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The classification problem

In addition to providing estimates of density, kernel density
methods may also be used for classification

Suppose x is continuous, but that y is discrete, and can take
values in K different categories

Given a sample of n pairs of observations {xi, yi}, we would
like to obtain an method for estimating P(yi = j|xi) in future
observations for which x is observed but y is not
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This can be accomplished in a straightforward fashion using kernel
density estimation and Bayes’ theorem:

P̂(y = j|x0) =
π̂j f̂j(x0)∑K
k=1 π̂kf̂k(x0)

π̂j is an estimate of the prior probability of class j; usually, π̂j
is the sample proportion falling into the jth category

f̂j(x0) is the estimated density at x0 based on a kernel density
fit involving only observations from the jth class

This is essentially the same idea as discriminant analysis, only
instead of assuming normality, we are estimating the
probability density of the classes using a nonparametric
method

Patrick Breheny STA 621: Nonparametric Statistics 3/10



Kernel density classification
The naive Bayes classifier

Coronary heart disease study

Let us consider a study of coronary heart disease (CHD)

The study looked at many potential risk factors for CHD, such
as blood pressure, tobacco and alcohol consumption, age,
family history, etc.

One goal of the study is to try to asses the probability of
developing coronary heart disease, given that a person has
certain risk factors

In this lecture, we will focus on systolic blood pressure as a
risk factor
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Kernel density estimates
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Estimate of posterior probability

In the sample, π̂CHD = .346
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Evaluation

As we can see, the kernel density classifier is not restricted to
a linear function, although it seems somewhat unstable in
regions where there is little data

As we have seen, there will be many regions with little data
when we move to higher dimensions
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The independence assumption

Thus, the simplifying assumption of independence is often
made:

f̂j(x) =

K∏
k=1

f̂jk(xk),

where f̂jk is an estimate of the density of the jth class in the
kth dimension

This assumption is, generally speaking, not true

However, it drastically simplifies the estimation and alleviates
the curse of dimensionality by allowing the class-specific
marginal densities fjk to be estimated with one-dimensional
kernel methods
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The Naive Bayes Classifier

This approach is called the naive Bayes classifier

It is not necessarily a good way to estimate f̂j(x), but in
practice, it often performs well as a classifier

The reason for this is that, although the estimator has
considerable bias, the savings in variance are tremendous

Furthermore, a bad estimate for fj does not necessarily imply
that the estimate P(y = j|x) is bad
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Connection to additive models

Finally, it is not hard to show that, for the naive Bayes
classifier,

logit(y = 1|x) = β0 +

K∑
k=1

gk(xk)

Thus, the naive Bayes classifier is equivalent to a certain sort
of additive (i.e., no interactions) logistic regression model,
with flexible functions gk determining the impact of xk on the
log-odds that y = 1

For the rest of the course, we will take a more direct role in
this regression/classification problem by starting with the
above model and estimating the functions g directly
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