$, also.) What is $\mathbf{P}_{V^{\perp}}$?