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Introduction

@ We will discuss one final approach to constructing confidence
intervals for statistical functionals

@ The idea is to extend the tools of maximum likelihood directly
to the nonparametric case

@ In parametric likelihood methods, we construct confidence

intervals of the form
0 L(HA >cp,
L(0)

where the threshold ¢ determines the confidence level

~—
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The nonparametric likelihood ratio

@ In parametric statistics, the parameters determine the
distribution; in nonparametric statistics, we estimate the CDF
directly using the empirical CDF, which is also the
nonparametric maximum likelihood estimator of F'

@ The analogous concept to a likelihood ratio is

where L(F) = [[, w; and w; = Pp(X = z;)
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Empirical likelihood confidence regions

How does this help us to find a confidence interval for
0=T(F)?
Define

R(0) = sup{R(F)|T(F) = 0, F € F)

@ In the terminology of likelihood theory, this is a profile
likelihood ratio, where the numerator is the likelihood of the
parameter of interest, maximized over the nuisance parameters

Empirical likelihood confidence regions are then of the form

{0IR(0) > r}
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Empirical likelihood Computation

Empirical likelihood of the mean

@ We will illustrate the ideas behind empirical likelihood by
deriving the empirical likelihood confidence interval for the
mean

o We immediately encounter a challenge: if we let F be the set
of all possible distributions, our confidence interval is infinitely
wide

@ In order to eliminate this problem, we must restrict F in some
way

@ Before we move on, however, note that we may not need to
restrict F if dealing with a more robust statistic such as the
median
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Restricting F to the sample

@ One natural approach is to restrict the support of F to
include only the points {x;}

@ Once this restriction is put in place, calculation of R(6)
amounts to maximizing the nonparametric likelihood over a
finite number (n) of weights {w;}, subject to certain
restrictions and constraints

@ We will discuss the details of this a little later
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Asymptotic distribution of R(6)

@ It turns out that, asymptotically, R(#) behaves very similarly
to the parametric likelihood ratio

o Theorem: Let X < Fy and 6y = E(X), and suppose
V(X) € (0,00). Then
d. 2
—2log R(fo) — x1

@ The above holds for any sufficiently smooth (i.e.
differentiable) statistical functional, given appropriate
regularity conditions
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EL hypothesis tests and confidence intervals

@ The preceding theorem allows us to construct hypothesis tests
by calculating the area under the x? curve outside
—2log R(6o)

@ It also allows for the construction of confidence intervals of
the form:

{0] = 21og R(0) < xF1-a}
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Example: Rat survival

Let's apply empirical likelihood to our study of survival in rats that
was introduced in the previous lecture:
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Comparison

Comparing this interval to our intervals from the last lecture:

Normal 28.5 84.0
t 23.6 88.9
Bootstrap-t 33.4 125.1
Percentile 32,1 87.7
BC, 37.3 909
EL 35.6 88.0
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Computation

@ In order to compute R(f), we have to maximize [[, nw; — or
equivalently, > . log(nw;) — over {w;} subject to the following
constraints:

@ Note that because log is a strictly concave function, a unique
global maximum will exist
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Lagrange multipliers

e We may solve for the optimum values of {w;} using Lagrange
multipliers; where our Lagrangian function G is

G= Zlog(nwi) - N)\sz‘(l’z’ —0)—~ (Z w; — 1>
@ Thus, v =n and X satisfies

n 1+ Nz —0)

i
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Solving for A

@ There is no closed form solution for A, so we must use some
form of univariate root-finding algorithm such as Brent's
method (used by uniroot)

@ To begin the search, we need an initial bracket for A

@ For the mean, this can be obtained by setting the weight of
the largest observation to 1, and then setting the weight of
the smallest observation to 1:

Ae( 1—n 1—n )
n(a:(n) —9)777,(%(1) —9)
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Determination of the confidence interval

@ Once we have A, the weights follow from

1 1
wz_nl—i—)\(ac,-—G)

and the likelihood can be calculated.

@ Solving for the endpoints (01, 6y7) of a confidence interval can
either be interpolated from the calculation of R(6) or solved
via a similar sort of Lagrangian technique
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Homework

e Homework: Show that, for § = E(X),
d 2
—2log R(0y) — X1

@ Hint: do this in two parts. For the first part, take a Taylor
series expansion of

1 T; — 0

il Z B S

n =1+ Mz — 0)
about A = 0 to show that A = (z — 6)/S, where
S=n"13(x; —0)?

@ In the second part, use the above approximation to show that

—2log R(6o) =~ n(x — 6p)?/S (Hint: use the fact that when
z~0, log(l+2) ~x — 3z?)
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