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@ Thus far, we have fit local least squares models

@ More generally, we may allow the outcome Y; to follow a
distribution f(y|6;), e.g.,

o Exponential: f(y|0) =0 1exp(y/0), y>0
o Binomial: f(1|0) =0, f(0|f)=1-10
@ For regression problems, 6; depends on some covariate x;
@ A parametric model would involve the specification
0; = a + Px;; today we will let §; = 0(z;) represent an
unknown smooth function we wish to estimate
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Local likelihood
Fitting local GLMs in R

Local likelihood

@ One way to achieve that flexibility is by fitting separate, local
models at each target point xg and smoothing those models
together using kernel weighting

@ Specifically, at xg, we estimate & and B by maximizing

> Kn(wo, zi)l(a + Bailys)

7

where I(6]y) = log{f(y|0)}

@ In principle, any distribution and likelihood could be extended
to this approach, but in practice it is usually applied to
generalized linear models

Patrick Breheny STA 621: Nonparametric Statistics



Fitting

Fitting local GLMs

o Letting the ith row of the design matrix be (1,z; — ) as in
local linear regression, the local likelihood estimate 3 at xg
can be found by solving

X'Wu = 0,

where W is the diagonal matrix of kernel weights and
u= %l(y@-, 0;) is the score vector

@ Unlike local linear regression, this equation typically does not
have a closed form solution and must be solved by iterative
methods
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@ As with regular GLMs, we may proceed by constructing a
linear approximation to the score via Taylor series expansion
around the current estimate, 6:

u~rV(z—0),

where V is a diagonal matrix with entries —%l(éﬂyi) (re.,
the observed information) and z = 6 + V~'(y — i) is the
“pseudoresponse”

@ The solution to our local maximum likelihood solution is
therefore

B=(X'WVX) 'XWVz

@ It is important to keep in mind, however, that both z and V
depend on @, and thus we need to update them via 8 «+ X3
and iterate until convergence
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Fitting local GLMs in R

Deviance and degrees of freedom

@ The analogous concept to the residual sum of squares for
generalized linear models is the deviance:

D(y(8) = 2 {1(6uasly) — U0Iy)}

where 0.« is the vector of parameters that maximize
[(@max|y) over all @ (the “saturated” model)

e Continuing with the analogy to local linear regression, we may
define our two effective degree of freedom terms:

where R = X(X’'WVX) 1 X'WV
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@ Unlike the residual sum of squares, the deviance is not x?
distributed, not even asymptotically

@ Nevertheless, inference based on deviance and approximate
degrees of freedom is useful in practice, aids with
interpretation, and usually provides adequate empirical
accuracy in terms of preserving coverage and type | error rates
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al likelihood
GLMs in R

Selection of h

@ As always, there is the issue of how to choose the bandwidth h

@ One approach is to carry out leave-one-out cross-validation
with deviance replacing squared error loss:

vV = Z D (yi|9_i(:ni))

@ However, unlike local linear regression, non-gaussian GLMs are
not linear smoothers and there is no convenient way to
calculate 6_;(x;) without refitting the model

@ For this reason, it is customary to use a criterion such as AlC
instead:

AIC =" D(yi|;) + 2v

(2
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Confidence intervals

One can obtain confidence intervals for 6(x) via quadratic
approximations, as is often done with GLMs themselves:

0(z0) = Rz
Thus,

V{0(z0)} = RV(z)R/
=RV 'R/
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Generalized likelihood ratio tests

e Finally, we can carry out hypothesis testing between two
nested models via approximate generalized likelihood ratio
tests:

A =2{i(B1ly) ~ 1Boly) |
or equivalently,
A =2{D(y|8s) - D(y|01)}

@ Under the null hypothesis that model 0 is correct, A follows a
distribution very similar to a x? distribution with & — 7
degrees of freedom
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Local likelihood

Fitting local GLMs in R

@ The syntax for fitting generalized linear models in R is
straightforward; both locfit and gam provide a family
argument that works exactly the same as it does in glm

@ Thus, for locfit:
locfit(chd™1lp(sbp), data=heart, family="binomial")
and for gam:
gam(chd~lo(sbp), data=heart, family="binomial")
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L ikelihood

oca
Fitting local GLMs in R

Local logistic regression

o By default, both gam and locfit incorporate a link function;
rather than model E(Y) directly, they model

g{E(Y|z)} = 0(x),
where g is a known function
o For logistic regression, ¢ is usually chosen to be the logit

function:
™
=1
g(m) Og{l_ﬂ},

where m = P(Y = 1), thus implying

et

C14ef

@ This is the canonical link for a binomial likelihood; in general,
canonical links have many attractive statistical properties,
such as ensuring that E(Y") stays within the support of Y’

™
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Comparison of local likelihood with other methods
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Fitting local GLMs in R

Using AIC to choose bandwidth
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Fitting local GLMs in R

Pointwise bands
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Fitting local GLMs in R

ANOVA table: SBP

Resid. df Deviance v ADev P
Null 461 596.1
Linear 460 579.3 1 16.79 < 0.0001
Local 457.4 577.7 2.6 1.60 0.58
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Fitting local GLMs in R

ANOVA table: Age

Resid. df Deviance v ADev P
Null 461 596.1
Linear 460 525.6 1 7055 < 0.0001
Local 457.5 519.9 25 5.65 0.09
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