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Power

Permutation testing allows great freedom to use a wide
variety of test statistics, all of which lead to exact level-α
tests regardless of the distribution of the data

However, not all test statistics are equally good – we want
test statistics with high power

It is not possible to develop tests that are uniformly most
powerful regardless of the distribution of the data

Still, we would like our tests to be robust, meaning that they
have good power for a wide variety of distributions
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Invariance

Another attractive feature is invariance, meaning that the test
results do not change when the data is transformed in some
way

For example:

The results of a t-test do not change when x is replaced by
ax+ b, for any constants a and b
The t-test is said to be location-scale invariant

A stronger type of invariance is invariance to any monotone
transformation:

The results of a t-test change if x is replaced by log(x)
The t-test is not invariant to monotone transformations
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Rank-based tests

Any test that is based on the ranks of the data, however, is
clearly invariant to monotone transformations, as such
transformations do not affect the relative ranking of
observations

Thus, rank-based tests do not depend on whether the
outcome is measured on the original scale or the log scale – or
any other scale, for that matter

This is a strong motivation for rank-based tests

Another important motivation is that, as we will see,
rank-based tests tend to be robust
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Locally most powerful rank tests

One way of constructing powerful tests based on ranks is to
find the locally most powerful rank test

We will see how this test is constructed for the most common
application: testing for a difference in location between two
groups

A test is locally most powerful among a class of tests T for
H : ∆ = 0 versus K : ∆ 6= 0 if it is uniformly most powerful
at level α for H versus Kε, where Kε = {|∆| ∈ (0, ε)}
If the above class of tests is the set of rank-based tests, then
the test is said to be a locally most powerful rank (LMPR) test
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Locally most powerful tests for two-group comparison

Theorem: Let Xi ∼ f(x−∆gi), where gi denotes group
membership. Then

T (r) =
∑
i

g(i)E
{−∂ log f(X(i))

∂X(i)

}
defines the locally most powerful rank test of H0 : ∆ = 0

Patrick Breheny STA 621: Nonparametric Statistics 6/29



Invariance and optimality
Linear rank statistics

Permutation tests in R

Homework

Homework: Show that

P0(r) + ∆
∂

∂∆
P∆(r)|∆=0 =

1

n!
{1 + ∆T (r)},

where T (r) is defined on the previous slide.

To accomplish this, you will need to interchange differentiation and
integration. This cannot always be done – in general, certain
regularity conditions regarding f need to hold. Assume that these
conditions hold and that interchanging the two is possible.

Hint: You may wish to consult Section 5.4 of Casella & Berger to
refresh your memory concerning joint densities of order statistics.
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Comment

This may seem like a step backwards – we’re trying to develop
hypothesis tests that don’t assume anything about the
distribution, but in order to calculate T (r), we need to
assume things about f

Keep in mind that all permutation tests are valid (i.e., have
the correct size α) regardless of the test statistic

However, the true distribution f will affect the power that
arises from various test statistics

Choosing f poorly (i.e. you choose an f that looks nothing
like the actual f) will not affect the validity of your hypothesis
test, only its power

Patrick Breheny STA 621: Nonparametric Statistics 8/29



Invariance and optimality
Linear rank statistics

Permutation tests in R

Introduction
Derivation of linear rank scores

Linear rank statistics for H0

For testing H0, a test statistic of the form

T (r) =
∑
i

zia(ri)

is called a linear rank statistic

An equivalent definition is

T (r) =
∑
i

zria(i)

Here, zi is a covariate of some kind – e.g., an indicator of
group membership

The function a is called a score
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Connection with LMPR tests

Note that the LMPR tests we just derived are based on linear
rank statistics

Once again, all permutation tests based on linear rank
statistics are valid level-α tests

However, different scores will lead to tests that are more
powerful in some situations than others
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Central limit theorem approximation

The null distribution of T (r) can always be
evaluated/approximated by numerical/Monte Carlo means, as
we discussed in the previous lecture

A less computer-intensive approach is to use E(T ) and V(T ),
and base the test on the central limit theorem

For example, under H0,

E(T ) = ā
∑

i zi
V(T ) = σ2

a

∑
i(zi − z̄)2, where σ2

a is the sample variance of
{ai}

For linear statistics, then, we can easily obtain an estimate of
ASL without relying on Monte Carlo approximation (relying
instead on a different approximation)
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Logistic distribution

Suppose x follows a logistic distribution:

f(x) =
e−x

(1 + e−x)2
F (x) =

1

1 + e−x

This distribution is particularly easy to work with, because

f(x) = F (x){1− F (x)}

Thus,

a(i) =
2i

n+ 1
− 1
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Logistic distribution (cont’d)

This is a linear function of i and therefore equivalent to the
test statistic

T =
∑
i

zrii,

If zi is an indicator of group membership, this is simply the
sum of the ranks in one of the groups – i.e., the Wilcoxon
Rank Sum Test

Thus, the Wilcoxon Rank Sum Test is the locally most
powerful rank test when the true distribution of x is logistic
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Other LMPR tests of H0

This exercise can be carried out for a number of other
distributions, although most of them do not have a closed form
solution like the logistic distribution does:

Distribution a(i) Name∗

Normal (exact) EX(i) Fisher-Yates

Normal (approx.) Φ−1
(

i
n+1

)
van der Waerden

Double exponential sign(i− n+1
2 ) Median test

∗Some care should be used with test names, as different tests often go by

different names in different settings. For example, the Fisher-Yates test is also

called the “normal scores” test. Meanwhile, the Median test is usually

associated with using the χ2 distribution on the scores rather than the exact

null distribution.
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Testing H1

Similar proofs and derivations can be constructed for testing
H1

Here, linear rank tests are of the form:

T (r) =
∑
i

sia
+(r+

i )

=
∑
i

sria
+(i)
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Testing H1 (cont’d)

Theorem: Suppose Xi
iid∼ f(x−∆), where x is symmetric about 0

(i.e., X is symmetric about ∆). Then T (r) =
∑

i sria
+(i), where

a+(i) = E

{
− ∂

∂ |X|(i)
log f(|X|(i))

}

defines the locally most powerful rank test of H1 : ∆ = 0.
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LMPR tests of H1

Locally most powerful rank tests of H1 for various distributions:

Distribution a+(i) Name

Normal (exact) E |X|(i) Fraser

Normal (approx.) Φ−1
(

1
2 + 1

2
i

n+1

)
van der Waerden

Logistic i Wilcoxon signed-rank
Double exponential 1 Sign test

Homework: Show that the sign test is the locally most powerful
rank test when X follows a double exponential distribution
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Testing H2

For H2, linear rank tests are of the form

T (r) =
∑
i

af (ri)ag(qi),

Theorem: Suppose Xi −∆Zi
iid∼ f(x) and Yi −∆Zi

iid∼ g(x),
where Zi is unobservable and may follow any arbitrary
distribution, provided that EZ and VZ are finite. Then
T (r) =

∑
i af (ri)ag(qi), where

af (i) = E
{
−
f ′(X(i))

f(X(i))

}
ag(i) = E

{
−
g′(Y(i))

g(Y(i))

}
defines the locally most powerful rank test of H2 : ∆ = 0.
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Testing H2 (cont’d)

In principle, one could assign different scores to the ranks of
X than you assign to the ranks of Y , to obtain tests that are,
say, locally most powerful when X follows a logistic
distribution and Y follows a normal distribution

However, this is rare; usually, we just assign the same scores
to the ranks of X and the ranks of Y
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LMPR tests of H2

Locally most powerful rank tests of H2 for various distributions:

Distribution a(i) Name

Normal (exact) EX(i) Fisher-Yates

Normal (approx.) Φ−1
(

i
n+1

)
van der Waerden

Logistic i Spearman rank
Double exponential sign(i− n+1

2 ) Quadrant test
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Multivariate hypotheses

Linear rank statistics can also be extended to test multivariate
hypotheses

The most famous of these tests is the Kruskal-Wallis test

The basic idea is that

yi = α+ β1z1i + · · ·βpzpi + εi,

where ε
iid∼ f , and we are interested in testing

H0 : β1 = · · · = βp = 0
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Multivariate test statistics

These tests are based on vectors of linear rank statistics:

u(r) =
∑
i

zia(ri)

= Z′a,

where zi is now a vector of covariates (in the case of testing
for equality of means across K samples, zi would be a vector
of indicator functions)

To proceed with hypothesis testing, we need to form a
(scalar) test statistic from u; for example, we could use
T (u) = maxj uj

However, the more common (and typically more powerful)
approach is to use quadratic forms
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Quadratic test statistics

Considering r as a random variable, we have, under the null,
that

E0(u) = āZ′1

V0(u) = σ2
aZ̃
′Z̃,

where Z̃ is a centered version of Z

Our quadratic test statistic is thus

T (r) = (u− u0)′V−1(u− u0),

where u0 = E0(u) and V = V0(u)

ASL can be calculated/approximated using either exact,
Monte Carlo, or central limit theorem means:

(u− u0)′V−1(u− u0)
d−→ χ2

p
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Multivariate scores and optimality

One can use the same scores a(i) that we derived earlier

However, these scores do not ensure that the resulting test is
LMPR, like we had in the univariate case

Our LMPR proof does not extend to the multivariate case –
indeed, LMPR tests do not necessarily exist for testing
multivariate null hypotheses
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Testing H1 with multiple groups

It is possible to extend these notions to test H1 in the case of
multiple groups: forming a quadratic test statistic out of a
multivariate linear rank statistic and using either exact, Monte
Carlo, or asymptotic approached to calculating the ASL (the
quadratic form again converges to a χ2 distribution), although
we will skip the details

Still, it is worthwhile to be aware of the fact that there is a
k-sample version of the Wilcoxon Signed Rank test, and it is
called the Friedman test
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Asymptotic vs. exact vs. Monte Carlo

When it comes to numerically calculating a p-value, there are
three approaches: exact calculation, asymptotic calculation
based on the central limit theorem, and Monte Carlo
approximation

We have covered the Monte Carlo approach already

The other approaches are available in R via the functions
wilcox.test (and kruskal.test) for a(i) = i, and via the
package coin for general linear scores and for Monte Carlo
evaluation of the ASL
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Asymptotic p-values

Asymptotic Wilcoxon rank-sum tests and Wilcoxon
signed-rank tests are both available via wilcox.test, which
can be accessed in one of two ways:

wilcox.test(x1,x2)

wilcox.test(x~g)

For other scores, evaluation of p-values is available via
independence_test in the coin package:

independence_test(a~g)

where you can supply any scores a[i]
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Exact p-values

Exact p-values are available in both of these methods (in
wilcox.test by specifying exact=TRUE, in
independence test by specifying distribution=‘exact’)

Both of these methods use a technique called the shift
algorithm to obtain exact answers much, much faster than
would be possible by evaluating all n! permutations (this is
only possible when a(i) is an integer, so exact solutions take
much longer for general scores than they do in the Wilcoxon
case)

The default of wilcox.test is to calculate exact scores if
n < 50, and otherwise use a normal approximation; the default
of independence test is to use a normal approximation
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Homework

For a homework assignment, we will continue to look at the
driving/illegal drug use data from the previous lecture.

Homework: Test the null hypothesis that the distribution of
following distance is the same in both groups using (a) the
Wilcoxon rank-sum test, (b) the van der Waerden test, and (c) the
Median test. For all three, report both asymptotic and exact
p-values.
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