STAT 5372 Assignment 1

Mathematical concepts and derivations

1. Show that out of all possible CDFs, the empirical CDF \hat{F} maximizes the empirical likelihood:

$$L(F) = \prod_{i=1}^{n} \left[F(x_i) - F(x_i^{-}) \right].$$

Note that w.l.o.g. we can take F to be discrete, since a continuous F would yield $F(x_i) - F(x_i^-) = 0$ for every x, and since $\widehat{F}(x) \ge 0$, this would imply $F(x) \le \widehat{F}(x)$. To proceed with a discrete F, let $z_1 < z_2 < \cdots < z_m$ be the distinct values of $\{x_1, \ldots, x_n\}$, with corresponding multiplicities $\{n_1, \ldots, n_m\}$. Now, with $p_j = F(z_j) - F(z_j^-)$ and $\hat{p}_j = n_j/n$, note that we can write

$$\widehat{F}(x) = \sum_{j=1}^{m} \widehat{p}_j I(z_j \le x).$$

Conclude the argument from here by showing that:

$$\log\left(\frac{L(F)}{L(\widehat{F})}\right) < 0.$$

To get the inequality, use the fact that $\log(x) < x - 1$ for all x > 0 provided that $x \neq 1$.

2. Consider the quantile functional $\theta = T(F) = F^{-1}(p)$. Suppose that F is continuous at θ with positive density $f(\theta) > 0$. Show that the influence function for T(F) is given by:

$$L(x) = \begin{cases} \frac{p-1}{f(\theta)}, & x \le \theta\\ \frac{p}{f(\theta)}, & x > \theta. \end{cases}$$

[Hint: note that $\theta_{\epsilon} = T(F_{\epsilon}) = F_{\epsilon}^{-1}(p)$, where $F_{\epsilon}(y) = (1-\epsilon)F(y) + \epsilon \delta_x(y)$, implies that $F_{\epsilon}(\theta_{\epsilon}) = p$. Now differentiate both sides of this last expression.]

3. With $F_{\epsilon} = (1 - \epsilon)F + \epsilon \delta_x$ as before, define the following function w.r.t. a generic estimator T(F):

$$b(\epsilon) = \sup_{x} |T(F) - T(F_{\epsilon})|$$

From here, the *breakdown point* of T(F) is defined to be $\epsilon^* = \inf\{\epsilon : b(\epsilon) = \infty\}$. Find the breakdown point of the sample mean.

4. Consider a positive random variable X, and suppose we are interested in the two functionals

$$\theta = \int \log(x) dF(x),$$
 and $\lambda = \log(\mu)$

where $\mu = \mathbb{E}(X)$.

- (a) What is the plug-in estimator of θ ?
- (b) Derive the influence function and empirical influence function for θ .
- (c) What is the plug-in estimator of λ ?
- (d) Derive the influence function and empirical influence function for λ .
- (e) Derive an asymptotic 1α nonparametric confidence interval for $\hat{\lambda}$.
- (f) Do $\hat{\theta}$ and $\hat{\lambda}$ converge to the same number? Justify.
- (g) Plot the empirical influence functions from parts (b) and (d). In each case, label the point x on the horizontal axis where $\hat{L}(x) = 0$.
- 5. Suppose there exists a constant C such that the following relation holds for all G:

$$|T(F) - T(G)| \le C \sup_{x} |F(x) - G(x)|$$

Show that $T(\hat{F}) \xrightarrow{a.s.} T(F)$.

Simulation

- .6 Generate a random sample X_1, \ldots, X_{100} and compute a 95% global confidence band for the CDF F based on the DKW inequality. Repeat this 1,000 times and report the proportion of data sets for which the confidence band contained the true distribution function.
 - (a) Carry out the above simulation with data coming from the standard normal distribution.
 - (b) Repeat using data generated from the standard Cauchy distribution.
- 7. Compare the nonparametric confidence interval for the variance obtained from using the functional delta method to the normal-theory interval:

$$\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}},\ \frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}\right),$$

where s^2 is the usual unbiased estimator of the variance. Conduct a simulation study to determine the coverage probability and average interval width of these two intervals.

- (a) Carry out the above simulation with data generated from the standard normal distribution.
- (b) Repeat using data generated from an exponential distribution with rate 1.
- (c) Briefly, comment on the strengths and weaknesses of these two methods.

Application

- 8. The R data set quakes contains (among other information) the magnitude of 1,000 earthquakes that have occurred near the island of Fiji.
 - (a) Estimate the CDF for the magnitude of earthquakes in this region, along with a 95% confidence interval. Plot your results.
 - (b) Estimate and provide a 95% confidence interval for F(4.9) F(4.3).
 - (c) Estimate the variance of the magnitude, and provide a nonparametric 95% confidence interval for its value.