
Derivation of the bootstrap
Bootstrapping in R

The bootstrap

Patrick Breheny

September 11

Patrick Breheny STA 621: Nonparametric Statistics 1/19



Derivation of the bootstrap
Bootstrapping in R

Introduction

Thus far, we have encountered influence functions and the
jackknife as two nonparametric methods for assessing the
uncertainty surrounding an estimate by observing how the
estimate changes upon small changes to the data

In our next few lectures, we will explore another method based
on this same idea: the bootstrap

The bootstrap is an extremely important idea in modern
nonparametric statistics; indeed, Casella & Berger (2002) call
it “perhaps the single most important development in
statistical methodology in recent times”
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Derivation of bootstrap

Suppose we are interested in assessing the variance of an
estimate θ̂ = θ(x)

It’s actual variance is given by

V(θ̂) =

∫
· · ·
∫
{θ(x1, . . . , xn)− E(θ̂)}2dF (x1) · · · dF (xn)

where E(θ̂) =
∫
· · ·
∫
θ(x1, . . . , xn)dF (x1) · · · dF (xn)

There are two problems with evaluating this expression directly
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The ideal bootstrap

The first is that we do not know F

A natural solution would therefore be to use the plug-in
principle:

V̂(θ̂) =

∫
· · ·
∫
{θ(x1, . . . , xn)− Ê(θ̂)}2dF̂ (x1) · · · dF̂ (xn)

For reasons that will become clear, we will call this the ideal
bootstrap estimate
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The ideal bootstrap (cont’d)

The second problem, however, is that this integral is difficult
to evaluate

Because F̂ is discrete,

V̂(θ̂) =
∑
j

1

nn
{θ(xj)− Ê(θ̂)}2

where xj ranges over all nn possible combinations of the
observed data points {xi} (note, however, that only

(
2n−1
n

)
are distinct)

Unless n is very small, this may take a long time to evaluate
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Monte Carlo approach

However, we can approximate this answer instead using Monte
Carlo integration

Instead of actually evaluating the integral, we approximate it
numerically by drawing random samples of size n from F̂ and
finding the sample average of the integrand

This approach gives us the bootstrap – an approximation to
the ideal bootstrap

By the law of large numbers, this approximation will converge
to the ideal bootstrap as the number of random samples that
we draw goes to infinity
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Bootstrap estimate of variance

The procedure for finding the bootstrap estimate of the variance
(or “bootstrapping the variance”) is as follows:

(1) Draw x∗
1, . . . ,x

∗
B from F̂ , where each bootstrap sample x∗

b is

a random sample of n data points drawn iid from F̂

(2) Calculate θ̂∗b , where θ̂∗b = θ(x∗
b); these are called the bootstrap

replications

(3) Let

vboot =
1

B

B∑
b=1

{
θ̂∗b − θ̄∗

}2
,

where θ̄∗ = B−1
∑

b θ̂
∗
b
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Resampling

What does a random sample drawn from F̂ look like?

Because F̂ places equal mass at every observed value xi,
drawing a random sample from F̂ is equivalent to drawing n
values, with replacement, from {xi}
In practice, this is how the x∗

i ’s from step 1 on the previous
page are generated

This somewhat curious phenomenon in which we draw new
samples by sampling our original sample is called resampling
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Bootstrap estimation of the CDF of θ̂

The bootstrap is not limited to the variance

We can use it to estimate the bias:

bboot = θ̄∗ − θ̂

We can use it to estimate any aspect of the sampling
distribution of θ̂, including its entire CDF

Let G denote the CDF of θ̂; for any t,

Ĝ(t) =
1

B

B∑
b=1

I(θ̂∗b ≤ t)

If θ = T (F ) is Hadamard differentiable, then Ĝ is a consistent
estimator of G (see our textbook for details)
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The boot package

I will not be making you write your own bootstrap function,
as a nice R package already exists for doing this, called boot

By default, it is installed but not loaded with R (i.e., you will
have to type require(boot) to use it)

The package is fairly intuitive, with the exception of the fact
that it requires the θ(·) be written as a function of two
arguments: the first is the original data and the second is a
vector of indices specific to the bootstrap sample

Thus, in order to, say, bootstrap the mean, you will need to
define a function like the following:

mean.boot <- function(x, ind) {mean(x[ind])}
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boot example

Once you have defined such a function, its usage is straightforward:

> boot(x, mean.boot, 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = x, statistic = mean.boot, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 2.002748 -0.02296749 0.3185166

However, there is no point in actually bootstrapping the mean, as the ideal

bootstrap estimates have closed form solution equal to 0 bias and the usual SE

of the mean
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How big should B be?

What is a good value for B?

On the one hand, computing time increases linearly with B,
so we would like to get by with a small B

This desire is particularly acute if θ is complicated and
time-consuming to calculate

On the other hand, the lower the value of B, the less accurate
and more variable our estimated standard error is
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How big should B be? (cont’d)

How much accuracy do we lose by stopping at B bootstrap
samples instead of going to ∞?

This can be assessed by standard statistical methods: {θ̂∗b}
are iid, our bias estimate is derived from a mean, and our SE
is a standard deviation

Generally speaking, published articles in recent years tend to
use 1000 bootstrap replications; however, for highly computer
intensive statistics, 100 or even 50 may be acceptable

However, each application is different – bootstrap data, just
like real data, often deserves a closer look: in the words of
Brad Efron, “it is almost never a waste of time to display a
histogram of the bootstrap replications”
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Histogram of bootstrap replications

out <- boot(x,var.boot,1000)

hist(out$t)

95% CI for bootstrap SE:
(.44, .48)

n=25
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Homework

In our last lecture, I introduced a problem asking your to
calculate the standard error of the Pearson correlation for the
LSAT data using three different methods (normal theory,
functional delta method, and jackknife)

Homework:
(d) Use the bootstrap to estimate the the standard error of ρ̂.
(e) Plot a histogram of your bootstrap replications {ρ̂∗b}. Does the

sampling distribution appear to be normally distributed?
(f) Compare the four estimates (a)-(d).
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Homework

One great advantage of the bootstrap is that it can be used to
calculate the standard error of arbitrarily complicated statistics

For example, consider a study of student’s test scores in
various subjects

88 students were given 5 tests, on Mechanics, Vectors,
Algebra, Analysis, and Statistics; their scores are on the
course website

The correlation matrix of these data provides a wealth of
information about the relationships between these tests; for
example, the correlation between statistics test scores and
algebra test scores is .66
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Homework (cont’d)

One natural question about this data is the extent to which
these tests measure separate skills vs. general tests of
quantitative ability

Educational testing theory often turns to eigenvalues to
answer this question

Eigenvalues measure the extent to which orthogonal linear
combinations of elements can explain the patterns seen in
multivariate data

They can be used to address the above question by looking at
the following statistic:

θ̂ = λ̂1/

5∑
i=1

λ̂i,

where {λ̂i} are the eigenvalues, sorted from largest to smallest
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Homework (cont’d)

For the test score data, θ̂ = .636, indicating that “latent
quantitative ability” is able to explain about 64% of the
variation in students’ test scores, the rest of the variability
coming from subject-specific abilities or just random noise

Homework:
(a) Use the bootstrap to estimate the standard error of θ̂.

(b) Plot a histogram of your bootstrap replications {θ̂∗b}. Does the
sampling distribution appear to be normally distributed?

Hints: cor is the function in R for calculating correlation
matrices; eigen calculates eigenvalues
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The Parametric Bootstrap

This feature of the bootstrap — the way in which it can be
used to easily calculate standard errors for complicated
statistics — has led to its use in parametric problems as well

The only difference from what we have described is in the first
step of the bootstrap, where the bootstrap samples x∗

b are
generated

In the parametric bootstrap, rather than generate x∗
b from the

empirical CDF F̂ , we generate x∗
b from the MLE of F, Fθ̂
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