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Introduction

In this lecture, we will describe estimators in a slightly
different way that leads to an elegant geometrical
representation that highlights the connections between the
three nonparametric methods we have talked about so far

Let w∗ denote a vector of weights satisfying 0 ≤ w∗i ≤ 1 and∑n
i w
∗
i = 1, and let F̂ (w∗) denote the CDF which places

point mass w∗i at point xi

Now, define our estimator as

θ̂∗ = T (F̂ (w∗))

(note that we are now defining our estimator as a function of
w∗)
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The simplex

With this representation, our statistic is now a function whose
domain is the set of vectors satisfying 0 ≤ w∗i ≤ 1 and∑n

i w
∗
i = 1 (in geometry, such a set of vectors is known as a

simplex)

The center of the simplex is 1
n1, which we will denote ŵ

Note that θ̂ = T (F̂ (ŵ))

Geometrically, the influence function studies the behavior of
θ̂∗ in the infinitesimal region around ŵ

Geometrically, the jackknife studies the behavior of θ̂∗ as w is
moved away from ŵ by an amount 1/n in the direction
opposite the ith vertex
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The surface

The estimator (in this case the variance) maps this simplex onto a
surface:
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The surface (plugin estimate)

If we use the plugin/ML estimator for the variance instead of the
unbiased estimator, this surface looks like this:
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Bootstrap resampling

What is the bootstrap doing?

The bootstrap draws w∗ randomly from the multinomial
distribution:

w∗ ∼ 1

n
Mult(n, ŵ)

Note that

E(w∗) = ŵ

V(w∗) = n−2I− n−1ŵŵ′
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Geometry of delta method, jackknife, and bootstrap

Geometrically, then, one can think of the three nonparametric
approaches we have discussed so far as different ways of measuring
this surface

The delta method takes a tangent plane approximation

The jackknife forms a hyperplane from the leave-one-out
support points

The bootstrap forms a weighted representation of the surface
using the multinomial distribution
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Equivalence of the three methods for linear statistics

One might expect, then, that the three methods would agree
if the surface was planar

Suppose θ̂∗ is a linear statistic; then

θ̂∗ =

n∑
i

w∗i a(xi) = w′a,

the equation for an n-dimensional hyperplane

Theorem: For any linear statistic,

SE∆ = SEboot = SEjack

√
n− 1

n
,

where the (n− 1)/n term simply arises from the arbitrary
historical decision of the jackknife to use n− 1 in the
denominator of s̃2, and SE∆ is the standard error of the
functional delta method
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Homework

Homework: A rather interesting 1987 paper by DiCiccio and
Tibshirani proposes a confidence interval procedure called ABC, for
“approximate bootstrap confidence” intervals. Their idea is to use
influence functions to approximate what the bootstrap confidence
intervals would be, without actually performing any bootstrap
resampling. The boot package has a function abc.ci to compute
these intervals. To use it, however, the function that calculates
your statistic must take two arguments: the data and a vector of
weights. Why would the function require weights, as opposed to
the vector of indices that the usual boot function requires?
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The bootstrap and Bayesian statistics

Monte Carlo integration also plays a large role in Bayesian
statistics; is there a connection?

Indeed there is

Suppose we specify a discrete distribution for our data, with
P(xi) = wi

Now let us specify a Dirichlet prior for {w}:

w ∼ Dirn(α),

where α is a hyperparameter
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The bootstrap and Bayesian statistics (cont’d)

With this model specification, the posterior distribution of w
is

w ∼ Dirn(α+ 1)

As α→ 0, the above is very similar to what we have in the
bootstrap:

w ∼ 1

n
Mult(n, ŵ),

Thus, we can think of the bootstrap as carrying out a kind of
nonparametric Bayesian analysis in which our bootstrap
replications are (nearly) draws from the posterior distribution
of θ

Of course, it cannot be considered a truly Bayesian approach,
in that no one could legitimately specify a prior with point
masses on the observed data points before collecting the data
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