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Simple local models

In the previous lecture, we examined a very simple local
model: k-nearest neighbors

Another simple local regression model is the local average:

f̂(x0) =

∑
i yiI(|xi − x0| < h)∑
i I(|xi − x0| < h)

However, both of these approaches have the disadvantage
that they lead to discontinuous estimates — as an observation
enters/leaves the neighborhood, the estimate changes abruptly
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The Nadaraya-Watson kernel estimator

As with kernel density estimators, we can eliminate this
problem by introducing a continuous kernel which allows
observations to enter and exit the model smoothly

Generalizing the local average, we obtain the following
estimator, known as the Nadaraya-Watson kernel estimator:

f̂(x0) =

∑
i yiKh(xi, x0)∑
iKh(xi, x0)

,

where Kh(xi, x0) = K(xi−x0h ) is the kernel, and if K is

continuous, then so is f̂

As with kernel density estimates, we need to choose a
bandwidth h, which controls the degree of smoothing
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Expected loss and prediction error for regression

Because it is customary to treat x as fixed in regression,
instead of integrating over x to obtain the expected loss, we
average over the observed values of x:

EL(f, f̂) =
1

n

∑
i

EL(f(xi), f̂(xi))

The expected squared error loss is particularly convenient in
regression, as it is directly related to the expected prediction
error:

EPE = E

{
1

n

∑
i

(Yi − f̂(xi))2
}
,

where Yi and f̂ are independent variables
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Bias-variance decomposition of EPE

Theorem: At a given point x0,

EPE = σ2 +Bias2(f̂) + Var(f̂),

where σ2 is the variance of Y |x0

Thus, expected prediction error consists of three parts:

Irreducible error: this is beyond our control and would remain
even if we were able to estimate f perfectly
Bias (squared): the difference between E{f̂(x0)} and the true
value f(x0)

Variance: the variance of the estimate f̂(x0)
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Relationship between expected loss and EPE

Furthermore,

EPE = EL(f, f̂) + σ2

Thus, the expected prediction error and the expected loss are
equal up to a constant

This is attractive because prediction error is easy to evaluate
via cross-validation
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Cross-validation

Specifically, we can estimate the expected prediction error with

CV =
1

n

∑
i

{
yi − f̂(−i)(xi)

}2
,

where f̂(−i) is the estimate of f obtained by omitting the pair
{xi, yi}
Furthermore, as we will see, one can obtain a closed form
expression for the leave-one-out cross validation score above
for any “linear smoother”, without actually refitting the model
n times
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Bone mineral density data

As an example of a real data set with an interesting change in
E(y|x) as a function of x, we will look at a study of changes
in bone mineral density in adolescents

The outcome is the difference in spinal bone mineral density,
taken on two consecutive visits, divided by the average of the
two measurements

Age is the average age over the two visits

A person’s bone mineral density generally increases until the
individual is done growing, then remains relatively constant
until old age
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Cross-validation to choose bandwidth
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Estimates of the regression function
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The problem with kernel weighted averages

Unfortunately, the Nadaraya-Watson kernel estimator suffers from
bias, both at the boundaries and in the interior when the xi’s are
not uniformly distributed:
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Loess

This arises due to the asymmetry effect of the kernel in these
regions

However, we can (up to first order) eliminate this problem by
fitting straight lines locally, instead of constants

In locally weighted regression, also known as lowess or loess,
we solve a separate weighted least squares problem at each
target point x0:

(α̂, β̂) = arg minα,β
∑
i

Kh(x0, xi)(yi − α− xiβ)2

The estimate is then f̂(x0) = α̂+ x0β̂
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Loess is a linear smoother

Let X denote the n× 2 matrix with ith row (1, xi − x0), and
W denote the n× n diagonal matrix with ith diagonal
element wi(x0) = Kh(x0, xi)

Then,

f̂(x0) = e′1[X
′WX]−1X′Wy

=
∑
i

li(x0)yi,

where e1 = (1, 0)′ = (1, x0 − x0)′ and it is important to keep
in mind that both X and W depend implicitly on x0

Thus, our estimate is a linear combination of the yi’s; such
estimates of f are called linear smoothers
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Some facts about the linear weights

Homework: Show that the linear weights {li(x0)} defined on the
previous slide satisfy

(a)
∑

i li(x0) = 1 for all x0

(b)
∑

i li(x0)(xi − x0) = 0 for all x0

(c) If K(xi, x0) = 0, then li(x0) = 0

(Note that property (a) ensures that the estimate preserves
constant curves)
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Effective kernels

The loess approach is similar to the Nadaraya-Watson
approach in that both are taking linear combinations of the
responses {yi}
In loess, however, the weights {li(x0)} are constructed by
combining both kernel weighting and least squares operations,
forming what is sometimes called an effective kernel or
equivalent kernel

Before the development of loess, a fair amount of research
focused on deriving adaptive modifications to kernels in order
to alleviate the bias that we previously discussed

However, local linear regression automatically modifies the
kernel in such a way that this bias is largely eliminated, a
phenomenon known as automatic kernel carpentry
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Automatic kernel carpentry
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Loess: Expectation and variance

At any given target point x0, f̂ is a simple linear combination
of random variables

Thus,

Ef̂(x0) =
∑
i

li(x0)f(xi)

Vf̂(x0) = σ2
∑
i

li(x0)
2

= σ2 ‖l(x0)‖2 ,

where σ2 = V(y)
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Bias: Loess vs. Nadaraya-Watson

Theorem: Suppose that f is continuously differentiable up to
second order and that K(x, x0) = 0 if |x− x0| > h. Then

Loess: Bias{f(x0)} = O(h2)

N-W: Bias{f(x0)} = f ′(x0)
∑
i

wi(xi − x0) +O(h2),

where wi = Kh(xi, x0)/
∑

jKh(xj , x0)

The leading term for the bias of the Nadaraya-Watson
estimator is referred to as design bias; note that it is not
present for loess estimators

In other words, the automatic kernel carpentry that loess
performs naturally eliminates design bias, and the resulting
estimator is free of bias up to second order
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The smoothing matrix

Recall that loess is a linear smoother; thus,

f̂ = Ly,

where L is called the smoothing matrix whose elements
consists of the linear weights lj(xi)

Having our predictions take on this linear form greatly
simplifies leave-one-out cross-validation
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Closed form for leave-one-out cross-validation

Homework: Show that

1

n

∑
i

{
yi − f̂(−i)(xi)

}2
=

1

n

∑
i

(
yi − f̂i
1− lii

)2

Thus, we have a closed form solution for the leave-one-out
cross-validation score that can be obtained from a single fit
(i.e., no need to refit anything)
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Generalized cross-validation

An alternative to cross-validation is to replace the individual
lii’s by their average n−1

∑
i lii = ν/n, where ν = tr(L)

This approach is called generalized cross-validation:

GCV =
1

n

∑
i

(
yi − f̂i
1− ν

)2

GCV is equal to CV if all the lii’s are equal; otherwise, they
will be different, although usually quite close
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Generalized cross-validation (cont’d)

Note that, for x ≈ 0, 1/(1− x)2 ≈ 1 + 2x; thus,

GCV ≈ 1

n

∑
i

(yi − f̂i)2 +
2σ̂2ν

n
,

where σ̂2 = n−1
∑

i(yi − f̂i)2

If we multiply by n and divide by σ̂2, we have that GCV is
approximately proportional to −2loglik + 2ν, the AIC of the
fit (treating σ̂2 as a known constant)

Note that, in this approximation, ν = tr(L) acts as the
effective degrees of freedom in the fit
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Effective degrees of freedom

Note that the smoothing matrix is quite similar to the
projection matrix or hat matrix from linear regression
(H = X(X′X)−1X′), for which f̂ = Hy

In linear regression, tr(H) is equal to the degrees of freedom;
for linear smoothers, tr(L) defines the effective degrees of
freedom (this analogy can be further justified in a number of
ways)
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Local polynomials

Of course, one may ask: why stop at local linear regression?
Why not add a quadratic term?

It is not difficult to fit quadratic or even higher order terms:
we simply let X have rows

[
1, xi − x0, . . . , (xi − x0)d

]
, where

d is the degree of the polynomial

The weight matrix W, determined entirely by the kernel,
remains the same, and we solve separate linear systems of
equations for each target point x0

By the same mechanism as our earlier theorem, it is
straightforward to establish that the bias of a local polynomial
fit is O(hd+1)
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Bias due to local linear fitting
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Local linear versus local quadratic fitting

As the figure on the previous slide indicates, local linear
models tend to be biased in regions of high curvature, a
phenomenon referred to as “trimming the hills and filling in
the valleys”

Higher-order local polynomials correct for this bias, but at the
expense of increased variability

The conventional wisdom on the subject of local linear versus
local quadratic fitting says that:

Local linear fits tend to be superior at the boundaries
Local quadratic fits tend to be superior in the interior
Local fitting to higher order polynomials is possible in
principle, but rarely necessary in practice
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Constant vs. adaptive h

Our discussion of kernels has focused on keeping the
half-width h constant

An alternative approach is to use a nearest-neighbors type of
kernel, in which h changes as a function of x0 so that the
number of points inside (x0 − h, x0 + h) remains constant (as
we will see, this is the default approach in R)

The smoothing parameter in loess can therefore be made
readily interpretable as the fraction of the sample size used in
constructing the local fit at any point x0
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