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Introduction

We’ve looked at one method for estimating density:
histograms

Histograms are based on estimating a local density; in their
case, points are local to each other if they fall into the same
bin

However, bins are a rather inflexible way of implementing local
density estimation
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Drawbacks of histograms

This leads to some undesirable properties; for example

The resulting estimate is not smooth
An observation may be closer to an observation in the
neighboring bin than it is to points in its own bin

Today we will introduce and discuss methods for taking
weighted local density estimates at each observation xi and
then aggregating them to yield an overall density
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Local neighborhood density

For example, consider estimating the density at a point x0 by
taking the local density of the points within distance h of x0:

f̂(x0) =
n−1

∑
i I(|xi − x0| ≤ h)

2h

This solves one problem of the histogram – namely, it ensures
that no point further away from x0 than xi will contribute
more than xi does to the density estimate
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Local neighborhood density: Old Faithful data

However, the resulting density estimate is still bumpy:
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Kernel density estimate

Let’s fix the bumpiness: instead of giving every point in the
neighborhood equal weight, let’s assign a weight which dies
off toward zero in a continuous fashion as we get further away
from the target point x0

Specifically, consider estimators of the following form:

f̂(x0) =
1

nh

∑
i

K

(
xi − x0
h

)
,

where h, which controls the size of the neighborhood around
x0, is the smoothing parameter

The function K is called the kernel, and it controls the weight
given to the observations {xi} at each point x0 based on their
proximity
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Kernel properties

To yield meaningful estimates, a kernel function must satisfy four
properties:

K(u) ≥ 0

Symmetric about 0∫
K(u)du = 1∫
u2K(u)du > 0
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Gaussian kernel: density estimate

An example of a kernel function is the Gaussian density
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Other kernels

One possible drawback of the Gaussian kernel is that its
support runs over the entire real line; occasionally it is
desirable that a kernel have compact support

Two popular compact kernels are the Epanechnikov kernel:

K(u) =

{
3
4(1− u

2) if |u| ≤ 1

0 otherwise

and the tri-cube kernel:

K(u) =

{
(1− |u|3)3 if |u| ≤ 1

0 otherwise
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Kernels: illustration

x

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3

Gaussian Epanechnikov Tri−cube

Patrick Breheny STA 621: Nonparametric Statistics 10/34



Kernel Density Estimation
Theory

Choice of bandwidth
Kernel density estimation in R

Further topics

Effect of changing bandwidth
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Consistency

For a fixed h, kernel density estimates are not consistent

However, if the bandwidth decreases with sample size at an
appropriate rate, then they are, regardless of which kernel is
used

Theorem: Suppose that f is continuous at x, that hn → 0,

and that nhn →∞ as n→∞. Then f̂(x)
P−→ f(x).
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Rate of convergence

Theorem: Suppose f ′′ is absolutely continuous and that∫
f ′′′(x)2dx <∞. Then

EL(h) =
1

4
σ4Kh

4

∫
f ′′(x)2dx+

∫
K2(x)dx

nh
+O(n−1) +O(h6),

where σ2K =
∫
x2K(x)dx. Furthermore, the optimal bandwidth h

is given by

h∗ =

( ∫
K2(x)dx

nσ4K
∫
f ′′(x)2dx

)1/5

.

For this choice of bandwidth, EL = O(n−4/5).
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Cross-validation

There are two common approaches to choosing an appropriate
bandwidth

The first is cross-validation, which works exactly as it did for
histograms:

Ĵ(h) =

∫
f̂2(x)dx− 2

∑
i

1

n
f̂(−i)(xi),
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Normal reference rule

The second approach is to use the formula

h∗ =

( ∫
K2(x)dx

nσ4K
∫
f ′′(x)2dx

)1/5

and calculate
∫
f ′′(x)2dx from the normal distribution

This is a convenient rule of thumb, but if the true f is very
different from the normal, this can result in an oversmoothed
density
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Cross-validation and optimal bandwidths

On the other hand, cross-validation has very attractive theoretical
properties regardless of f :

Theorem: Suppose that f is bounded and let ĥ denote the
optimal bandwidth as estimated by cross-validation. Then∫

{f(x)− f̂ĥ(x)}
2dx

infh
∫
{f(x)− f̂h(x)}2dx

a.s.−→ 1
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The density function

Kernel density estimates are available in R via the density

function:

d <- density(faithful$waiting)

plot(d)

By default, density uses a Gaussian kernel, but a large
variety of other kernels are available by specifying the kernel

option
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Bandwidth specification

By default, density selects the bandwidth based on the
normal reference rule

However, you can manually choose the bandwidth by
specifying, for example, bw=4

You can also obtain automatic selection by cross-validation by
specifying bw=‘‘ucv’’

As an example of the oversmoothing that was alluded to
earlier, for the Old Faithful data the normal reference rule
chooses a bandwidth of 4.70, compared to a bandwidth of
2.66 chosen by cross-validation
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Computational considerations

Kernel density estimation can be implemented very efficiently
using the fast Fourier transform

This imposes a computational burden on the order of n
operations

If cross-validation is used, then the cost increases to O(n2)
operations

If the normal reference rule is used, the cost remains O(n)
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Homework

Homework: The course website contains a data set from the
National Health and Nutrition Examination Survey (NHANES)
that lists the triglyceride levels of 3,026 adult women.

(a) Obtain a kernel density estimate for the distribution of
triglyceride levels in adult women and plot it. You are free to
decide on whatever kernel and bandwidth you like, but
describe which ones you used.

(b) Obtain a parametric density estimate assuming that
triglyceride levels follow a normal distribution and overlay this
density estimate with your estimate from (a).
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Homework

Homework: Try to obtain a kernel density estimate for the nerve
pulse data on the course website, with bandwidth chosen by
cross-validation. You will receive a warning message, and your
estimate will appear clearly incorrect.

(a) What’s going on? What is causing this problem?

(b) Fix the problem and obtain a reasonable-looking estimate of
the density of waiting times between nerve pulses.
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Multivariate densities

It is straightforward to extend the idea of kernel density
estimation to obtain multidimensional densities:

f̂(x0) =
1

nhp

∑
i

K

(
‖xi − x0‖

h

)
,

where p is the dimension of x

This can be further generalized by allowing different
bandwidths in each dimension:

f̂(x0) =
1

n

∑
i

p∏
j=1

1

hj
K

(
xij − x0j

hj

)
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Old faithful data
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Old faithful 2D density estimate: contour plot
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Old faithful 2D density estimate: filled contour plot
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Old faithful 2D density estimate: perspective plot
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Limitations

The density function is exclusively for one-dimensional
kernel density estimation, but 2D density estimates like the
ones just presented are available via the KernSmooth package

The package is limited, however, in that it does not provide
automatic methods for choosing bandwidths and it only
extends to the 2D case

Although one can easily write down an expression for the
kernel density estimate in higher dimensions, the statistical
properties of the estimator worsen rapidly as p grows
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The curse of dimensionality

For example, suppose that x follows a uniform distribution on
the unit p-cube, and we choose h = 0.05

When p = 1 and n = 100, we can expect 10 points in the
neighborhood of x0

When p = 2, we need 1000 observations to get 10 points
worth of data in a neighborhood of the same size

When p = 5, we need 1,000,000 observations

This phenomenon is commonly referred to as the curse of
dimensionality, and we will return to it again in the course
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Assessing variability with the bootstrap

Closed-form confidence intervals for kernel density estimates are
not trivial, but the bootstrap can be used to assess variability:
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Assessing variability with the bootstrap (cont’d)

And, with the same caveats as histograms, we can get pointwise
95% confidence intervals and bands:
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Adaptive kernels

We have discussed kernel density estimates with fixed
bandwidth

Potentially, this is suboptimal, as an appropriate bandwidth in
an area of high density is not necessarily an appropriate choice
in a low-density region

Another possibility is adaptive bandwidth kernel estimators, in
which the bandwidth changes as a function of x0

The idea is to have local estimates in regions where there is
ample data, but to expand the neighborhood in regions where
data is more scarce

In terms of the bias-variance tradeoff, these estimators
introduce added bias in region with little data in order to
reduce variance there
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Homework

Homework: In proving the theorem on slide 13, we derived the
variance of f̂(x) (approximately; for the sake of this problem you
may ignore the remainder term).

(a) How does the variance of f̂(x) change as a function of x?

(b) How does the variance of f̂(x)/f(x) change as a function of
x?

(c) It is sometimes claimed that methods using an adaptive
bandwidth (in which h changes as function of x) correct for
the tendency of fixed-bandwidth estimators to have high
variance in regions with little data. Are such claims referring
to the variance of the density itself or the relative accuracy of
the density?
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Boundary issues

Another problem with kernel density estimation occurs at the
boundaries of the range of the data

For example, the course website contains a data set with
measurements of the rainfall from 26 clouds (for the purposes
of this assignment, ignore the “Seeded” column)

Most clouds gave off very little precipitation, so the density
near 0 is high

Standard kernel approaches produce an estimate of the density
f̂ that is high near zero and – this is the problem – below zero
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Homework

Obviously, rainfall cannot be negative, so this estimate is
unappealing

One solution is to take a log transformation of the data, fit
the density on this scale, then transform this density back to
the original scale

Homework: Estimate the probability density of rainfall
amount based on the cloud data in three ways: (a) directly,
(b) based on the log transformation approach just described,
and (c) by reflecting the estimated density that lies to the left
of 0 about 0. Plot these estimates.
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