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Introduction

We will discuss one final approach to constructing confidence
intervals for statistical functionals

The idea is to extend the tools of maximum likelihood directly
to the nonparametric case

In parametric likelihood methods, we construct confidence
intervals of the form {

θ

∣∣∣∣∣L(θ)

L(θ̂)
≥ c

}
,

where the threshold c determines the confidence level
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The nonparametric likelihood ratio

In parametric statistics, the parameters determine the
distribution; in nonparametric statistics, we estimate the CDF
directly using the empirical CDF, which is also the
nonparametric maximum likelihood estimator of F

The analogous concept to a likelihood ratio is

R(F ) =
L(F )

L(F̂ )
,

where L(F ) =
∏
iwi and wi = PF (X = xi)
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Empirical likelihood confidence regions

How does this help us to find a confidence interval for
θ = T (F )?

Define

R(θ) = sup
F
{R(F )|T (F ) = θ, F ∈ F}

In the terminology of likelihood theory, this is a profile
likelihood ratio, where the numerator is the likelihood of the
parameter of interest, maximized over the nuisance parameters

Empirical likelihood confidence regions are then of the form

{θ|R(θ) > r}
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Empirical likelihood of the mean

We will illustrate the ideas behind empirical likelihood by
deriving the empirical likelihood confidence interval for the
mean

We immediately encounter a challenge: if we let F be the set
of all possible distributions, our confidence interval is infinitely
wide

In order to eliminate this problem, we must restrict F in some
way

Before we move on, however, note that we may not need to
restrict F if dealing with a more robust statistic such as the
median
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Restricting F to the sample

One natural approach is to restrict the support of F to
include only the points {xi}
Once this restriction is put in place, calculation of R(θ)
amounts to maximizing the nonparametric likelihood over a
finite number (n) of weights {wi}, subject to certain
restrictions and constraints

We will discuss the details of this a little later

Patrick Breheny STA 621: Nonparametric Statistics 6/15



Empirical likelihood
Idea
Computation

Asymptotic distribution of R(θ)

It turns out that, asymptotically, R(θ) behaves very similarly
to the parametric likelihood ratio

Theorem: Let X
iid∼ F0 and θ0 = E(X), and suppose

V(X) ∈ (0,∞). Then

−2 logR(θ0)
d−→ χ2

1

The above holds for any sufficiently smooth (i.e.
differentiable) statistical functional, given appropriate
regularity conditions
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EL hypothesis tests and confidence intervals

The preceding theorem allows us to construct hypothesis tests
by calculating the area under the χ2

1 curve outside
−2 logR(θ0)

It also allows for the construction of confidence intervals of
the form:

{θ| − 2 logR(θ) < χ2
1,1−α}
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Example: Rat survival

Let’s apply empirical likelihood to our study of survival in rats that
was introduced in the previous lecture:
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Comparison

Comparing this interval to our intervals from the last lecture:

Normal 28.5 84.0
t 23.6 88.9
Bootstrap-t 33.4 125.1
Percentile 32.1 87.7
BCa 37.3 90.9
EL 35.6 88.0
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Setup

In order to compute R(θ), we have to maximize
∏
i nwi – or

equivalently,
∑

i log(nwi) – over {wi} subject to the following
constraints:

wi > 0 ∀ i∑
i

wi = 1∑
i

wixi = θ

Note that because log is a strictly concave function, a unique
global maximum will exist

Patrick Breheny STA 621: Nonparametric Statistics 11/15



Empirical likelihood
Idea
Computation

Lagrange multipliers

We may solve for the optimum values of {wi} using Lagrange
multipliers; where our Lagrangian function G is

G =
∑
i

log(nwi)− nλ
∑
i

wi(xi − θ)− γ

(∑
i

wi − 1

)

Thus, γ = n and λ satisfies

1

n

∑
i

xi − θ
1 + λ(xi − θ)

= 0
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Solving for λ

There is no closed form solution for λ, so we must use some
form of univariate root-finding algorithm such as Brent’s
method (used by uniroot)

To begin the search, we need an initial bracket for λ

For the mean, this can be obtained by setting the weight of
the largest observation to 1, and then setting the weight of
the smallest observation to 1:

λ ∈
(

1− n
n(x(n) − θ)

,
1− n

n(x(1) − θ)

)
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Determination of the confidence interval

Once we have λ, the weights follow from

wi =
1

n

1

1 + λ(xi − θ)

and the likelihood can be calculated.

Solving for the endpoints (θL, θU ) of a confidence interval can
either be interpolated from the calculation of R(θ) or solved
via a similar sort of Lagrangian technique
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Homework

Homework: Show that, for θ = E(X),

−2 logR(θ0)
d−→ χ2

1

Hint: do this in two parts. For the first part, take a Taylor
series expansion of

1

n

∑
i

xi − θ
1 + λ(xi − θ)

= 0

about λ = 0 to show that λ ≈ (x̄− θ)/S, where
S = n−1

∑
i(xi − θ)2

In the second part, use the above approximation to show that
−2 logR(θ0) ≈ n(x̄− θ0)2/S (Hint: use the fact that when
x ≈ 0, log(1 + x) ≈ x− 1

2x
2)
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