STAT 5372 Assignment 5

(Lectures 17–21)

Mathematical concepts and derivations

- 1. Show that the linear weights $\{l_i(x_0)\}$ for local linear regression (Lecture 17, slide 13), satisfy (a)—(c) below. It suffices to show this for the case when n=2. (Note that the kernel K_h is defined on Slide 3.)
 - (a) $\sum_{i=1}^{n} l_i(x_0) = 1$, for all x_0 .
 - (b) $\sum_{i=1}^{n} l_i(x_0)(x-x_0) = 0$, for all x_0 .
 - (c) If $K_h(x_i, x_0) = 0$, then $l_i(x_0) = 0$.
- 2. (Lecture 18, slide 19). Suppose $\hat{\boldsymbol{f}} = \boldsymbol{L}\boldsymbol{y}$ is a linear smoother based on $\{(x_1, y_1), \dots, (x_n, y_n)\}$, where $\hat{\boldsymbol{f}} = (\hat{f}_1, \dots, \hat{f}_n)^T$, $\boldsymbol{y} = (y_1, \dots, y_n)^T$, and the (i, j) element of the smoothing matrix \boldsymbol{L} is $l_{ij} = l_j(x_i)$. Denote by $\hat{\boldsymbol{f}}^{(-i)} = \tilde{\boldsymbol{L}}\boldsymbol{y}$ the corresponding smooth that results by leaving out the i-th pair $\{(x_i, y_i)\}$. This implies that we have the expressions:

$$\hat{f}_i \equiv \hat{f}(x_i) = \sum_{j=1}^n l_{ij} y_j,$$
 and $\hat{f}_i^{(-i)} \equiv \hat{f}^{(-i)}(x_i) = \sum_{i \neq j=1}^n \tilde{l}_{ij} y_j.$

- (a) If the smoothing matrix satisfies the (rows sum to unity) property in Question 1(a), deduce that $\tilde{l}_{ij} = l_{ij}/(1 l_{ii})$. (Assume smoothing matrices are unique to the problem at hand.)
- (b) Show that the CV score (defined in the first equality below) can be written in the simpler form given by the second equality:

$$CV = \frac{1}{n} \sum_{i=1}^{n} \left\{ y_i - \hat{f}_{(-i)}(x_i) \right\}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}(x_i)}{1 - l_{ii}} \right)^2.$$

3. Show that the Nadaraya-Watson kernel estimator (Lecture 18, Slide 3), is a special case of Loess (Lecture 18, Slide 12) when the local polynomial is a constant. That is, show that the solution of:

$$\hat{\alpha} = \arg\min_{\alpha \in \mathbb{R}} \sum_{i} K_h(x_0, x_i) (y_i - \alpha)^2, \quad \text{implies that} \quad \hat{f}(x_0) = \frac{\sum_{i} K_h(x_0, x_i) y_i}{\sum_{i} K_h(x_0, x_i)}.$$

- 4. (Lecture 21). For $x \in [0,1]$ and equally spaced knots, consider two sets of spline basis functions: the truncated spline basis functions (Slide 14), and the B-spline basis functions (Slide 19). (Note: we did not cover the construction of B-splines, which are more complicated, but they can be plotted with the splines package.)
 - (a) Write down the set of truncated spline basis functions for representing a cubic spline (m = 4) with three knots (K = 3). Plot these basis functions (exclude the intercept term).
 - (b) For the same knots as in (a), plot the B-spline basis functions (again, exclude the intercept).
- 5. Consider the smoothing spline problem defined in Lecture 21 (Slides 34-36): $f(x) = \sum_{j=1}^{n} N_j(x)\beta_j$, $f(\boldsymbol{x}) = N\boldsymbol{\beta}$, with $N_{ij} = N_j(x_i)$ the (i,j) element of N, and where the vector $\boldsymbol{\beta}$ minimizes the objective function:

$$S(\beta) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(u)^2 du.$$

(a) If Ω is defined as the matrix whose (j,k) element is $\Omega_{jk} = \int N_j''(u)N_k''(u)du$, show that the objective function can be written as:

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - N\boldsymbol{\beta})^T (\boldsymbol{y} - N\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \Omega \boldsymbol{\beta}.$$

(b) Derive the fact that the solution to this objective function is as follows:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) = (N^T N + \lambda \Omega)^{-1} N^T \boldsymbol{y}.$$

Simulation

Some questions in this section will have you execute the following algorithm.

Algorithm 1. The model for the pairs (x_i, y_i) , i = 1, ..., n, with n = 101, is:

$$y_i = f(x_i) + \epsilon_i, \qquad x_i = 6\left(\frac{i-1}{100}\right) - 3, \qquad \{\epsilon_i\} \sim iid \ N(0,1),$$

for a specified function f(x). Note that the design points x_i are uniformly spaced in the range [-3,3]. Using a specified method, obtain fitted values $\hat{y}_1, \ldots, \hat{y}_n$. Then proceed as follows.

- (i) Simulate M = 1000 realizations from the model. From realization m, obtain the fitted values $\hat{y}_{1,m}, \ldots, \hat{y}_{n,m}$, corresponding to the observed values $y_{1,m}, \ldots, y_{n,m}$.
- (ii) For $i = 1, \ldots, n$, let

$$b_i = \frac{1}{M} \sum_{m=1}^{M} \hat{y}_{i,m} - f(x_i), \qquad v_i^2 = \frac{1}{M} \sum_{m=1}^{M} \hat{y}_{i,m}^2 - \left[\frac{1}{M} \sum_{m=1}^{M} \hat{y}_{i,m} \right]^2,$$

be the (estimated) bias and variance at x_i . Similarly, let $MSE_i = b_i^2 + v_i^2$ to be the corresponding MSE at x_i .

(iii) Plot (x_i, b_i) , (x_i, v_i^2) , and (x_i, MSE_i) , for i = 1, ..., n.

- 6. Apply Algorithm 1 to produce the plots of bias, variance and MSE, for the following cases.
 - (a) The function is $f(x) = -x^2$, and the fitting method is polynomial regression with linear and quadratic terms, i.e., fit the model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon.$$

(b) The fitting method is polynomial regression with up to 5th order terms, but the function is:

$$f(x) = \begin{cases} 0, & \text{if } x \le 0\\ x^2, & \text{if } x > 0. \end{cases}$$

- 7. Apply Algorithm 1 to produce the plots of bias, variance and MSE, for the following cases.
 - (a) The function is $f(x) = -x^2$, and the fitting method is *loess* (locally weighted linear regression).
 - (b) The fitting method is also loess (locally weighted linear regression), but the function is:

$$f(x) = \begin{cases} 0, & \text{if } x \le 0\\ x^2, & \text{if } x > 0. \end{cases}$$

- 8. Apply Algorithm 1 to produce the plots of bias, variance and MSE, for the following cases.
 - (a) The function is $f(x) = -x^2$, and the fitting method is smoothing splines.
 - (b) The fitting method is also *smoothing splines*, but the function is:

$$f(x) = \begin{cases} 0, & \text{if } x \le 0\\ x^2, & \text{if } x > 0. \end{cases}$$

Application

- 9. The course website contains the dataset motorcycle.txt from an experiment on the efficacy of crash helmets. The response (Acceleration) is measured by an accelerometer placed inside a helmet. Use *loess* to model acceleration over time, as follows.
 - (a) Choose a criterion by which to select the smoothing parameter. Plot this criterion versus the smoothing parameter and choose the optimal value for use in (b) and (c).
 - (b) Plot a smooth curve estimating acceleration as a function of time, and include bands to indicate confidence regions.
 - (c) Prepare an ANOVA table testing the sequence of models:

Null (intercept only) \subset Linear \subset Quadratic.

3

- 10. The course website contains the dataset asthma.txt from a study of the relationship between childhood asthma and exposure to air pollution from concentrated animal feeding operations. Treat asthma (Yes/No) as following a binomial distribution given exposure, and plot the probability of developing asthma, using the methods outlined below. Present the 4 plots in (a)–(d) together in one figure (2 panels by 2 panels).
 - (a) Using the method of *kernel density* (naive Bayes classifier), plot a smooth curve estimating the relationship between exposure and the probability of developing asthma.
 - (b) Using the method of GLM, plot a smooth curve estimating the relationship between exposure and the probability of developing asthma, with (simultaneous) 95% confidence bands.
 - (c) Using the method of *smoothing splines*, plot a smooth curve estimating the relationship between exposure and the probability of developing asthma, with (simultaneous) 95% confidence bands.
 - (d) Using the method of *local likelihood*, plot a smooth curve estimating the relationship between exposure and the probability of developing asthma, with (simultaneous) 95% confidence bands.
 - (e) In the context of the method of *local likelihood*, prepare an ANOVA table testing the sequence of models:

Null (intercept only)
$$\subset$$
 Linear \subset Local,

and state your conclusion. (Note: if $\theta(x) = \alpha + \beta x$ is the linear predictor, the "Null" model should be a GLM with $\theta(x) = \alpha$, the "Linear" model should be a GLM with $\theta(x) = \alpha + \beta x$, and the the "Local" model should be a local likelihood model also with $\theta(x) = \alpha + \beta x$.)