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ABSTRACT

MODIFIED BURG ALGORITHMS FOR MULTIVARIATE SUBSET

AUTOREGRESSION

We devise an algorithm that extends Burg’s original method for recursive modeling

of univariate autoregressions on a full set of lags, to multivariate modeling on a sub-

set of lags. The key step in the algorithm involves minimizing the sum of the norm

of the forward and backward prediction error residual vectors, as a function of the

reflection coefficient matrices. We show that this sum has a global minimum, and

give an explicit expression for the minimizer. By modifying the manner in which

the reflection coefficients are calculated, this algorithm will also give the well-known

Yule-Walker estimates. Based on recently proposed subset extensions to existing

full set counterparts, two other algorithms that involve modifying the reflection co-

efficient calculation are also presented. Using simulated data, all four algorithms are

compared with respect to the size of the Gaussian likelihood produced by each re-

spective model. We find that the Burg and Vieira-Morf algorithms tend to perform

better than the others for all configurations of roots of the autoregressive polyno-

mial, averaging higher likelihoods with smaller variability across a large number of

realizations.

We extend existing asymptotic central limit type results for three common vector

autoregressive process estimators, to the subset case. First, consistency and asymp-

totic normality are established for the least squares estimator. This is extended to

Yule-Walker, by virtue of the similarity in the closed forms for the two estimators.
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Taking advantage of the fact that the Yule-Walker and Burg estimates can be cal-

culated recursively via nearly identical algorithms, we then show these two differ by

terms of order at most Op(1/n). In this way the Burg estimator inherits the same

asymptotics as both Yule-Walker and least squares.

Saddlepoint approximations to the distributions of the Yule-Walker and Burg au-

toregressive coefficient estimators, when sampling from a subset Gaussian AR(p)

with only one non-zero lag, are given. In this context, each estimator can be writ-

ten as a ratio of quadratic forms in normal random variables. The larger bias and

variance in the distribution of the Yule-Walker estimator, particularly evident at low

sample sizes and when the AR coefficient is close to ±1, agrees with its tendency to

give lower likelihoods, as noted earlier. Empirical probability density histograms of

the sampling distributions, for these two as well as the maximum likelihood estima-

tor, provide further confirmation of the superiority of Burg over Yule-Walker in the

vicinity of ±1. Relative error comparisons between the saddlepoint approximations

and the empirical cumulative distribution functions, show close agreement.

In conclusion, we elaborate on the logic employed in writing the computer programs

that implement the Burg algorithm in the univariate and bivariate modeling settings.

The central idea involves the formation of a tree of nodes connected by pointers. Due

to the recursive nature of the algorithm, where modeling on larger subset sizes relies

on that of smaller ones, each node harbors information on the modeling problem as

applied to the particular subset of lags it represents. Starting at nodes of just one

lag, the program follows pointers to those of larger numbers of lags, pausing at each

to build the necessary modeling information. Termination occurs at the top of the
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tree, when applying the algorithm to the unique node that represents the subset of

lags upon which modeling was originally desired.

Adão Alexandre Trindade
Department of Statistics
Colorado State University
Fort Collins, Colorado 80523
Fall 2000
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Chapter 1

MULTIVARIATE SUBSET AUTOREGRESSIVE BURG

ALGORITHMS

1.1 Introduction

A fundamental problem in time series analysis is the forecasting of future obser-

vations, based on some subset of past observations. If the covariance function of

the process is known, one can obtain best linear predictors (having smallest mean

squared error among the class of all linear predictors) by solving the well-known

Yule-Walker equations. In the ensuing work, this will be termed the prediction

problem. Typically however, one simply has a set of data and no knowledge of the

covariance function of the underlying stochastic process that generated the observed

realization. Here, modeling the observed data will be a necessary first step before

implementing any type of model-based forecasting technique. We will call this the

modeling problem.

By its very nature, the forecasting problem has a clear and concise solution. The

modeling problem on the other hand, is plagued with deep theoretical and philosoph-

ical issues. These can range from how the covariance function should be estimated,

to model selection and how best to estimate the parameters thereof. Further com-

plications may arise when this agreed best estimation method is not amenable to

practical implementation, such as when maximum likelihood estimation is used to

model a multivariate process of high dimensionality.
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Our goal in this chapter is to introduce and compare some parameter estimation

methods/algorithms for a particular class of multivariate time series models, called

vector autoregressive (VAR). The d-dimensional time series {Xt} is said to follow

the VAR process of order p, if it satisfies the following relation:

Xt = Φ(1)Xt−1 + · · ·+ Φ(p)Xt−p + Zt,

where {Zt} is a sequence of zero-mean uncorrelated random vectors, each with co-

variance matrix Σ. We call the process {Zt} white noise, and write Zt ∼WN(0,Σ).

In a VAR model of order p therefore, the current value of the series is a function of

the previous p values, perturbed by a random amount. We say that we are modeling

the series on the lagged set {1, . . . , p}. One can generalize this concept to modeling

on a lagged subset K = {k1, . . . , km} ⊆ {1, . . . , p}, where the coefficient matrices

pertaining to the lags not present in the set K, are constrained to be zero. Such

models are called subset vector autoregressive (SVAR).

Similarly, we can think of predicting the current value of a process {Xt} based on

the previous p values, by the relation:

X̂t = Φ(1)Xt−1 + · · ·+ Φ(p)Xt−p.

Again, one can generalize this idea to prediction based on a subset K = {k1, . . . , km}
of the past lags {1, . . . , p}.

The algorithms we propose in this work, will be applicable to SVAR modeling and

subset prediction, and will be recursive in nature. A major advantage of recursion,

is that it involves inversion of matrices whose dimension does not exceed d2.

1.1.1 Some early work

One of the most common SVAR modeling procedures, is the Yule-Walker or Durbin-

Levinson-Whittle algorithm (introduced in section 1.3). A derivation of this algo-
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rithm for univariate series, was first given by Penm and Terrell (1982). A variety of

methods with superior properties have been proposed for non-subset (full set) mod-

eling. Burg’s algorithm for AR modeling (Burg (1978)), which minimizes the sums of

squares of the forward and backward prediction errors, has been found to generally

give models with better spectral resolution than Yule-Walker. Morf et al. (1978),

Strand (1977), and others (see Jones (1978)), generalize Burg’s algorithm to full

set multivariate modeling. More recently, Brockwell and Dahlhaus (1998) proposed

multivariate subset versions of the Yule-Walker algorithm, Burg’s algorithm, as well

as those of Morf et al., and Strand. Our objective in this chapter will be to extend

their work on some of these algorithms, and investigate the relative performances

of these various SVAR modeling methods.

1.1.2 Applications of subset prediction/modeling

Forecasting with missing observations: This is a very natural situation in

which this subset methodology is appropriate if the covariance function of

the process is known.

Modeling of causal seasonal models of the form:

(1− ψBs) (1− φ1B − · · · − φpB
p)Xt = Zt.

These models will, for s > p+ 1, be subset AR models of the type

1− φ1B − · · · − φpB
p − ψBs + ψφ1B

s+1 + · · ·+ ψφ1B
s+p,

and thus K = {1, . . . , p, s, s+ 1, . . . , s+ p}.

Obtaining initial estimates for constrained MLE of subset VAR models:

Obtaining good initial estimates for maximum likelihood estimation where

some of the autoregressive coefficients are constrained to be zero, is highly
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desirable due to the nonlinear nature of the likelihood equations. The subset

Durbin-Levinson-Whittle algorithm, is very fast compared with constrained

maximum likelihood estimation, and can therefore be used to provide such

estimates. As an alternative to maximum likelihood estimation, the primary

motivation of this work is then in finding fast, recursive VAR modeling

algorithms that produce models with high likelihoods.

h-step prediction: If the covariance function of the process is known, and predic-

tion h steps ahead based on the previous m observations is required, we can

take K = {h, h + 1, . . . , h +m − 1}. This generalizes immediately to h-step

prediction on any subset of past observations.

1.1.3 Selection of “best” subset model

There is a growing body of literature on the subject of selection of the “best” subset

model from all possible subset AR models. Sarkar and Sharma (1997), and Sarkar

and Kanjilal (1995) propose a method for selecting a reduced subset from the full

set, using singular value decomposition and QR orthonormal decomposition with

column pivoting factorization of a matrix. Terrell and Zhang (1997) introduce so

called projection modulus statistics which respond to the exclusion of important

lags by producing high residual variances in an appropriate Hilbert space. Yu and

Lin (1991) improve upon a method of Hokstad by employing the inverse autocorrela-

tion function to select the first tentative model. Some early methods were proposed

in Duong (1984) and McClave (1978).

A large part of these research efforts have concentrated on reducing the size of the

candidate model set, in order to implement a feasible search in real time. From

this reduced pool of a few “good” candidate models, one could then use the subset
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modeling algorithms we will present to obtain good initial estimates for constrained

maximum likelihood estimation.

Although not usually done, the recursive nature of these algorithms would also

permit a direct search on all 2km candidate model sets to be carried out. One could

start by searching all km subsets of size 1, and selecting the best based on some

criterion such as AICC. Then all

(
km
2

)

subsets of size 2 could be searched, and

the best model thus far obtained updated; etc.

1.2 The prediction problem

Suppose {Xt, t = 0,±1,±2, · · · } is a zero-mean weakly stationary d-variate time

series with Xt = (Xt,1, · · · , Xt,d)
′, and covariance function

< Xt+h,Xt >:= E[Xt+hX
′
t] = Γ(h), h = 0,±1,±2, . . . . (1.1)

The best (forward in time) linear predictor of Xt on the subset of lags K =

{k1, · · · , km}, is defined as

X̂t(K) =
∑

j∈K
ΦK(j)Xt−j (1.2)

Best here means that IE||Xt − X̂t(K)||2 is minimized, where || · || is the Euclidean

norm. Using simple orthogonality relations, we see that the coefficient matrices

ΦK(j) are found from the Yule-Walker equations

∑

j∈K
ΦK(j)Γ(k − j) = Γ(k), k ∈ K (1.3)

(see for example Brockwell and Davis (1991), p. 421-422, with P (Xn+1|X1, · · · ,Xn)

replaced by P (Xt|Xt−k, k ∈ K)), with mean squared error covariance matrix

UK = E[(Xt − X̂t(K))(Xt − X̂t(K))′]

= Γ(0)−
∑

j∈K
ΦK(j)Γ(j)′. (1.4)
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Analogously, we define the best backward in time linear predictor of Xt on the

subset of lags K as

X̂
(b)
t (K) =

∑

j∈K
ΨK(j)Xt+j

with resulting Yule-Walker equations and mean squared error covariance matrix

(obtained by replacing P (X0|X1, · · · ,Xn) with P (Xt|Xt+k, k ∈ K) in the above

reference) given by

∑

j∈K
ΨK(j)Γ(k − j)′ = Γ(k)′, k ∈ K, (1.5)

and

VK = E[(Xt − X̂(b)t (K))(Xt − X̂(b)t (K))′]

= Γ(0)−
∑

j∈K
ΨK(j)Γ(j). (1.6)

Remark 1.2.1 In the univariate case there is no distinction between the forward

and backward prediction problem (based on the same subset K). This is because

when d = 1, the equations (1.3) for {ΦK(j), j ∈ K} are the same as (1.5) for

{ΨK(j), j ∈ K}, and (1.4) for UK the same as (1.6) for VK.

Definition 1.2.1 A multivariate stationary process {Xt} is said to be of full rank

if the covariance matrix of any finite collection of random vectors is non-singular.

Remark 1.2.2 As will be shown in Chapter 2, the coefficient matrices ΦK(j) and

ΨK(j), j ∈ K, of the forward and backward prediction problems, will be unique if

{Xt} is of full rank.
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1.3 The modeling problem

Given n observations x1, · · · ,xn of the zero-mean random vectors X1, · · · ,Xn, we

define the empirical analogue of the covariance matrix at lag h to be

Γ̂(h) =







1
n

∑n−h
t=1 xt+hx

′
t , if h ≥ 0

Γ(−h)′ , if h < 0
(1.7)

In order to define an inner-product in the space of empirical observations, Brockwell

and Dahlhaus (1998) proceed by defining xt = 0 for t ≤ 0 and t > n. With this,

they define the (d × ∞) array y = {xj, j = 0,±1, · · · }, and define yt to be the

array obtained by shifting the columns of y t places to the left, i.e. yt = {xt+j, j =

0,±1, · · · }. We view yt as a d-dimensional column vector, whose elements are

infinite-dimensional row vectors, with finitely many non-zero entries. The set of all

such row vectors constitutes an inner-product space, if we define the inner-product

of any two row vectors u = {uj} and v = {vj} as

< u,v >=
1

n

∞∑

j=−∞
ujvj. (1.8)

With this set-up, we have for example

< yt+h,yt >= Γ̂(h),

since < yt+h,yt > is the matrix of inner-products whose (i, j)-element is the inner

product of the ith row of yt+h, with the jth row of yt.

Solving the Yule-Walker equations (1.3) and (1.4), with Γ(·) replaced by Γ̂(·), we ob-

tain the subset (based on the subset of lagsK = {k1, . . . , km}) vector autoregressive,

SVAR(K), model for the data:

Xt =
∑

i∈K
Φ̂K(i)Xt−i + Zt, (1.9)
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where {Zt} is a sequence of zero-mean uncorrelated random vectors, each with

covariance matrix ÛK , i.e. Zt ∼WN(0, ÛK), given by

ÛK = Γ̂(0)−
∑

i∈K
Φ̂K(i)Γ̂(i)′. (1.10)

The corresponding backward subset vector autoregressive model for the data, based

on the subset K∗ = {km − km−1, . . . , km − k1, km} of lags is

Xt =
∑

j∈K∗

Ψ̂K∗(j)Xt+j + Zt, (1.11)

where Zt ∼WN(0, V̂K∗), given by

V̂K∗ = Γ̂(0)−
∑

j∈K∗

Ψ̂K∗(j)Γ̂(j). (1.12)

Remark 1.3.1 Finding Φ̂K involves solving an equation of the form,

ΦKĜK = Γ̂K , (1.13)

where ĜK and Γ̂K are matrices of empirical autocovariances arranged in particular

ways (see section 2.2 for details). There are many solutions to this equation if ĜK

is singular, but every solution gives the same linear predictor when substituted into

(1.2). Non-causal solutions, {Φ̂K(i), i ∈ K}, may be obtained, suggesting when they

occur, that the data is not well fitted by a subset vector autoregression with lags in K.

Whether the solution is causal or not, the expression (1.2) with each ΦK(i) replaced

by Φ̂K(i), will give the best linear predictor under the assumption that the sample

autocovariances are equal to the true autocovariances. Similarly for the backward

modeling/prediction problem.

Definition 1.3.1 (Causality) The SVAR(K) model,

Xt =
∑

i∈K
ΦK(i)Xt−i + Zt, {Zt} ∼WN(0,Σ), (1.14)
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is said to be causal (or more specifically to be a causal function of {Zt}), if there

exists a sequence of matrices {Υ0,Υ1, . . . } such that,

Xt =
∞∑

j=0

ΥjZt−j.

Definition 1.3.2 (VAR characteristic polynomial) The VAR characteristic

polynomial, |Φ(z)|, for model (1.14), is defined to be the polynomial in z of de-

gree dkm given by,

|Φ(z)| = |Id − ΦK(k1)z − · · · − ΦK(km)zkm |.

From Brockwell and Davis (1991), theorem 11.3.1, a SVAR(K) model is causal if

all roots of its VAR characteristic polynomial are greater than one in magnitude.

Causality is a property often desired in a model; without it the parameters are non-

identifiable for Gaussian likelihood and other inherently second order estimation

methods.

The subset Durbin-Levinson-Whittle algorithm, as presented in Brockwell and Dahl-

haus (1998), can be employed to provide a recursive solution to the empirical Yule-

Walker equations:

Algorithm 1.3.1 (The subset Durbin-Levinson-Whittle algorithm)

Φ̂K(km) =

(

Γ̂(km)−
∑

i∈J
Φ̂J(i)Γ̂(km − i)

)

V̂ −1J∗

Φ̂K(i) = Φ̂J(i)− Φ̂K(km)Ψ̂J∗(km − i), i ∈ J

Ψ̂K∗(km) =

(

Γ̂(km)′ −
∑

j∈J∗
Ψ̂J∗(j)Γ̂(km − j)′

)

Û−1J (1.15)

Ψ̂K∗(j) = Ψ̂J∗(j)− Ψ̂K∗(km)Φ̂J(km − j), j ∈ J∗

ÛK = ÛJ − Φ̂K(km)V̂J∗Φ̂K(km)′

V̂K∗ = V̂J∗ − Ψ̂K∗(km)ÛJΨ̂K∗(km)′
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Where Û−1J and V̂ −1J∗ denote generalized inverses of ÛJ and V̂J∗ respectively. The

forward subsets of lags are K = {k1, · · · , km}, J = {k1, · · · , km−1}, and the backward

subsets of lags are K∗ = {km− km−1, · · · , km− k1, km}, J∗ = {km− km−1, · · · , km−

k1}. The algorithm begins at m = 1 (any appropriate subset of size one), with

Û∅ = Γ̂(0) = V̂∅.

1.4 Burg-type Algorithms

In Brockwell and Dahlhaus (1998), a different kind of recursion for the best predic-

tors based on forward and backward residuals was presented. The forward prediction

residual is defined as

εK(t) = Xt − X̂t(K),

and the backward prediction residual as

ηK(t) = Xt − X̂(b)t (K).

The covariance matrices of these residuals are respectively UK and VK defined in 1.4

and 1.6. The empirical analogues of these prediction errors are

ε̂K(t) = yt − ŷt(K),

and

η̂K(t) = yt − ŷ(b)t (K),

where

ŷt(K) =
∑

j∈K
ΦK(j)yt−j,
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and

ŷ
(b)
t (K) =

∑

j∈K
ΨK(j)yt+j.

With these definitions and inner-products defined as in (1.8), Brockwell and

Dahlhaus (1998) present the following prediction error solution to the empirical

Yule-Walker (YW) equations (1.9) - (1.12):

Algorithm 1.4.1 (Prediction error solution of the YW equations)

Φ̂K(km) = 〈ε̂J(t), η̂J∗(t− km)〉 V̂ −1J∗ (1.16)

Φ̂K(i) = Φ̂J(i)− Φ̂K(km)Ψ̂J∗(km − i), i ∈ J

Ψ̂K∗(km) = V̂J∗Φ̂K(km)′Û−1J (1.17)

Ψ̂K∗(j) = Ψ̂J∗(j)− Ψ̂K∗(km)Φ̂J(km − j), j ∈ J∗

ÛK = ÛJ − Φ̂K(km)V̂J∗Φ̂K(km)′

V̂K∗ = V̂J∗ − Ψ̂K∗(km)ÛJΨ̂K∗(km)′

ε̂K(t) = ε̂J(t)− Φ̂K(km)η̂J∗(t− km) (1.18)

η̂K∗(t) = η̂J∗(t)− Ψ̂K∗(km)ε̂J(t+ km) (1.19)

with initial conditions,

ε̂∅(t) = η̂∅(t) = yt, t = 0,±1,±2, · · ·

Û∅ = Γ̂(0) = V̂∅.

Remark 1.4.1 These recursions are equivalent to the Durbin-Levinson-Whittle al-

gorithm. Thus each line of algorithm 1.3.1 is interchangeable with the corresponding

line of algorithm 1.4.1. In particular, equations (1.15) and (1.17) are interchange-

able, providing a simple relationship between Φ̂K(km) and Ψ̂K∗(km) which we will

use frequently.



12

This type of algorithm is patterned after that introduced by Burg (1978) for uni-

variate modeling on a full set of lags rather than a subset. Burg’s contribution

was to show that the maximum entropy spectral density estimator of a univariate

stationary process over all densities g satisfying the constraints

∫ π

−π
eihλg(λ)dλ = γ̂(h), h = 0,±1, . . . ,±p,

is exactly that of an AR(p) process. However, replacing γ(·) by γ̂(·), where

γ̂(h) =
1

n

n−h∑

t=1

xtxt+h, and noting that γ(h) = lim
n→∞

1

2n+ 1

n∑

t=−n
xtxt+h,

is roughly equivalent to assuming that the unobserved data {. . . ,x−1,x0,xn+1, . . . }

is zero since, under ergodicity conditions, γ(h) is the mean square limit as n → ∞

of
∑n

t=−n xtxt+h/(2n + 1). The sudden transition from (usually) non-zero value to

zero at the edges of the observation domain, typically results in poor estimates of

the coefficients ΦK(km) and ΨK∗(km). To alleviate this problem in the context of

univariate AR(p) models, Burg suggested making no assumptions about unobserved

data; φ̂p should minimize the sum of squares of the forward and backward residuals

over the range of data values where these are defined. That is, choose φ̂p to minimize

1

2(n− p)

n∑

p+1

(
ε̂K(t)2 + η̂K(t− p)2

)
.

This is commonly referred to as Burg’s algorithm, and it was generalized to multi-

variate models by Morf et al. (1978), Strand (1977), and others (see Jones (1978)).

In line with these ideas, Brockwell and Dahlhaus (1998) propose the following mul-

tivariate subset versions of these algorithms:

Algorithm 1.4.2 (A subset Vieira-Morf algorithm)

Use algorithm 1.4.1 with (1.16) replaced by

Φ̂K(km) = Û
1/2
J R V̂

−1/2
J∗ ,
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where

R =

(
n∑

t=km+1

ε̂J(t)ε̂J(t)
′

)−1/2( n∑

t=km+1

ε̂J(t)η̂J∗(t− km)′

)

(
n∑

t=km+1

η̂J∗(t− km)η̂J∗(t− km)′

)−1/2

Algorithm 1.4.3 (A subset Nuttall-Strand algorithm)

Use algorithm 1.4.1 with (1.16) replaced by

Φ̂K(km) = Û
1/2
J R V̂

−1/2
J ,

where

vec(R)

=

[

Id ⊗
(

n∑

t=km+1

ε̂J(t)ε̂J(t)
′

)

+

(
n∑

t=km+1

η̂J∗(t− km)η̂J∗(t− km)′

)

⊗ Id

]−1

vec

(

2
n∑

t=km+1

ε̂J(t)η̂J∗(t− km)′

)

=⇒ vec(Φ̂K(km)) =
(

V̂
−1/2
J ⊗ Û

1/2
J

)

vec(R).

Obtain Ψ̂K∗(km) not according to (1.17), but according to

Ψ̂K∗(km) = V̂
1/2
J R′ Û−1/2J .

Algorithm 1.4.4 (A subset analogue of Burg’s algorithm)

Use algorithm 1.4.1 with (1.16) replaced by the condition that Φ̂K(km) and Ψ̂K∗(km)

minimize the scalar quantity

SK =
n∑

t=km+1

[ε̂K(t)′ε̂K(t) + η̂K∗(t− km)′η̂K∗(t− km)] , (1.20)

with ε̂K(t) and η̂K∗(t − km) as in (1.18) and (1.19), and Ψ̂K∗(km) constrained to

satisfy (1.17).
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Notation

In order to differentiate between the Yule-Walker and this Burg solution of the

modeling problem, denote the former estimates by topping them with hats (ˆ), and

the latter with tildes (˜).

Remark 1.4.2 By definition,

ε̂J = xt − Φ̂J(k1)xt−k1 − · · · − Φ̂J(km−1)xt−km−1 ,

and therefore ε̂J 6= 0 for t ∈ A1, where A1 = {1, . . . , n + km−1}. In addition, all
components in ε̂J are non-zero for t ∈ A2, where A2 = {1 + km−1, . . . , n}.

Also by definition,

η̂J∗ = xt−km − Ψ̂J∗(km − km−1)xt−km−1 − · · · − Ψ̂J∗(km − k1)xt−k1 ,

and therefore η̂J∗ 6= 0 for t ∈ B1, where B1 = {k1 + 1, . . . , n+ km}. In addition, all
components in η̂J∗ are non-zero for t ∈ B2, where B2 = {1 + km, . . . , n+ k1}.

In view of this, (1.16) becomes:

Φ̂K(km) =

(

1

n

∑

t∈A1∪B1

ε̂J(t)η̂J∗(t− km)′

)

V̂ −1J∗ =

(

1

n

n+km∑

t=1

ε̂J(t)η̂J∗(t− km)′

)

V̂ −1J∗

For the Burg ajustment to this Yule-Walker solution, we must prevent any of the ε̂J

and η̂J∗ components in the above summation from becoming zero, so we need:

t ∈ A2 ∩ B2, =⇒ t = {km + 1, . . . , n}.

1.5 The minimization problem

Using calculus to minimize (1.20) with respect to Φ̂K(km), Brockwell and

Dahlhaus (1998) find that in the univariate case

Φ̃K(km) =
ŨJ

(

ŨJ + ṼJ∗
)
∑n

t=1+km
ε̃J(t)η̃J∗(t− km)

∑n
t=km+1

(

Ũ2J η̃J∗(t− km)2 + Ṽ 2J∗ ε̃J(t)
2
) . (1.21)
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As already stated, our primary objective in this chapter is to find the general multi-

variate solution to (1.20) and investigate its performance relative to the remaining

three VAR process estimation methods. Substituting for ε̃K(t) and η̃K∗(t − km)

from (1.18) and (1.19) respectively, into the expression for SK , we obtain

SK(ΦK(km)) =
n∑

t=km+1

[
(ε̃J(t)− ΦK(km)η̃J∗(t− km))′ ((ε̃J − ΦK(km)η̃J∗(t− km))

+ (η̃J∗(t− km)−ΨK∗(km)ε̃J(t))
′ (η̃J∗(t− km)−ΨK∗(km)ε̃J(t))

]
.

Using relation (1.17) to substitute for ΨK∗(km) in terms of ΦK(km), expanding the

resulting expressions, and noting the symmetry of the covariance matrices, leads to

SK(ΦK(km)) =
n∑

t=km+1

[ε̃J(t)
′ε̃J(t) + η̃J∗(t− km)′η̃J∗(t− km)

− 2ε̃J(t)
′ΦK(km)η̃J∗(t− km)

+ η̃J∗(t− km)′ΦK(km)′ΦK(km)η̃J∗(t− km)

− 2η̃J∗(t− km)′ṼJ∗Φ̃K(km)′Ũ−1J ε̃J(t)

+ ε̃J(t)
′Ũ−1J ΦK(km)Ṽ 2J∗ΦK(km)′Ũ−1J ε̃J(t)

]

.

This expression can written in the more manageable form

SK(X) =
n∑

t=km+1

[a′a+ b′b− 2a′Xb+ b′X ′Xb− 2d′X ′c+ c′XEX ′c] , (1.22)

where, using lowercase for vectors and uppercase for matrices,

a = ε̃J(t),

b = η̃J∗(t− km),

c = Ũ−1J ε̃J(t),

d = ṼJ∗η̃J∗(t− km),

E = Ṽ 2J∗ ,

X = ΦK(km). (1.23)
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1.6 Finding the minimum

Using the results and identities in appendix A, and noting that SK is a matrix scalar

function, we can now obtain the differentials of each component of (1.22):

•

a′Xb = tr(a′Xb), since this expression is a scalar

= tr((a′X)b)

= tr(ba′X), by K-2

⇒ ∂(a′Xb) = (vec(ab′))′vec(∂X), by D-7 (1.24)

•

∂(a′X ′Xb) = ∂(a′X ′)Xb+ a′X ′∂(Xb), by D-7

= a′(∂X)′Xb+ a′X ′(∂X)b, by D-2, D-3, and D-4

= tr(a′(∂X)′Xb) + tr(a′X ′(∂X)b), each summand a scalar

= tr((∂X)′Xba′) + tr(ba′X ′(∂X)), by K-2

= tr(ab′X ′∂X) + tr(ba′X ′∂X), by K-3

= tr[(ab′X ′ + ba′X ′)∂X]

= [vec(Xba′ +Xab′)]′vec ∂X, by K-4

⇒ ∂(a′X ′Xb) = [vec(X(ba′ + ab′))]′vec ∂X (1.25)
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•

∂(a′XEX ′b) = a′(∂X)EX ′b+ a′XE(∂X)′b, by D-2, D-3, D-4

= tr[a′(∂X)EX ′b+ a′XE(∂X)′b]

= tr[EX ′ba′(∂X)] + tr[(∂X)′ba′XE], by K-2, K-3, K-4

= tr[EX ′ba′(∂X)] + tr[E ′X ′ab′(∂X)], by K-3

= tr[(EX ′ba′ + E ′X ′ab′)∂X]

⇒ ∂(a′XEX ′b) = [vec(ab′XE + ba′XE)]′vec ∂X , by K-4. (1.26)

By D-8, the differential of a sum is the sum of the differentials, so that

∂(SK) =
n∑

t=km+1

∂ (a′a+ b′b− 2a′Xb+ b′X ′Xb− 2d′X ′c+ c′XEX ′c) .

By applying (1.24)-(1.26), we now obtain the differential of each term:

∂SK =
n∑

t=km+1

[0 + 0− 2(vec(ab′))′vec(∂X) + 2(vec(Xbb′))′vec(∂X)

− 2(vec(cd′))′vec(∂X) + 2(vec(cc′XE))′vec(∂X)] ,

which by K-1 and D-8 becomes

∂SK =

[

vec

(

−2(
∑

t

ab′) + 2(
∑

t

Xbb′)− 2(
∑

t

cd′) + 2(
∑

t

cc′XE)

)]′

vec(∂X),

where for ease of notation,
∑

t will denote
∑n

t=km+1
. Noting that X and E are

independent of t, we have

∂SK =

[

vec

(

−2(
∑

t

ab′) + 2X(
∑

t

bb′)− 2(
∑

t

cd′) + 2(
∑

t

cc′)XE

)]′

vec(∂X).

(1.27)
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Comparing with (A.1), we immediately see that the Jacobian matrix of SK at X is

[

vec

(

−2(
∑

t

ab′) + 2(
∑

t

Xbb′)− 2(
∑

t

cd′) + 2(
∑

t

cc′XE)

)]′

Premultiplying the second summand of the Jacobian by the (d× d) identity matrix

Id, equating to zero, and solving for X, leads to

vec

(

IdX(
∑

t

bb′)

)

+ vec

(

(
∑

t

cc′)XE

)

= vec

(

(
∑

t

ab′) + (
∑

t

cd′)

)

.

Now apply K-6 to each summand on the LHS to obtain
[

(
∑

t

bb′)′ ⊗ Id

]

vec X +

[

E ′ ⊗ (
∑

t

cc′)

]

vec X = vec

(

(
∑

t

ab′) + (
∑

t

cd′)

)

⇒ vec X =

[

(
∑

t

bb′)′ ⊗ Id + E ′ ⊗ (
∑

t

cc′)

]−1

vec

(

(
∑

t

ab′) + (
∑

t

cd′)

)

,

(1.28)

for any generalized inverse

[

(
∑

t

bb′)′ ⊗ Id + E ′ ⊗ (
∑

t

cc′)

]−1

of

[

(
∑

t

bb′)′ ⊗ Id + E ′ ⊗ (
∑

t

cc′)

]

.

Finally, substituting back to our variables of interest from (1.23), and noting sym-

metries and independence of t in some of the terms, we obtain (in vec form) the

value of the matrix ΦK(km) that minimizes SK (note that this matrix is Φ̃K(km) by

definition):

vec(Φ̃K(km)) =
[(

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

)

⊗ Id

+Ṽ 2J∗ ⊗ Ũ−1J

(
n∑

t=km+1

ε̃J(t)ε̃J(t)
′

)

Ũ−1J

]−1

(1.29)

vec

[(
n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′

)

+ Ũ−1J

(
n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′

)

ṼJ∗

]

.
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Setting d = 1 for the unidimensional case, we see immediately that (1.29) becomes

Φ̃K(km) =

∑n
t=km+1

ε̃J(t)η̃J∗(t− km) + ṼJ∗

ŨJ

∑n
t=km+1

ε̃J(t)η̃J∗(t− km)

∑n
t=km+1

η̃J∗(t− km)2 +
Ṽ 2

J∗

Ũ2
J

∑n
t=km+1

ε̃J(t)2

=
ŨJ

(

ŨJ + ṼJ∗
)
∑n

t=km+1
ε̃J(t)η̃J∗(t− km)

Ũ2J
∑n

t=km+1
η̃J∗(t− km)2 + Ṽ 2J∗

∑n
t=km+1

ε̃J(t)2
,

which is identical to (1.21).

Remark 1.6.1 An alternative way to obtain a “good” estimate of ΦK(km), might

be to consider the matrix quantity

TK =
n∑

t=km+1

[ε̂K(t)ε̂K(t)′ + η̂K∗(t− km)η̂K∗(t− km)′] ,

viewing ε̂K(t)ε̂K(t)′ and η̂K∗(t − km)η̂K∗(t − km)′ as error covariance matrices of

some sort. The criterion of A-Optimality in linear models would then minimize the

trace of TK in order to find an optimal estimate for Φ̃K(km). By identity K-7, the

trace of the sum is the sum of the traces, so that

tr(TK) =
n∑

t=km+1

[tr (ε̂K(t)ε̂K(t)′) + tr (η̂K∗(t− km)η̂K∗(t− km)′)]

= SK ,

so that the solution (1.29) is also A-Optimal in the sense just described.

1.7 Global optimality of the solution

From (1.27) we have

∂SK = vec

(

−2(
∑

t

ab′)

)′

vec(∂X) + vec

(

2IdX(
∑

t

bb′)

)′

vec(∂X)

− vec

(

2(
∑

t

cd′)

)′

vec(∂X) + vec

(

2(
∑

t

cc′)XE

)′

vec(∂X).
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Using identity K-6 on the terms in the summand that involve X,

∂SK =

[

vec

(

−2(
∑

t

ab′)− 2(
∑

t

cd′)

)]′

vec(∂X)

+

[(

2(
∑

t

bb′)⊗ Id

)

vec X

]′

vec(∂X)

+

[(

2E ⊗ (
∑

t

cc′)

)

vec X

]′

vec(∂X).

Taking transposes and noting that most of the terms are symmetric yields

∂SK =

[

vec

(

−2(
∑

t

ab′)− 2(
∑

t

cd′)

)]′

vec(∂X)

+ (vec X)′

(

2(
∑

t

bb′)⊗ Id

)

vec(∂X)

+ (vec X)′

(

2E ⊗ (
∑

t

cc′)

)

vec(∂X).

Taking differentials again, and using D-10 gives

∂2SK = (vec ∂X)′

(

2(
∑

t

bb′)⊗ Id

)

vec(∂X)

+ (vec ∂X)′

(

2E ⊗ (
∑

t

cc′)

)

vec(∂X)

= (vec ∂X)′

(

2(
∑

t

bb′)⊗ Id + 2E ⊗ (
∑

t

cc′)

)

vec(∂X).

Rewriting in terms of our variables by substituting back from (1.23), comparing

with (A.2), and noting that the resulting matrix is already symmetric, gives the

Hessian

H(ΦK(km)) = 2

(
n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

)

⊗ Id

+ 2Ṽ 2J∗ ⊗ Ũ−1J

(
n∑

t=km+1

ε̃J(t)ε̃J(t)
′

)

Ũ−1J (1.30)
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Setting d = 1 for the unidimensional case, we see immediately that

H(ΦK(km)) =
∂2SK

∂Φ̃K(km)2
= 2

n∑

t=km+1

(

η̃J∗(t− km)2 +
Ṽ 2J∗

Ũ2J
ε̃J(t)

2

)

;

and this is clearly positive, thus showing that (1.29) does indeed minimize SK .

In the general case, theorems A.1.3 and A.1.4 essentially tell us that if we can show

the Hessian to be positive semi-definite (psd) for all ΦK(km), then SK will have a

global minimum at Φ̃K(km), as given in (1.29). This minimum will be unique if

the Hessian is positive definite (pd) for all ΦK(km). Since (1.30) is independent of

ΦK(km), we need only show that it is pd or psd as it stands. To this end, we use

the results on the definiteness of symmetric matrices in appendix A.3:

The matrices ε̃J(t)ε̃J(t)
′ and η̃J∗(t− km)η̃J∗(t− km)′ are, by their very nature, psd.

To see this, note that for any z ∈ IRd,

z′ε̃J(t)ε̃J(t)
′z = (z′ε̃J(t)) (z

′ε̃J(t))
′
= (z′ε̃J(t))

2 ≥ 0.

Similarly for η̃J∗(t− km)η̃J∗(t− km)′. Since Id is pd,
(

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

)

⊗ Id

is psd (M-4). By M-5, both Ṽ 2J∗ and Ũ−1J are psd. By M-6 and M-4, we then have

Ṽ 2J∗ ⊗ Ũ−1J

(
n∑

t=km+1

ε̃J(t)ε̃J(t)
′

)

Ũ−1J

psd. Thus far we have shown that H is the sum of two psd matrices, and by M-3 this

is again psd. If either of the two terms comprised of sums of matrices of prediction

error residual vectors is pd, then H will be also, and theorems A.1.3 and A.1.4 will

then guarantee that SK has a unique global minimum at Φ̃K(km).

Alternatively, we can argue as follows: Since SK = SK(u) is a non-negative quadratic

form in the components of u ≡ vecΦK(km), it is expressible as

(u− β)′Ω(u− β) + δ,
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where the vector β is independent of u, Ω is a non-negative definite matrix, and the

scalar δ ≥ 0. Thus SK(u) has a global minimum value, namely δ, attained when

u = β+v, where v is any vector in the null space, N (Ω), of Ω. If Ω is non-singular,

there is therefore a unique minimizing value of ΦK(km). In any case, if u1 and u2

are two minimizing values of SK(u), then

u1 − u2 ∈ N (Ω), and SK(u1) = SK(u2).

1.8 Some Monte Carlo comparisons of the Yule-Walker and Burg algo-
rithms

We first present three examples to compare the performance of the Yule-Walker (al-

gorithm 1.3.1), Burg (algorithm 1.4.4), and, in the univariate case, Maximum Like-

lihood subset AR and VAR modeling, applied to simulated data sets with Gaussian

noise. Since one of the aims of the Yule-Walker and Burg algorithms is to provide

fast and simple algorithms for obtaining models with high Gaussian likelihoods, it

is of considerable interest to compare the likelihoods achieved by each.

If {x1, . . . ,xn} is a realization from the zero-mean d−variate full rank Gaussian

process {Xt}, with

Γn = IE ([X′1, . . . ,X
′
n]
′[X′1, . . . ,X

′
n]) ,

we obtain the likelihood,

f(x1, . . . ,xn) = (2π)−dn/2 |Γn|−1/2 exp
{

−1

2
[x′1, . . . ,x

′
n]Γ

−1
n [x′1, . . . ,x

′
n]
′
}

.

If {Xt} is the causal subset VAR process

Xt =
∑

i∈K
ΦK(i)Xt−i + Zt, {Zt} ∼ IID N(0,Σ),
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we can write the likelihood for n > km as,

f(x1, . . . ,xn) = f(x1, . . . ,xkm)fXkm+1|Xt,t≤km(xkm+1|xt, t ≤ km)

· · · fXn|Xt,t≤n−1(xn|xt, t ≤ n− 1).

The first factor is

f(x1, . . . ,xkm) = (2π)−dkm/2 |Γkm|−1/2 exp
{

−1

2
[x′1, . . . ,x

′
km

]Γ−1km
[x′1, . . . ,x

′
km

]′
}

,

where Γkm = IE
(
[X′1, . . . ,X

′
km

]′[X′1, . . . ,X
′
km

]
)
.

The remaining n− km factors are

fXt|Xs,s<t (xt|xs, s < t) =

(2π)−d/2 |Σ|−1/2 exp
{

−1

2

[

xt −
∑

j∈K
ΦK(j)xt−j

]′

Σ−1

[

xt −
∑

j∈K
ΦK(j)xt−j

]}

,

for t = km + 1, . . . , n, since conditional on Xs, s < t,

Xt ∼ Nd

(
∑

j∈K
ΦK(j)Xt−j, Σ

)

.

Putting all this together, and viewing the likelihood as a function of Σ, for fixed

autoregressive coefficients, we obtain the -2 log likelihood:

L(Σ) =

nd log(2π) + log |Γkm|+ (n− km) log |Σ|+
[
x′1, . . . ,x

′
km

]Γ−1km
[x′1, . . . ,x

′
km

]′

+
n∑

t=km+1

[

xt −
∑

j∈K
ΦK(j)xt−j

]′

Σ−1

[

xt −
∑

j∈K
ΦK(j)xt−j

]

. (1.31)

In the univariate case (i.e. if d = 1), where

{ΦK(k1), . . . ,ΦK(km)} ≡ {φK(k1), . . . , φK(km)}, and Σ ≡ σ2,



24

we can set σ−2Γkm ≡ Gkm , which is free of σ2. This gives the -2 log likelihood for

the data:

L(σ2) = n log(2πσ2) + log |Gkm |

+
1

σ2







[
x1, . . . ,xkm ]G−1km

[x1, . . . ,xkm

]′
+

n∑

t=km+1

(

xt −
∑

j∈K
ΦK(j)xt−j

)2





.

We can now obtain the maximum likelihood estimate of σ2, by differentiating the

above expression to give

σ̂2MLE =
1

n







[
x1, . . . ,xkm ]G−1km

[x1, . . . ,xkm

]′
+

n∑

t=km+1

(

xt −
∑

j∈K
ΦK(j)xt−j

)2





.

(1.32)

The expression in braces is usually called the residual sum of squares (RSS), and

therefore σ̂2MLE = RSS/n.

Therefore, for a given set of estimated autoregressive coefficients and white noise

variance, one can always improve on (or do no worse than) the Gaussian likeli-

hood for the observed data, by substituting RSS/n for the white noise variance

estimate. In the ensuing examples, we will compare likelihoods obtained via the

two algorithms, and proceed to improve upon each by doing just this. We will de-

note the variance estimate obtained in the usual way from the algorithm, by σ̂2AL or

Σ̂AL. The variance estimate obtained via maximization of the likelihood function (or

equivalently, minimization of L(Σ)) with respect to Σ for the fixed set of estimated

AR/VAR coefficients, will de denoted by σ̂2ML or Σ̂ML.

In the multivariate setting, it is difficult (perhaps impossible) to obtain an explicit

expression for the maximum likelihood estimator of the white noise covariance ma-

trix Σ given the ΦK(·)’s, as was achieved in (1.32) for the univariate case. We may

begin understanding the difficulties involved if we recall that Σ is connected to the
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process autocovariance function Γ(·) via the causal representation,

Γ(h) =
∞∑

j=0

Ψh+jΣΨ′j. (1.33)

In the multivariate examples of dimension 2 that follow, we use a direct search

for the minimizing white noise matrix, expressing the objective function L(Σ) as a

function of the three components of Σ. The Hooke and Jeeves algorithm, Hooke

and Jeeves (1961), constrained to yield a positive definite solution, is employed to

perform the search. Further details are given in appendix C.

Example 1.8.1 200 observations were simulated from the causal subset AR(11)

model

Xt − 0.98Xt−1 + 0.924Xt−2 − 0.138Xt−4 + 0.0033Xt−7 − 0.5Xt−8 − 0.12Xt−11 = Zt

(1.34)

where {Zt} ∼ WN(0,4). The data is displayed in figure 1.1.

Table 1.1: Parameters and estimates for the data of example 1.8.1.

Parameter Parameter Estimates by Method
Truth Yule-Walker Burg Maximum Likelihood

ΦK(1) 0.9800 0.8958 0.9066 0.9048
ΦK(2) -0.9240 -0.8525 -0.8860 -0.8890
ΦK(4) 0.1380 0.0419 0.0319 0.0376
ΦK(7) -0.0033 -0.0549 -0.0941 -0.0862
ΦK(8) 0.5000 0.4137 0.4675 0.4759
ΦK(11) 0.1200 0.0927 0.1160 0.1193
σ2AL 4 4.6813 3.8253
σ2ML 4 3.9002 3.8330 3.8242
L(σ2AL) 847.804 842.193
L(σ2ML) 844.666 842.192 842.006

Here we have m = 6 and K = {1, 2, 4, 7, 8, 11}. Table 1.1 shows the true parameter
values, contrasted against the estimates obtained via Yule-Walker, Burg, and maxi-

mum likelihood modeling. We note that the likelihood of the Burg estimates based on
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Figure 1.1: Plot of the simulated subset AR(11) data set of example 1.8.1
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both σ2AL and σ
2
ML, are higher than is the case for Yule-Walker. A possible reason

for the higher likelihoods based on σ̃2AL compared to σ̂
2
AL, is the observed tendency of

σ̃2AL to be closer to σ̃
2
ML than is the case for Yule-Walker.

Example 1.8.2 500 observations were simulated from the causal subset VAR(3)

model of dimension 2

Xt −
[
−0.4 1.3
−0.3 1.2

]

Xt−1 −
[

0.4 −0.4
−0.06 0.05

]

Xt−3 = Zt (1.35)

where {Zt} ∼WN
(

0,Σ =

[
1633 2043
2043 3024

])

.

Here we have m = 2 and K = {1, 3}. Table 1.2 shows the true parameter values,

contrasted against the estimates obtained via Yule-Walker and Burg modeling. The

results are similar to the univariate example, with the likelihoods based on the re-

spective algorithm-obtained white noise covariance matrix estimates being superior
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Table 1.2: Parameters and estimates by method for the data of example 1.8.2.

Parameter Parameter Estimates by Method
Truth Yule-Walker Burg

ΦK(1)

[
−0.4 1.3
−0.3 1.2

] [
−0.471 1.348
−0.303 1.202

] [
−0.476 1.355
−0.309 1.209

]

ΦK(3)

[
0.4 −0.4
−0.06 0.05

] [
0.455 −0.421
0.049 −0.026

] [
0.464 −0.430
0.054 −0.031

]

ΣAL

[
1633 2043
2043 3024

] [
1560.3 1885.4
1885.4 2793.2

] [
1448.6 1790.0
1790.0 2713.0

]

ΣML

[
1633 2043
2043 3024

] [
1456.4 1800.6
1800.6 2727.4

] [
1456.3 1800.4
1800.4 2727.0

]

L(ΣAL) 9594.35 9591.85
L(ΣML) 9591.91 9591.84

for Burg. Again we note the likelihood for the Burg estimates based on the esti-

mated ΣAL being substantially closer to those based on ΣML than is the case for

Yule-Walker.

Example 1.8.3 500 observations were simulated from the causal subset VAR(7)

model of dimension 2

Xt −
[
−0.28 1.29
−0.62 1.63

]

Xt−1 −
[

0.42 −0.45
0.54 −0.58

]

Xt−4 −
[
−0.19 0.20
−0.30 0.31

]

Xt−5

−
[
−0.11 0.08
−0.22 0.20

]

Xt−7 = Zt (1.36)

where {Zt} ∼WN
(

0,Σ =

[
27.5 28.2
28.2 30.6

])

.

Here we have m = 4 and K = {1, 4, 5, 7} Table 1.3 shows the true parameter values,

contrasted against the estimates obtained via Yule-Walker and Burg modeling. Once
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Table 1.3: Parameters and estimates by method for the data of example 1.8.3.

Parameter Parameter Estimates by Method
Truth Yule-Walker Burg

ΦK(1)

[
−0.28 1.29
−0.62 1.63

] [
−0.260 1.287
−0.612 1.634

] [
−0.223 1.256
−0.584 1.618

]

ΦK(4)

[
0.42 −0.45
0.54 −0.58

] [
0.754 −0.802
0.916 −0.961

] [
0.708 −0.725
0.876 −0.889

]

ΦK(5)

[
0.19 0.20
−0.30 0.31

] [
−0.075 0.097
−0.188 0.189

] [
0.068 −0.073
−0.053 0.021

]

ΦK(7)

[
−0.11 0.08
−0.22 0.20

] [
−0.004 −0.020
−0.104 0.091

] [
0.090 −0.123
−0.018 −0.000

]

ΣAL

[
27.5 28.2
28.2 30.6

] [
33.4 33.9
33.9 36.1

] [
28.3 28.9
28.9 31.1

]

ΣML

[
27.5 28.2
28.2 30.6

] [
28.4 29.0
29.0 31.2

] [
28.3 28.8
28.8 31.1

]

L(ΣAL) 4763.65 4754.51
L(ΣML) 4757.04 4754.51

again we note that the likelihood for the Burg estimates is higher than that for Yule-

Walker. Note also the dramatic improvement in estimated white noise covariance

matrix and likelihood for Yule-Walker, when we use Σ̂ML.

1.9 Monte Carlo comparisons of Yule-Walker, Burg, Vieira-Morf, and
Nuttall-Strand algorithms

Since these four algorithms are frequently used as quick and easy VAR estimation

methods, we present a simulation study of the relative performance of each in terms

of the size of its Gaussian likelihood. We examine first the univariate setting.
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1.9.1 Univariate case

We simulate 1,000 realizations from univariate models, with {Zt} ∼ IID N(0, 1), and

various configurations of roots of the autoregressive polynomial. For each realization,

the Yule-Walker, Burg, Vieira-Morf, and Nuttall-Strand solutions are obtained, and

the respective Gaussian -2 log likelihoods computed based on the RSS/n white

noise variance estimate. The maximum likelihood solution is also obtained, and

its -2 log likelihood subtracted from that of each of the four algorithms, to give

what we will call the net -2 log likelihood (NL). This maximum likelihood solution

is computed using the true parameter values as initial guesses to the Hooke and

Jeeves minimization routine. If for a particular realization the likelihood of a model

arrived at via one of the algorithms was higher than that obtained for the model with

the true parameter values, those parameter estimates were used as initial guesses

instead. See appendix C for more details.

Example 1.9.1 100 observations were simulated from the causal subset AR(3)

model

(1 + 0.5B)(1− (0.1− 0.3i)B)(1− (0.1 + 0.3i)B)Xt = Zt. (1.37)

The roots of the AR polynomyal are −2 and 1 ± 3i, with moduli 2 and
√
10, re-

spectively. The summaries and plots of table 1.4 and left side of figure 1.2, shows

Yule-Walker giving lower NL’s about 1/3 of the time, but with a somewhat higher

mean and variance than the remaining 3 methods.

Example 1.9.2 100 observations were simulated from the causal subset AR(4)

model

(1 + 0.98B)(1− 0.98B)(1 + 0.98iB)(1− 0.98iB)Xt = Zt (1.38)
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Table 1.4: Summary statistics by method for the data of example 1.9.1

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 0.011 0.002 0.027 33.3
Burg 0.003 0.001 0.007 17.7

Vieira-Morf 0.003 0.001 0.007 26.5
Nuttall-Strand 0.006 0.002 0.010 22.5

The roots of the AR polynomial are ±1.0204 and ±1.0204i. The summaries and

plots of table 1.5 and right side of figure 1.2, show that Yule-Walker now performs

poorly, with substantially higher mean and variance than the remaining 3 methods.

Since the model contains only one non-zero autoregressive coefficient, the Burg and

Nuttall-Strand estimators are algebraically identical in this case.

Table 1.5: Summary statistics by method for the data of example 1.9.2

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 1.629 0.994 1.84 14.3
Burg and Nuttall-Strand 0.112 0.053 0.17 38.5

Vieira-Morf 0.108 0.052 0.16 47.2

Example 1.9.3 100 observations were simulated from the causal subset AR(4)

model

(1 + 0.98B)(1− 0.95B3)Xt = Zt (1.39)

The roots of the AR polynomyal are −0.5086±0.8809i (with modulus 1.0172), 1.0172,

and −1.0204. The summaries and plots of table 1.6 and the left side of figure 1.3,

show that now Morf and Burg have similar performance, which is substantially better

than Yule-Walker and Nuttall-Strand.
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Figure 1.2: Boxplots and barplots for the data of example 1.9.1 (left), and exam-
ple 1.9.2 (right)
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Table 1.6: Summary statistics by method for the data of example 1.9.3

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 5.941 3.710 6.508 6.5
Burg 0.513 0.284 0.761 42.8

Vieira-Morf 0.513 0.285 0.766 45.3
Nuttall-Strand 9.747 6.982 9.336 5.4

Example 1.9.4 100 observations were simulated from the causal subset AR(4)

model

(1− 0.95B2)(1 + 0.98B)(1− 0.98B)Xt = Zt (1.40)
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The roots of the AR polynomyal are ±1.0204 and ±1.0260. From the summaries

and plots of table 1.7 and right side of figure 1.3, it is evident that Yule-Walker’s

performance is far inferior to the remaining methods, particularly Vieira-Morf. Once

again, Burg and Nuttall-Strand yield identical solutions.

Table 1.7: Summary statistics by method for the data of example 1.9.4

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 200.18 200.802 48.83 0.0
Burg and Nuttall-Strand 0.38 0.139 0.80 49.4

Vieira-Morf 0.32 0.133 0.64 50.6

Figure 1.3: Boxplots and barplots for the data of example 1.9.3 (left), and example
1.9.4 (right)
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Restricting to the univariate case, we compared the performance with various con-

figurations of roots of the AR polynomial. With roots far from the unit circle in

the complex plane, Yule-Walker’s performance is comparable with the remaining

methods. As the roots approach the unit circle and the real axis, we see the Burg

and Vieira-Morf solutions giving consistently higher likelihoods. Apart from the

special scenarios where it coincides with Burg, the Nuttall-Strand method performs

similarly to Yule-Walker. On the whole, the Burg and Vieira-Morf methods per-

form better than the rest, tending to give higher likelihoods with smaller variability

across a large number of realizations.

1.9.2 Multivariate case

Motivated by the changing results of the modeling algorithms in the face of different

configurations of roots of the autoregressive polynomial, we seek to investigate this

behavior for analogous scenarios in the bivariate case. Appendix B details the

methods used to find the VAR coefficients that correspond to models with specified

characteristic polynomials.

Due to the difficulties involved in finding maximum likelihood solutions in the mul-

tivariate setting, we concentrate on bivariate models with subset size one. 200 real-

izations are then simulated from each, with noise Zt ∼ N2(0, I2), and configurations

of roots of the VAR characteristic polynomial that mimic those of the univariate

examples. For each realization, the NL for each of the four algorithms is obtained in

the same manner as in the univariate examples. Unlike the univariate case though,

the search for the maximum likelihood estimates is carried out simultaneously for

the coefficients and the white noise covariance matrix.
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Example 1.9.5 100 observations were simulated from the causal bivariate subset

VAR(2) model

Xt −
[

0.547 −0.300
0.700 −0.457

]

Xt−2 = Zt,

with characteristic polynomial

|Φ(z)| = (1− 0.25z2)(1 + 0.16z2).

having roots ±2 and ±2.5i. The summaries and plots of table 1.8 and left side of

figure 1.4, show the Burg, Vieira-Morf, and Nuttall-Strand methods giving similar

means and variances for the NL’s. Yule-walker has a somewhat larger mean and

variance.

Table 1.8: Summary statistics by method for the data of example 1.9.5

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 0.137 0.076 0.168 12.5
Burg 0.030 0.021 0.027 25.5

Vieira-Morf 0.028 0.018 0.029 32.0
Nuttall-Strand 0.028 0.020 0.029 30.0

Example 1.9.6 100 observations were simulated from the bivariate causal subset

VAR(2) model

Xt −
[

1.0091 −0.3000
0.7000 −1.0670

]

Xt−2 = Zt,

with characteristic polynomial

|Φ(z)| = (1 + 0.982z2)(1− 0.952z2)

having roots ±1.0526 and ±1.0204i. The summaries and plots of table 1.9 and

right side of figure 1.4, show that Yule-Walker now gives lower NL’s about 10% of

the time, but with substantially higher mean and dispersion than the remaining 3

methods, which continue to perform comparably.
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Table 1.9: Summary statistics by method for the data of example 1.9.6

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 2.07 1.29 2.39 10.0
Burg 0.33 0.20 0.45 53.0

Vieira-Morf 0.37 0.22 0.45 26.0
Nuttall-Strand 0.40 0.26 0.46 11.0

Figure 1.4: Boxplots and barplots for the data of example 1.9.5 (left), and example
1.9.6 (right)
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Example 1.9.7 100 observations were simulated from the bivariate causal subset

VAR(2) model

Xt −
[

0.4 −1.2
0.9 −0.4

]

Xt−2 = Zt,
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with characteristic polynomial

|Φ(z)| = (1 + 0.92z4)

having roots ±0.722 ± 0.722i (with modulus 1.0211). The summaries and plots of

table 1.10 and the left side of figure 1.5, show that now the mean and variance for the

NL’s of the Burg, Nuttall-Strand, and Vieira-Morf methods, is substantially lower

than Yule-Walker.

Table 1.10: Summary statistics by method for the data of example 1.9.7

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 2.551 1.744 2.527 10.0
Burg 0.538 0.339 0.617 56.0

Vieira-Morf 0.610 0.393 0.630 20.0
Nuttall-Strand 0.608 0.387 0.635 14.0

Example 1.9.8 100 observations were simulated from the bivariate causal subset

VAR(2) model

Xt −
[

1.4135 −0.3000
0.7000 0.4969

]

Xt−2 = Zt,

with characteristic polynomial

|Φ(z)| = (1− 0.982z2)(1− 0.952z2)

having roots ±1.0204 and ±1.0260. From the summaries and plots of table 1.11

and right side of figure 1.5, we see that the performance of Burg and Vieira-Morf is

much better than that of the remaining two methods. Unlike the remaining examples

though, a curious event occurred here in that 239 realizations were simulated instead

of 200. In 39 of those realizations, the Burg solution, although causal, produced a

negative definite white noise covariance matrix. These 39 realizations were omitted

from the simulation results.
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Table 1.11: Summary statistics by method for the data of example 1.9.4

Method Mean Median Std. Dev. % of realizations
of NL of NL of NL with lowest NL

Yule-Walker 97.7 79.5 72.7 15.5
Burg 29.9 17.1 32.5 34.5

Vieira-Morf 29.8 18.1 32.2 48.0
Nuttall-Strand 46.9 33.1 42.3 2.0

Figure 1.5: Boxplots and barplots for the data of example 1.9.7 (left), and example
1.9.8 (right)
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These multivariate examples display similar behavior to that seen in the univariate

case. The main theme continues to be that Yule-Walker’s performance is inferior to

the remaining three methods. Burg and Vieira-Morf emerge as clear winners here

too, albeit closely followed by Nuttall-Strand.



Chapter 2

ASYMPTOTIC NORMALITY OF SOME SUBSET VECTOR

AUTOREGRESSIVE PROCESS ESTIMATORS

2.1 Introduction

In this chapter we establish asymptotic normality for the distribution of some of

the more common subset vector autoregressive (SVAR) process estimators, namely:

Least Squares (LS), Yule-Walker (YW, algorithm 1.3.1), and the Burg estimator in-

troduced in chapter 1 (algorithm 1.4.4). This is achieved by first finding the asymp-

totic distribution of the subset Least Squares estimator, and showing its asymptotic

equivalence with the subset Yule-Walker. This equivalence is then extended to the

subset Burg estimator via the subset Yule-Walker, which thus inherits all central

limit theorems applicable to the other two.

A partial derivation of the asymptotics for the multivariate full set LS estimator

can be found in Lutkepohl (1993), section 3.2. In this chapter, we generalize this to

the subset case, using the theory of martingales to complete the derivation. In Han-

nan (1970), section 6.2, we can find a development of the multivariate YW asymp-

totics. However, we choose instead to generalize the univariate full set arguments

of Brockwell and Davis (1991) to the multivariate subset case. The asymptotics for

the multivariate full set Burg estimator, was recently presented by Hainz (1994).

We extend this derivation to the subset case.
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Condition 1

We assume that {Xt = (Xt,1, . . . , Xt,d)
′, t = 0,±1,±2, . . . } is a zero-mean d-variate

stationary ergodic stochastic process of full rank, with finite variance, and (d × d)

covariance matrix at lag h

IE [Xt+hX
′
t] ≡ Γ(h).

Condition 2

In some cases, we shall assume that {Xt} follows the causal SVAR(K) model,

Xt =
∑

i∈K
ΦK(i)Xt−i + Zt, {Zt} ∼ IID(0,Σ), (2.1)

where K = {k1, . . . , km}, and Σ is non-singular.

Remark 2.1.1 Any process satisfying Condition 2 also satisfies Condition 1. To see

this, we note first that the IID sequence {Zt} is stationary and ergodic. Since {Xt}

is a function of this sequence through the causality property, it is also stationary

and ergodic. To show model (2.1) is of full rank, suppose the linear combination

α′0Xt + α′1Xt−1 + . . . + α′lXt−l = 0 a.s., with α0 6= 0. Taking the variance of both

sides, and by the assumed causality, we have

0 = Var (α′0Zt +α
′
0ΦK(k1)Xt−k1 + . . .+α′1Xt−1 + . . .+α′lXt−l)

= Var (α′0Zt) + Var (α
′
1Xt−1 + . . .+α′0ΦK(k1)Xt−k1 + . . .+α′lXt−l)

≥ Var (α′0Zt) = α′0Σα0.

Therefore, we must have α′0Σα0 = 0, which by the positive definiteness of Σ implies

α0 = 0. This contradicts the initial hypothesis, and hence {Xt} must be of full rank.

From Chapter 1, section 1.2, we know the best linear forecast of Xt on the lagged

subset K is

X̂t(K) =
∑

i∈K
ΦK(i)Xt−i,
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with mean squared error UK(≡ Σ); and the best backward linear forecast on the

lagged subset K∗

X̂
(b)
t (K∗) =

∑

j∈K∗

ΨK∗(j)Xt+j,

with mean squared error VK∗ .

Before proceeding, let us introduce the following notation for this chapter:

• As in the previous chapter, we will need to distinguish between estimators of

coefficients and MSE’s obtained via different methods. Thus we will continue

to top those obtained via YW with hats (ˆ), and Burg with tildes (˜) (there

should be no confusion with the usual estimators of covariances, Γ̂(h), since

these are not algorithm specific). In addition, denote the LS estimators by

topping them with breves (˘).

• Define in block form the (d× dm) matrix of coefficient matrices,

ΦK := [ΦK(k1),ΦK(k2), . . . ,ΦK(km−1),ΦK(km)] .

• αK :=vec(ΦK).

• Define in block form the (d× dm) matrix of process autocovariances,

ΓK := [Γ(k1),Γ(k2), . . . ,Γ(km−1),Γ(km)] .

2.2 The subset Yule-Walker estimator

From chapter 1, the Yule-Walker equations for the forward prediction problem are

∑

i∈K
ΦK(i)Γ(k − i)− Γ(k) = 0, k ∈ K (2.2)

Γ(0)−
∑

i∈K
ΦK(i)Γ(i)′ = UK , (2.3)
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which can be written in compact block matrix form as

[Id,−ΦK(k1),−ΦK(k2), . . . ,−ΦK(km−1),−ΦK(km)]RK = [UK , 0, . . . , 0] , (2.4)

where

RK =












Γ(0) Γ(k1) · · · Γ(km−1) Γ(km)
Γ(k1)

′ Γ(0) · · · Γ(km−1 − k1) Γ(km − k1)
Γ(k2)

′ Γ(k2 − k1)
′ · · · Γ(km−1 − k2) Γ(km − k2)

...
...

. . .
...

...
Γ(km−1)′ Γ(km−1 − k1)

′ · · · Γ(0) Γ(km − km−1)
Γ(km)′ Γ(km − k1)

′ · · · Γ(km − km−1)′ Γ(0)












def
=












Γ(0) Γ(k1) Γ(k2) · · · Γ(km−1) Γ(km)
Γ(k1)

′

Γ(k2)
′

... GK

Γ(km−1)′

Γ(km)′












, say.

For the backward prediction problem, the Yule-Walker equations are

∑

j∈K∗

ΨK∗(j)Γ(j − k)− Γ(k)′ = 0, k ∈ K∗ (2.5)

Γ(0)−
∑

j∈K∗

ΨK∗(j)Γ(j) = VK∗ , (2.6)

which can also be written in block matrix form as

[−ΨK∗(km),−ΨK∗(km − k1), . . . ,−ΨK∗(km − km−1), Id]RK = [0, . . . , 0, VK∗ ] .

We can express (2.2)-(2.3) in the reduced block matrix format of (2.4) as

ΦKGK = ΓK and UK = Γ(0)− ΦKΓ′K
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Taking vecs of both sides of the first expression leads to,

vec(ΦKGK) = vec(ΓK)

⇒ (G′K ⊗ Id)vec(ΦK) = vec(ΓK), by identity K-6 of chapter 1

⇒ vec(ΦK) = (GK ⊗ Id)
−1vec(ΓK), noting the symmetry of GK

⇒ αK = (G−1K ⊗ Id) vec(ΓK), by K-8

⇒ ΦK = ΓKG
−1
K ,

Remark 2.2.1 Since Xt is of full rank, GK will be non-singular and the solution

ΦK unique.

This leads to the YW estimates of ΦK (in vec and unvec form) and UK , respectively,

α̂K = (Ĝ−1K ⊗ Id) vec(Γ̂K) (2.7)

Φ̂K = Γ̂KĜ
−1
K (2.8)

ÛK = Γ̂(0)− Φ̂KΓ̂′K . (2.9)

The estimated YW model for (2.1) is therefore

Xt =
∑

i∈K
Φ̂K(i)Xt−i + Zt, {Zt} ∼ IID(0, ÛK). (2.10)

2.3 The subset Least Squares estimator

The ensuing derivation of the asymptotics of the LS estimator, closely parallels the

argument presented in Lutkepohl (1993), section 3.2.1. Throughout this section, we

will assume Condition 2 holds.

We begin by noting that model (2.1) can be written as,

Xt = [ΦK(k1), . . . ,ΦK(km)]






Xt−k1

...
Xt−km




+ Zt, {Zt} ∼ IID(0,Σ).
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For the set of random vectors {X1, . . . ,Xn} from this model, we can write the above

concisely in block matrix form,

[Xkm+1, . . . ,Xn]
︸ ︷︷ ︸

Y (d×(n−km))

= [ΦK(k1), . . . ,ΦK(km)]
︸ ︷︷ ︸

ΦK(d×dm)











Xkm+1−k1

...
X1




 , . . . ,






Xn−k1

...
Xn−km











︸ ︷︷ ︸

MK(dm×(n−km))

+ [Zkm+1, . . . ,Zn]
︸ ︷︷ ︸

Z(d×(n−km))

,

which in the compact notation of the under-braces becomes,

Y = ΦKMK + Z.

Defining y ≡ vec(Y ) and z ≡ vec(Z), take vecs of both sides of the above equation

to obtain

vec(Y ) = vec(ΦKMK) + vec(Z)

⇒ y = (M ′
K ⊗ Id) αK + z.

Letting ΣZ denote the covariance matrix of z, we see that

ΣZ = IE











Zkm+1
...
Zn






[
Z′km+1, . . . ,Z

′
n

]




 = IE






Zkm+1Z
′
km+1

0
. . .

0 ZnZ
′
n






=






Σ 0
. . .

0 Σ




 = In−km ⊗ Σ.

The LS estimator seeks to find the αK which minimizes the scalar expression

S(αK) = z′Σ−1Z z = z
′ (In−km ⊗ Σ−1

)
z = Tr

[
(Y − ΦKMK)′Σ−1(Y − ΦKMK)

]
.

Following the argument in Lutkepohl (1993), section 3.2.1, we are led to the normal

equations

(MKM
′
K ⊗ Σ−1)ᾰK = (MK ⊗ Σ−1)y,
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with solution

ᾰK =
(
(MKM

′
K)−1MK ⊗ Id

)
y (2.11)

= αK +
(
(MKM

′
K)−1MK ⊗ Id

)
z (2.12)

= vec
(
YM ′

K(MKM
′
K)−1

)
. (2.13)

Equation (2.13) implies that

Φ̆K = YM ′
K(MKM

′
K)−1 (2.14)

= (ΦKMK + Z)M ′
K(MKM

′
K)−1

= ΦK + ZM ′
K(MKM

′
K)−1. (2.15)

2.4 The asymptotic distribution of the subset LS estimator

In this section we establish asymptotic normality for the distribution of the subset

LS estimator, by extending the arguments given in Lutkepohl (1993), section 3.2.2,

to the subset case. This result will later be extended to the YW and Burg estimators.

We begin with the following lemma:

Lemma 2.4.1 For the process {Xt} satisfying Condition 2,

(a)
MKM ′

K

n

p−→ GK .

(b) 1√
n
vec (ZM ′

K)
d−→ N(0, GK ⊗ Σ).

Proof

(a) By definition, the (i, j)th, j ≥ i, block entry of the symmetric matrix
MKM ′

K

n
,

is

1

n

n∑

t=km+1

Xt−ki
X′t−kj

,
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which can be written as,

1

n

n−(kj−ki)∑

t=1

Xt+kj−ki
X′t + op(1) = Γ̂(kj − ki) + op(1).

From Brockwell and Davis (1991), theorem 11.2.1, and for any integer h,

Γ̂(h)
p−→ Γ(h), where convergence in probability of random matrices means

convergence in probability of all components of the matrix, and therefore,

1

n

n∑

t=km+1

Xt−ki
X′t−kj

p−→ Γ(kj − ki),

which is precisely the (i, j)th, j ≥ i, block entry of the matrix GK .

(b) We will use a martingale central limit theorem in conjunction with the Cramer-

Wold device to establish this result. We begin by noting that the (d × dm)

matrix ZM ′
K is given by,

ZM ′
K =

[
n∑

t=km+1

ZtX
′
t−k1

, . . . ,
n∑

t=km+1

ZtX
′
t−km

]

= Zkm+1

[
X′km+1−k1

, . . . ,X′1
]
+ Zkm+2

[
X′km+2−k1

, . . . ,X′2
]

+ · · ·+ Zn
︸︷︷︸

(d×1)

[
X′n−k1

, . . . ,X′n−km

]

︸ ︷︷ ︸

(1×dm)

.

Defining the vector of length d2m,

Ut ≡ vec
(
Zt
[
X′t−k1

, . . . ,X′t−km

])

=






Xt−k1

...
Xt−km




⊗ Zt, by K-10,

=⇒ vec (ZM ′
K) =

n∑

t=km+1

Ut =
n∑

t=1

Ut +Op(1).

Then for any λ ∈ IRd2m, we have, defining the scalar Wn,t ≡ 1√
n
λ′ Ut,

1√
n
λ′ vec (ZM ′

K) =
n∑

t=1

1√
n
λ′ Ut +Op(1/

√
n)

=
n∑

t=1

Wn,t +Op(1/
√
n).
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Letting Xt =
∑∞

j=0ΥjZt−j be the causal representation of Xt, we see that Zt

is independent of {Xt−k1 , . . . ,Xt−km}, and therefore IE(Ut) = 0. Defining Ft

to be the sigma-field generated by {Zk : k ≤ t}, i.e.

Ft = σ (Zk : k ≤ t) ,

it follows immediately that {Wn,t}, t = 1, . . . , n, is a martingale difference

sequence, and hence uncorrelated. That is,

IE (Wn,t | Ft−1) = IE






1√
n
λ′






Xt−k1

...
Xt−km




⊗ Zt | Ft−1






=
1√
n
λ′




IE






Xt−k1

...
Xt−km




⊗ IE Zt

︸︷︷︸

0






= 0.

The sequence {Ut} is therefore also uncorrelated.

In the above calculation, we used the fact that if X and Y are independent

random matrices,

IE(X ⊗ Y ) = IE(X)⊗ IE(Y ).

This is a simple property of the Kronecker Product operation, since, by inde-

pendence,

X ⊗ Y = [XijY ]d(i,j)=1

=⇒ IE (X ⊗ Y ) = [IE (XijY )]d(i,j)=1 = [IE(Xij)IE(Y )]d(i,j)=1

= IE(X)⊗ IE(Y ).
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Noting that the covariance matrix of Ut is,

IE (UtU
′
t)

= IE











Xt−k1

...
Xt−km




⊗ Zt






([
X′t−k1

, . . . ,X′t−km

]
⊗ Z′t

)
, by K-5

= IE











Xt−k1

...
Xt−km






[
X′t−k1

, . . . ,X′t−km

]
⊗ ZtZ′t




 , by K-9

= IE











Xt−k1X
′
t−k1

· · · Xt−k1X
′
t−km

...
. . .

...
Xt−kmX

′
t−k1

· · · Xt−kmX
′
t−km




⊗ ZtZ′t






= IE











Xt−k1X
′
t−k1

· · · Xt−k1X
′
t−km

...
. . .

...
Xt−kmX

′
t−k1

· · · Xt−kmX
′
t−km









⊗ IE (ZtZ

′
t)

= GK ⊗ Σ,

we have,

Var(Wn,t) =
1

n
λ′IE (UtU

′
t)λ =

1

n
λ′ (GK ⊗ Σ)λ. (2.16)

The sequence {Wn,t} is in the prerequisite form for application of a martingale

central limit theorem. In this context, we use theorem 3.2 and corollary 3.1 of

Hall and Heyde (1980). Accordingly, we need only check the following three

conditions:

(i)
∑n

t=1 IE
[
W 2

n,t | Ft−1
] p−→ λ′ (GK ⊗ Σ)λ.

(ii) max1≤t≤n |Wn,t| p−→ 0.

(iii) IE
(
max1≤t≤nW 2

n,t

)
is bounded in n.
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Proof of (i):

Since {IE (λ′UtU
′
tλ | Ft−1)} is a stationary ergodic sequence, the ergodic the-

orem implies,

n∑

t=1

IE
[
W 2

n,t | Ft−1
]

=
1

n

n∑

t=1

IE (λ′UtU
′
tλ | Ft−1)

p−→ IE [IE (λ′UtU
′
tλ | Ft−1)]

= λ′IE (UtU
′
t)λ

= λ′ (GK ⊗ Σ)λ.

Proof of (ii):

We have,

Pr

(

max
1≤t≤n

|λ′Ut| /
√
n > ε

)

= Pr

(

max
1≤t≤n

|λ′Ut| > ε
√
n

)

= Pr

(
n⋃

t=1

{
|λ′Ut| > ε

√
n
}

)

≤
n∑

t=1

Pr
(
|λ′Ut| > ε

√
n
)

= n Pr
(
|λ′U1| > ε

√
n
)

= n IE

[

I{|λ′
U1|>ε

√
n
}

]

≤ n

nε2
IE

[

|λ′U1|2I{λ′
U1|>ε

√
n
}

]

p−→ 0,

by the finite variance of {Xt}.

Proof of (iii):

Since {Wn,t} is identically distributed,

IE

(

max
1≤t≤n

|Wn,t|2
)

=
1

n
IE

(

max
1≤t≤n

|λ′Ut|2
)

≤ 1

n

n∑

t=1

IE |λ′Ut|2

= IE |λ′U1|2 .
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Therefore, invoking theorem 3.2 and corollary 3.1 of Hall and Heyde (1980),

we have

1√
n
λ′vec (ZM ′

K)
d−→ N(0,λ′ (GK ⊗ Σ)λ) .

Finally, since λ was arbitrarily chosen from IRd2m, application of the Cramer-

Wold device (Brockwell and Davis (1991), proposition 6.3.1), gives

1√
n
vec (ZM ′

K)
d−→ N(0, GK ⊗ Σ).

2

The following theorem establishes the weak consistency and asymptotic normality

of the subset LS estimator.

Theorem 2.4.1

(Consistency and Central Limit Theorem for the subset LS estimator)

The LS estimators of the coefficients in the SVAR model (2.1), satisfy

(a)

Φ̆K
p−→ ΦK .

(b)

√
n (ᾰK −αK)

d−→ N(0, G−1K ⊗ Σ). (2.17)

Proof

(a) From (2.15) we have,

Φ̆K − ΦK = ZM ′
K(MKM

′
K)−1

=
ZM ′

K

n

(
MKM

′
K

n

)−1
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By lemma 2.4.1, part (a), the term in brackets converges in probability to a

nonsingular quantity; while part (b)⇒ ZM ′
K

n

p−→ 0. Therefore, Φ̆K−ΦK
p−→ 0.

(b) From (2.12), lemma 2.4.1[part (a)], and the continuous mapping theorem,

√
n (ᾰK −αK) =

√
n
(
(MKM

′
K)−1MK ⊗ Id

)
z

=

((
MKM

′
K

n

)−1
⊗ Id

)

1√
n
(MK ⊗ Id) z

d−→
(
G−1K ⊗ Id

)
N ,

where N ∼ N(0, GK ⊗ Σ), since lemma 2.4.1[part (b)] implies that

1√
n
(MK ⊗ Id) z =

1√
n
vec (ZM ′

K)
d−→ N(0, GK ⊗ Σ).

Therefore, and by successive applications of identity K-9 in appendix A.2,

√
n (ᾰK −αK)

d−→ N
(

0,
(
G−1K ⊗ Id

)
(GK ⊗ Σ)

(
G−1K ⊗ Id

)′
)

= N
(
0,
(
G−1K ⊗ Σ

))
.

2

2.5 The asymptotic distribution of the subset YW estimator

In this section we establish analogous results of asymptotic normality for the subset

YW estimators. The results and respective proofs in this section, are an extension

of Brockwell and Davis (1991), theorem 8.1.1, to the multivariate subset case. We

begin with the following lemma:

Lemma 2.5.1 For the process {Xt} satisfying Condition 2,

(a)
√
n
[

Γ̂K − YM ′
K

n

]
p−→ 0, and,

YM ′
K

n

p−→ ΓK .
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(b)
√
n

[

Ĝ−1K −
(
MKM ′

K

n

)−1
]

p−→ 0.

Proof

(a) Now,

YM ′
K = [Xkm+1, . . . ,Xn]






X′km+1−k1
· · · X′1

...
. . .

...
X′n−k1

· · · X′n−km






=

[
n∑

t=km+1

XtX
′
t−k1

, . . . ,

n∑

t=km+1

XtX
′
t−km

]

,

and,

Γ̂K = [Γ̂(k1), . . . , Γ̂(km)] =

[

1

n

n−k1∑

t=1

Xt+k1X
′
t, . . . ,

1

n

n−km∑

t=1

Xt+kmX
′
t

]

,

so that the jth, 1 ≤ j ≤ m, block matrix entry of
√
n
[

Γ̂K − YM ′
K

n

]

has the

form

1√
n





n−kj∑

t=1

Xt+kj
X′t −

n∑

t=km+1

XtX
′
t−kj





=
1√
n





n−kj∑

t=1

Xt+kj
X′t −

n−kj∑

t=km+1−kj

Xt+kj
X′t





=
1√
n

km−kj∑

t=1

Xt+kj
X′t

p−→ 0,

by re-indexing the right summand.

Similarly, the jth, block matrix entry of
[

Γ̂K − YM ′
K

n

]

is

1

n

km−kj∑

t=1

Xt+kj
Xt

p−→ 0, as n→∞.

(b) From Brockwell and Davis (1991), proposition 6.1.2, it suffices to show that
∥
∥
∥
∥
∥

√
n

[

Ĝ−1K −
(
MKM

′
K

n

)−1
]∥
∥
∥
∥
∥
2

p−→ 0,
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where for matrix A, ‖A‖2 denotes the Euclidean norm of vec(A):

√
n

∥
∥
∥
∥
∥
Ĝ−1K −

(
MKM

′
K

n

)−1
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
Ĝ−1K

√
n

(
MKM

′
K

n
− ĜK

)(
MKM

′
K

n

)−1
∥
∥
∥
∥
∥
2

≤
∥
∥
∥Ĝ−1K

∥
∥
∥
2
.

∥
∥
∥
∥

√
n

(
MKM

′
K

n
− ĜK

)∥
∥
∥
∥
2

.

∥
∥
∥
∥
∥

(
MKM

′
K

n

)−1
∥
∥
∥
∥
∥
2

,

the inequality following from Cauchy-Schwarz for matrix norms (see for ex-

ample Lutkepohl (1996)[p. 111]). Now, since Γ̂(h)
p−→ Γ(h) for any integer

h, we have by the continuous mapping theorem that Ĝ−1K
p−→ G−1K . Also,

by lemma 2.4.1, part (a), and again using the continuous mapping theorem,
(
MKM ′

K

n

)−1 p−→ G−1K . Finally, employing a similar argument to the proof of

part (a), the (i, j)th, 1 ≤ i ≤ j ≤ m, block entry of
√
n
(
MKM ′

K

n
− ĜK

)

can

be written as,

1√
n





n−(kj−ki)∑

t=1

Xt+kj−ki
X′t −

n−(kj−ki)∑

t=1

Xt+kj−ki
X′t



+ op(1)
p−→ 0, as n→∞.

Thus, the right hand side of the above norm inequality

p−→ ‖G−1K ‖2.‖0‖2.‖G−1K ‖2 = 0,

=⇒ √
n

∥
∥
∥
∥
∥
Ĝ−1K −

(
MKM

′
K

n

)−1
∥
∥
∥
∥
∥
2

p−→ 0.

2

We are now ready for the main result in this section:

Theorem 2.5.1

(Consistency and Central Limit Theorem for the subset YW estimator)

The YW estimators of the coefficients of SVAR model (2.1), satisfy
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(a) Φ̂K
p−→ ΦK.

(b)
√
n (α̂K −αK)

d−→ N(0, G−1K ⊗ Σ).

(c) ÛK
p−→ Σ.

Proof

(a) From (2.8), Φ̂K = Γ̂KĜ
−1
K . Since Γ̂(h)

p−→ Γ(h), for every integer h, Γ̂K
p−→

ΓK , and ĜK
p−→ GK . Therefore, by the continuous mapping theorem, Φ̂K

p−→

ΓKG
−1
K ≡ ΦK .

(b) The subset LS and YW estimators are respectively:

ᾰK =
(
(MKM

′
K)−1MK ⊗ Id

)
y, and α̂K = (Ĝ−1K ⊗ Id) vec(Γ̂K).

In light of theorem 2.4.1 part (b), and the fact that

√
n(α̂K − ᾰK) =

[√
n(α̂K −αK)−√n(ᾰK −αK)

]
,

it suffices to show, by Brockwell and Davis (1991) proposition 6.3.3 for exam-

ple, that
√
n(α̂K − ᾰK)

p−→ 0. Thus, from (2.8) and (2.13),

√
n(Φ̂K − Φ̆K) =

√
n
[

Γ̂KĜ
−1
K − YM ′

K(MKM
′
K)−1

]

=
√
n

[

Γ̂K −
YM ′

K

n

]

Ĝ−1K +

(
YM ′

K

n

)√
n

[

Ĝ−1K −
(
MKM

′
K

n

)−1
]

p−→ 0, by lemma 2.5.1.

(c) From (2.9), ÛK = Γ̂(0) − Φ̂KΓ̂′K . From part (a), Γ̂(0)
p−→ Γ(0), Φ̂K

p−→ ΦK ,

and Γ̂K
p−→ ΓK ; so that by the continuous mapping theorem,

ÛK
p−→ Γ(0)− ΦKΓ′K ≡ Σ.

2
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2.6 The asymptotic distribution of the subset Burg estimator

In this section, we prove that the multivariate subset Burg estimator has the same

asymptotic distribution as the YW estimator. Our strategy is to show that the two

estimators differ by terms of order at most Op(1/n) (which in particular implies a

difference of order op(1/
√
n)). Applying Brockwell and Davis (1991) proposition

6.3.3, then gives convergence in distribution to the same limiting random vector.

The arguments that follow are a generalization to the subset case of the results

presented in Hainz (1994). We begin with a lemma:

Lemma 2.6.1 Let {Xn} be a tight sequence of invertible (d× d) random matrices,

and A a constant invertible (d× d) matrix. Then

Xn = A+Op(1/n) =⇒ X−1
n = A−1 +Op(1/n).

Proof

For any invertible matrix B, let gk(.) be the continuous differentiable mapping from

IRd2 −→ IR, that takes the kth element of vec(B) to the kth element of vec(B−1), i.e.

gk(vec(B)) =
[
vec(B−1)

]

k
.

Then, applying the random vector version of Fuller (1996) corollary 5.1.5, with s = 1

and rn = 1
n
to vec(Xn), gives

[
vec(X−1

n )
]

k
≡ gk(vec(Xn)) = gk(vec(A)) +Op(1/n) ≡

[
vec(A−1)

]

k
+Op(1/n).

Applying this component-wise with k = {1, . . . , d2} in turn, gives the required

result.

2



55

Theorem 2.6.1 If {Xt} satisfies Condition 1, then the Burg and YW estimators of

the coefficients and MSE’s of the forward and backward subset prediction problems,

satisfy:

(a) Φ̃K = Φ̂K +Op(1/n).

(b) Ψ̃K∗ = Ψ̂K∗ +Op(1/n).

(c) ŨK = ÛK +Op(1/n).

(d) ṼK∗ = V̂K∗ +Op(1/n).

In addition, we have the following auxiliary relationships:

(e)

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′ = ŨJ +Op(1/n).

(f)

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′ = ṼJ∗ +Op(1/n).

(g)

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′ = Φ̂K(km)V̂J∗ +Op(1/n).

Proof

We will use induction on the size of the set K of the subset prediction problem. We

begin at level 1 (m = 1) with K consisting of a single positive integer, km. Note

that J = ∅ = J∗. Now from the YW algorithm,

Φ̂K(km) = Γ̂(km)Γ̂(0)−1

=⇒ vec
(

Φ̂K(km)
)

=
[

Γ̂(0)−1 ⊗ Id

]

vec
(

Γ̂(km)
)

. (2.18)
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From the Burg algorithm and (1.29), we have

vec
(

Φ̃K(km)
)

=

[(
n∑

t=1+km

Xt−kmX
′
t−km

)

⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1

(
n∑

t=1+km

XtX
′
t

)

Γ̂(0)−1

]−1

vec

[(
n∑

t=1+km

XtX
′
t−km

)

+ Γ̂(0)−1

(
n∑

t=1+km

XtX
′
t−km

)

Γ̂(0)

]

.

Multiplying and dividing by 1
n
gives

vec
(

Φ̃K(km)
)

=
[(

1

n

n∑

t=1+km

Xt−kmX
′
t−km

)

⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1

(

1

n

n∑

t=1+km

XtX
′
t

)

Γ̂(0)−1

]−1

vec

[(

1

n

n∑

t=1+km

XtX
′
t−km

)

+ Γ̂(0)−1

(

1

n

n∑

t=1+km

XtX
′
t−km

)

Γ̂(0)

]

,

and upon recalling that for h ≥ 0, Γ̂(h) = 1
n

∑n−h
t=1 Xt+hX

′
t, we see that

vec
(

Φ̃K(km)
)

=
[(

Γ̂(0) +Op(1/n)
)

⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1
(

Γ̂(0) +Op(1/n)
)

Γ̂(0)−1
]−1

vec
[

Γ̂(km) + Γ̂(0)−1Γ̂(km)Γ̂(0)
]

=
[

Γ̂(0)⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1 +Op(1/n)
]−1 [

Id2 + Γ̂(0)⊗ Γ̂(0)−1
]

vec
(

Γ̂(km)
)

, (2.19)

using K-1 and K-6 of appendix A.2 on the vec term. Consider now the inverse term

in the above equation. From lemma 2.6.1,

[

Γ̂(0)⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1 +Op(1/n)
]−1

=
[

Γ̂(0)⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1
]−1

+Op(1/n).
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Applying identities K-9 and K-11 leads to the factorization

[

Γ̂(0)⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1
]−1

+Op(1/n)

=
[(

Id ⊗ Id + Γ̂(0)⊗ Γ̂(0)−1
)(

Γ̂(0)⊗ Id

)]−1
+Op(1/n)

=
[

Γ̂(0)⊗ Id

]−1 [
Id2 + Γ̂(0)⊗ Γ̂(0)−1

]−1
+Op(1/n),

where we can easily see that Id ⊗ Id coalesces into Id2 . Finally, applying identity

K-8 to the first inverse gives

[

Γ̂(0)⊗ Id + Γ̂(0)2 ⊗ Γ̂(0)−1
]−1

+Op(1/n)

=
[

Γ̂(0)−1 ⊗ Id

] [

Id2 + Γ̂(0)⊗ Γ̂(0)−1
]−1

+Op(1/n).

We can now substitute the above into (2.19) to give,

vec
(

Φ̃K(km)
)

=
[

Γ̂(0)⊗ Id

]−1 [
Id2 + Γ̂(0)⊗ Γ̂(0)−1

]−1 [
Id2 + Γ̂(0)⊗ Γ̂(0)−1

]

vec
(

Γ̂(km)
)

+Op(1/n)

=
[

Γ̂(0)⊗ Id

]−1
vec
(

Γ̂(km)
)

+Op(1/n)

= vec
(

Φ̂K(km)
)

+Op(1/n), from (2.18).

We therefore have that Φ̃K(km) = Φ̂K(km) + Op(1/n), which implies Φ̃K = Φ̂K +

Op(1/n).

From the prediction error solution of the Yule-Walker equations (algorithm 1.4.1),

Φ̃K(km) and Ψ̃K∗(km) are linked via:

Ψ̃K∗(km) = ṼJ∗Φ̃K(km)′Ũ−1J which implies Ψ̃K∗(km)ŨJ = ṼJ∗Φ̃K(km)′, (2.20)

(and similarly for the YW estimators), so that with ṼJ∗ = Γ(0) = ŨJ ,

Ψ̃K∗(km) = Γ(0)
[

Φ̂K(km) +Op(1/n)
]′

Γ(0)−1

= Γ(0)Φ̂K(km)′Γ(0)−1 +Op(1/n)

= Ψ̂K∗(km) +Op(1/n).
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Now for the MSE’s, we have from algorithm 1.4.1 that

ŨK = ŨJ − Φ̃K(km)ṼJ∗Φ̃K(km)′

=
[

Id − Φ̃K(km)Ψ̃K∗(km)
]

ŨJ , from (2.20),

=
[

Id −
(

Φ̂K(km)Ψ̂K∗(km) +Op(1/n)
)]

Γ̂(0)

=
[

Id − Φ̂K(km)Ψ̂K∗(km)
]

Γ̂(0) +Op(1/n)

= ÛK +Op(1/n),

and similarly,

ṼK∗ = ṼJ∗ − Ψ̃K∗(km)ŨJΨ̃K∗(km)′

=
[

Id − Ψ̃K∗(km)Φ̃K(km)
]

ṼJ∗ , from the transpose of (2.20),

=
[

Id −
(

Ψ̂K∗(km)Φ̂K(km) +Op(1/n)
)]

Γ̂(0)

=
[

Id − Ψ̂K∗(km)Φ̂K(km)
]

Γ̂(0) +Op(1/n)

= V̂K∗ +Op(1/n).

For the auxiliary relationships, we have from algorithm 1.4.1

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′ =

1

n

n∑

t=km+1

XtX
′
t

= Γ̂(0) +Op(1/n)

= ŨJ +Op(1/n).

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′ =
1

n

n∑

t=km+1

Xt−kmX
′
t−km

= Γ̂(0) +Op(1/n)

= ṼJ∗ +Op(1/n).

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′ =
1

n

n∑

t=km+1

XtX
′
t−km

= Γ̂(km)

= Φ̂K(km)V̂J∗ ,
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the last equality following from the first line of algorithm 1.3.1. Finally,

1

n

n∑

t=km+1

η̃J∗(t− km)ε̃J(t)
′ =

1

n

n∑

t=km+1

Xt−kmX
′
t

= Γ̂(−km) = Γ̂(km)′

= Ψ̂K∗(km)ÛJ ,

where the last equality follows similarly from the third line of algorithm 1.3.1.

This ends the inductive step when K is any subset of size one. Now suppose the

theorem holds for all subsets K of size ≤ m − 1, and consider K = {k1, . . . , km}.

Recalling that J = {k1, . . . , km−1} and J∗ = {km − km−1, . . . , km − k1}, introduce

the following additional notation for sets of lags G and H, where H ∈ {J, J ∗, K∗}:

G(H) is obtained from G in the same manner that H is obtained from K. For

example:

• J(J) is to J what J is to K, i.e. J(J) = {k1, . . . , km−2}.

• J(J∗) is to J what J∗ is to K, i.e. J(J∗) = {km−1 − km−2, . . . , km−1 − k1}.

• J∗(J) is to J∗ what J is to K, i.e. J∗(J) = {km − km−1, . . . , km − k2}.

• J∗(J∗) is to J∗ what J∗ is to K, i.e. J∗(J∗) = {k2 − k1, . . . , km−1 − k1}.

• J∗(K∗) is to J∗ what K∗ is to K, i.e. J∗(K∗) = {k2 − k1, . . . , km − k1}.

By the inductive hypothesis, we then have:

[H-1] Φ̃J = Φ̂J +Op(1/n).

[H-2] Ψ̃J∗ = Ψ̂J∗ +Op(1/n).

[H-3] ŨJ = ÛJ +Op(1/n).
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[H-4] ṼJ∗ = V̂J∗ +Op(1/n).

[H-5] 1
n

∑n
t=km−1+1

ε̃J(J)(t)ε̃J(J)(t)
′ = ŨJ(J) +Op(1/n).

[H-6] 1
n

∑n
t=km−1+1

η̃J(J∗)(t− km−1)η̃J(J∗)(t− km−1)′ = ṼJ(J∗) +Op(1/n).

[H-7] 1
n

∑n
t=km−1+1

ε̃J(J)(t)η̃J(J∗)(t− km−1)′ = Φ̂J(km−1)V̂J(J∗) +Op(1/n).

[H-8]

1

n

n∑

t=km−k1+1

ε̃J∗(J∗)(t)ε̃J∗(J∗)(t)
′ = ŨJ∗(J∗) +Op(1/n),

which upon re-indexing

=⇒ 1

n

n∑

t=km+1

ε̃J∗(J∗)(t− k1)ε̃J∗(J∗)(t− k1)
′ = ŨJ∗(J∗) +Op(1/n).

[H-9]

1

n

n∑

t=km−k1+1

η̃J∗(J)(t− km + k1)η̃J∗(J)(t− km + k1)
′ = ṼJ∗(J) +Op(1/n),

which upon re-indexing

=⇒ 1

n

n∑

t=km+1

η̃J∗(J)(t− km)η̃J∗(J)(t− km)′ = ṼJ∗(J) +Op(1/n).

[H-10]

1

n

n∑

t=km−k1+1

ε̃J∗(J∗)(t) η̃J∗(J)(t− km + k1)
′

= Φ̂J∗(K∗)(km − k1)V̂J∗(J) +Op(1/n),

which upon re-indexing

=⇒ 1

n

n∑

t=km+1

ε̃J∗(J∗)(t− k1) η̃J∗(J)(t− km)′

= Φ̂J∗(K∗)(km − k1)V̂J∗(J) +Op(1/n).
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[H-11] From (2.20), ṼJ(J∗)Φ̃J(km−1)′ = Ψ̃J(K∗)(km−1)ŨJ(J). Also holds with for YW

estimators i.e. can replace tildes with hats throughout.

[H-12] From (2.20), ŨJ =
[

Id − Φ̃J(km−1)Ψ̃J(K∗)(km−1)
]

ŨJ(J).

[H-13] ε̃J(t) = ε̃J(J)(t)− Φ̃J(km−1)η̃J(J∗)(t− km−1).

[H-14] η̃J∗(t− km) = η̃J∗(J)(t− km)− Ψ̃J∗(km − k1)ε̃J∗(J∗)(t− k1).

[H-15] From (2.20), Ψ̃J∗(km − k1)ŨJ∗(J∗) = ṼJ∗(J)Φ̃J∗(K∗)(km − k1)
′. Also holds with

for YW estimators i.e. can replace tildes with hats throughout.

[H-16] Set K = J and k = km − j, j ∈ J∗ (⇒ k ∈ J), in the YW equation (2.2) to

obtain:

∑

i∈J
Φ̂J(i)Γ̂(km − j − i) = Γ̂(km − j), for every j ∈ J∗.

[H-17] From (2.20), ṼJ∗ =
[

Id − Ψ̃J∗(km − k1)Ψ̃J∗(K∗)(km − k1)
]

ṼJ∗(J).

It is easy to show that H-5 - H-10 hold when m = 2, i.e. K = {k1, k2}. We note

that in this case, J = {k1}, J∗ = {k2− k1} = J∗(K∗), and J(J) = J(J∗) = J∗(J) =

J∗(J∗) = ∅. Thus:

• For H-5,

1

n

n∑

t=km−1+1

ε̃J(J)(t)ε̃J(J)(t)
′ =

1

n

n∑

t=k1+1

XtX
′
t = Γ̂(0) +Op(1/n)

= ŨJ(J) +Op(1/n),

and similarly for H-8.



62

• For H-6,

1

n

n∑

t=km−1+1

η̃J(J∗)(t− km−1)η̃J(J∗)(t− km−1)
′ =

1

n

n∑

t=k1+1

Xt−k1X
′
t−k1

= Γ̂(0) +Op(1/n)

= ṼJ(J∗) +Op(1/n),

and similarly for H-9.

• For H-7,

1

n

n∑

t=km−1+1

ε̃J(J)(t) η̃J(J∗)(t− km−1)
′ =

1

n

n∑

t=k1+1

XtX
′
t−k1

= Γ̂(k1)

= Φ̂k1(k1)Γ̂(0), from first line of algorithm 1.3.1

= Φ̂J(km−1)V̂J(J∗),

and similarly for H-10.

We will complete the inductive argument by showing in order:

(i)

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′ = ŨJ +Op(1/n).

(ii)

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′ = ṼJ∗ +Op(1/n).

(iii)

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′ = Φ̂K(km)V̂J∗ +Op(1/n).

(iv) Φ̃K(km) = Φ̂K(km) +Op(1/n).
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(v) Ψ̃K∗(km) = Ψ̂K∗(km) +Op(1/n).

(vi) Φ̃K(i) = Φ̂K(i) +Op(1/n), for every i ∈ J .

(vii) Ψ̃K∗(j) = Ψ̂K∗(j) +Op(1/n), for every j ∈ J∗.

(viii) ŨK = ÛK +Op(1/n).

(ix) ṼK∗ = V̂K∗ +Op(1/n).

We now begin these demonstrations.

(i) From H-13,

ε̃J(t)ε̃J(t)
′

=
(

ε̃J(J)(t)− Φ̃J(km−1)η̃J(J∗)(t− km−1)
)

(

ε̃J(J)(t)
′ − η̃J(J∗)(t− km−1)

′Φ̃J(km−1)
′
)

= ε̃J(J)(t)ε̃J(J)(t)
′ − ε̃J(J)(t)η̃J(J∗)(t− km−1)

′Φ̃J(km−1)
′

− Φ̃J(km−1)η̃J(J∗)(t− km−1)ε̃J(J)(t)
′

+ Φ̃J(km−1)η̃J(J∗)(t− km−1)η̃J(J∗)(t− km−1)
′Φ̃J(km−1)

′,
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and thus

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′

=




1

n

n∑

t=km−1+1

ε̃J(J)(t)ε̃J(J)(t)
′





−




1

n

n∑

t=km−1+1

ε̃J(J)(t)η̃J(J∗)(t− km−1)
′



 Φ̃J(km−1)
′

− Φ̃J(km−1)




1

n

n∑

t=km−1+1

ε̃J(J)(t)η̃J(J∗)(t− km−1)
′





′

+ Φ̃J(km−1)




1

n

n∑

t=km−1+1

η̃J(J∗)(t− km−1)η̃J(J∗)(t− km−1)
′



 Φ̃J(km−1)
′

+Op(1/n),

and using H-5, H-7, H-7, H-6, respectively in each of the bracketed summands

above, gives

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′

= ŨJ(J) − Φ̂J(km−1)V̂J(J∗)Φ̃J(km−1)
′ − Φ̃J(km−1)V̂J(J∗)Φ̂J(km−1)

′

+ Φ̃J(km−1)V̂J(J∗)Φ̃J(km−1)
′ +Op(1/n).

By H-1 and H-4, we can interchange Burg and YW estimators to within

Op(1/n), so that

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′

= ŨJ(J) − Φ̃J(km−1)ṼJ(J∗)Φ̃J(km−1)
′ − Φ̃J(km−1)ṼJ(J∗)Φ̃J(km−1)

′

+ Φ̃J(km−1)ṼJ(J∗)Φ̃J(km−1)
′ +Op(1/n)

= ŨJ(J) − Φ̃J(km−1)ṼJ(J∗)Φ̃J(km−1)
′ +Op(1/n)

= ŨJ(J) − Φ̃J(km−1)Ψ̃J(K∗)(km−1)ŨJ(J) +Op(1/n), by H-11

= ŨJ +Op(1/n), by H-12.
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(ii) From H-14,

η̃J∗(t− km)η̃J∗(t− km)′

=
(

η̃J∗(J)(t− km)− Ψ̃J∗(km − k1)ε̃J∗(J∗)(t− k1)
)

(

η̃J∗(J)(t− km)′ − ε̃J∗(J∗)(t− k1)
′Ψ̃J∗(km − k1)

′
)

= η̃J∗(J)(t− km)η̃J∗(J)(t− km)′

−
(
ε̃J∗(J∗)(t− k1)η̃J∗(J)(t− km)′

)′
Ψ̃J∗(km − k1)

′

− Ψ̃J∗(km − k1)
(
ε̃J∗(J∗)(t− k1)η̃J∗(J)(t− km)′

)

+ Ψ̃J∗(km − k1)
(
ε̃J∗(J∗)(t− k1)ε̃J∗(J∗)(t− k1)

′) Ψ̃J∗(km − k1)
′,

and thus

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′ =

(

1

n

n∑

t=km+1

η̃J∗(J)(t− km)η̃J∗(J)(t− km)′

)

−
(

1

n

n∑

t=km+1

ε̃J∗(J∗)(t− k1)η̃J∗(J)(t− km)′

)′

Ψ̃J∗(km − k1)
′

− Ψ̃J∗(km − k1)

(

1

n

n∑

t=km+1

ε̃J∗(J∗)(t− k1)η̃J∗(J)(t− km)′

)

+ Ψ̃J∗(km − k1)

(

1

n

n∑

t=km+1

(
ε̃J∗(J∗)(t− k1)ε̃J∗(J∗)(t− k1)

′)
)

Ψ̃J∗(km − k1)
′.

Using H-9, H-10, H-10, H-8, respectively in each of the bracketed summands

above, gives

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

= ṼJ∗(J) −

=Ψ̂J∗ (km−k1)ÛJ∗(J∗), from H-15
︷ ︸︸ ︷

V̂J∗(J)Φ̂J∗(K∗)(km − k1)
′ Ψ̃J∗(km − k1)

′

− Ψ̃J∗(km − k1)Φ̂J∗(K∗)(km − k1)V̂J∗(J)

+ Ψ̃J∗(km − k1)ŨJ∗(J∗)Ψ̃J∗(km − k1)
′ +Op(1/n).
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By the inductive hypothesis (H-1 - H-4), we can interchange YW and Burg

estimators to within Op(1/n), so that

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

= ṼJ∗(J) − Ψ̃J∗(km − k1)ŨJ∗(J∗)Ψ̃J∗(km − k1)
′

− Ψ̃J∗(km − k1)Φ̃J∗(K∗)(km − k1)ṼJ∗(J)

+ Ψ̃J∗(km − k1)ŨJ∗(J∗)Ψ̃J∗(km − k1)
′ +Op(1/n)

=
[

Id − Ψ̃J∗(km − k1)Φ̃J∗(K∗)(km − k1)
]

ṼJ∗(J) +Op(1/n)

= ṼJ∗ +Op(1/n), by H-17.

(iii) By definition,

ε̃J(t) = Xt −
∑

i∈J
Φ̃J(i)Xt−i,

and

η̃J∗(t− km) = Xt−km −
∑

j∈J∗
Ψ̃J∗(j)Xt−km+j,



67

and this implies

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′

=

Γ̂(km)
︷ ︸︸ ︷(

1

n

n∑

t=km+1

XtX
′
t−km

)

−
∑

j∈J∗

Γ̂(km−j)+Op(1/n)
︷ ︸︸ ︷(

1

n

n∑

t=km+1

XtX
′
t−km+j

)

Ψ̃J∗(j)
′

−
∑

i∈J
Φ̃J(i)

(

1

n

n∑

t=km+1

Xt−iX
′
t−km

)

︸ ︷︷ ︸

Γ̂(km−i)+Op(1/n)

+
∑

j∈J∗

∑

i∈J
Φ̃J(i)

(

1

n

n∑

t=km+1

Xt−iX
′
t−km+j

)

︸ ︷︷ ︸

Γ̂(km−j−i)+Op(1/n)

Ψ̃J∗(j)
′

= Γ̂(km)−
∑

j∈J∗
Γ̂(km − j)Ψ̃J∗(j)

′ −
∑

i∈J
Φ̃J(i)Γ̂(km − i)

+
∑

j∈J∗

(
∑

i∈J
Γ̂(km − j − i)

)

︸ ︷︷ ︸

=Γ̂(km−j), by H-16

Ψ̃J∗(j)
′ +Op(1/n)

= Γ̂(km)−
∑

i∈J
Φ̂J(i)Γ̂(km − i) +Op(1/n),

since Φ̃J(i) = Φ̂J(i) +Op(1/n). Thus by the first line of algorithm 1.3.1

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′ = Φ̂K(km)V̂J∗ +Op(1/n).
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(iv) Taking (1.29), applying identities K-1 and K-6 to the vec term, and multiplying

and dividing by 1
n
, gives

vec
(

Φ̃K(km)
)

=










=ṼJ∗+Op(1/n), by (ii)
︷ ︸︸ ︷(

1

n

n∑

t=km+1

η̃J∗(t− km)η̃J∗(t− km)′

)

⊗Id

+ Ṽ 2J∗ ⊗ Ũ−1J

=ŨJ+Op(1/n), by (i)
︷ ︸︸ ︷(

1

n

n∑

t=km+1

ε̃J(t)ε̃J(t)
′

)

Ũ−1J










−1

[

Id2 + ṼJ∗ ⊗ Ũ−1J

]

vec

(

1

n

n∑

t=km+1

ε̃J(t)η̃J∗(t− km)′

)

︸ ︷︷ ︸

=Φ̂K(km)V̂J∗+Op(1/n), by (iii)

=
[

ṼJ∗ ⊗ Id + Ṽ 2J∗ ⊗ Ũ−1J +Op(1/n)
]−1 [

Id2 + ṼJ∗ ⊗ Ũ−1J

]

vec
(

Φ̂K(km)V̂J∗
)

+Op(1/n)

=
[

ṼJ∗ ⊗ Id + Ṽ 2J∗ ⊗ Ũ−1J

]−1 [
Id2 + ṼJ∗ ⊗ Ũ−1J

] (

V̂J∗ ⊗ Id

)

vec
(

Φ̂K(km)
)

+Op(1/n),

where the last equality follows by applying lemma 2.6.1 to the bracketed in-

verse term, and identity K-6 to the vec operator. By inductive hypothesis H-4,

we can replace
(

V̂J∗ ⊗ Id

)

with
(

V̂J∗ ⊗ Id

)

+Op(1/n), to give

vec
(

Φ̃K(km)
)

=
[

ṼJ∗ ⊗ Id + Ṽ 2J∗ ⊗ Ũ−1J

]−1 [

Id2 + ṼJ∗ ⊗ Ũ−1J

] (

ṼJ∗ ⊗ Id

)

︸ ︷︷ ︸

=ṼJ∗⊗Id+Ṽ 2
J∗
⊗Ũ−1

J , by K-11 and K-9

vec
(

Φ̂K(km)
)

+Op(1/n)

= vec
(

Φ̂K(km)
)

+Op(1/n).
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(v) From (2.20),

Ψ̃K∗(km) = ṼJ∗Φ̃K(km)′Ũ−1J

= V̂J∗Φ̂K(km)′Û−1J +Op(1/n), by H-3, H-4, and (iv),

= Ψ̂K∗(km) +Op(1/n), again from (2.20).

(vi) From the algorithm,

Φ̃K(i) = Φ̃J(i)− Φ̃K(km)Ψ̃J∗(km − i), for every i ∈ J ,

= Φ̂J(i)− Φ̂K(km)Ψ̂J∗(km − i) +Op(1/n), by H-1, (iv), and H-2,

= Φ̂K(i) +Op(1/n),

where the last line follows again from the algorithm, but now applied to the

YW estimators.

(vii) Similarly, from the algorithm,

Ψ̃K∗(j) = Ψ̃J∗(j)− Ψ̃K∗(km)Φ̃J(km − j), for every j ∈ J∗,

= Ψ̂J∗(j)− Ψ̂K∗(km)Φ̂J(km − j) +Op(1/n), by H-2, (v), and H-1,

= Ψ̂K∗(j) +Op(1/n),

again from the algorithm applied to the YW estimators.

(viii) From the algorithm,

ŨK = ŨJ − Φ̃K(km)ṼJ∗Φ̃K(km)′

=
[

Id − Φ̃K(km)Ψ̃K∗(km)
]

ŨJ , from (2.20),

=
[

Id − Φ̂K(km)Ψ̂K∗(km)
]

ÛJ +Op(1/n), from (iv), (v), and H-3,

= ÛK +Op(1/n),

from the algorithm applied to the YW estimators.
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(ix) Using almost identical arguments to the above, we have from the algorithm

ṼK∗ = ṼJ∗ − Ψ̃K∗(km)ŨJΨ̃K∗(km)′

=
[

Id − Ψ̃K∗(km)Φ̃K(km)
]

ṼJ∗ , from (2.20),

=
[

Id − Ψ̂K∗(km)Φ̂K(km)
]

V̂J∗ +Op(1/n), from (iv), (v), and H-4,

= V̂K∗ +Op(1/n).

This completes the induction argument, and therefore the statement of the theorem

holds for an arbitrary set of lags K.

2

Theorem 2.6.2 (Asymptotic distribution of the subset Burg estimator)

The Burg estimators of the coefficients and white noise variance of SVAR model

(2.1), satisfy

(a)
√
n (α̃K −αK)

d−→ N(0, G−1K ⊗ Σ).

(b) ŨK
p−→ Σ.

Proof

Theorem 2.6.1 states that the Burg and YW estimators for the forward and backward

prediction problems, differ by terms of order Op(1/n) when {Xt} satisfies Condition

1. As mentioned at the beginning of this section, application of Brockwell and

Davis (1991) proposition 6.3.3, then gives convergence in distribution/probability

to the same limiting random vectors. These limiting distributions were presented in

theorem 2.5.1. Since {Xt} satisfying Condition 2 also satisfies Condition 1, these

limiting distributions extend to the Burg estimators of the coefficients and white

noise variance of SVAR model (2.1).

2



Chapter 3

SADDLEPOINT APPROXIMATIONS TO THE DISTRIBUTIONS OF

THE YULE-WALKER AND BURG COEFFICIENT ESTIMATORS

OF SUBSET AR MODELS WITH SUBSET SIZE ONE

3.1 Introduction

A notable feature of the simulation results of Chapter 1 is that the Gaussian like-

lihoods for models fitted via the Burg method tend to be consistently larger than

those fitted via Yule-Walker, particularly as the roots of the AR polynomial approach

the unit circle. Comparing the distributions of Yule-Walker, Burg, and maximum

(Gaussian) likelihood estimators in some special cases, should provide further in-

sight into their different finite-sample performances, and the question of whether

or not the densities of the Burg and maximum likelihood estimators are “closer” in

some sense than those of Yule-Walker and maximum likelihood.

In this chapter we compute saddlepoint approximations to the probability distri-

bution and density functions of the Yule-Walker and Burg estimators of the au-

toregressive coefficient in a Gaussian AR(p) model, where the coefficients of the

first p − 1 lags are zero (henceforth abbreviated as a SAR(p) model). We obtain

simulation-based estimates of the probability density function for these two as well

as the maximum likelihood estimator, and proceed to compare all three.
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The saddlepoint approximation in this context was originally discussed by

Daniels (1956), in which he derived the density of the Burg estimator for an AR(1).

Phillips (1978), obtained the Edgeworth and saddlepoint approximations to the

density of the least squares estimator. Durbin (1980), explored the approximate

distribution of partial serial correlation coefficients, which included the Yule-Walker

estimator. Using Edgeworth approximations, Ochi (1983) obtained asymptotic ex-

pansions to terms of order n−1 for the distribution of the generalized AR(1) coef-

ficient estimator φ̂(c1, c2) presented in the next section. More recently, Butler and

Paolella (1998) have obtained saddlepoint approximations to ratios of quadratic

forms in normal random variables. The development in this chapter parallels their

technique.

3.2 SAR(p) Model Parameter Estimation

Consider estimating the parameters in the zero-mean causal univariate Gaussian

subset AR(p) model:

Xt = φXt−p + Zt, {Zt} ∼ IID N(0, σ2). (3.1)

Given observations x1, · · · , xn from a time series, and defining

σ2AL(φ) ≡ (1− φ2)γ̂0,

the least squares estimator of φ is from (2.14),

φ̂LS =

∑n
t=p+1 xtxt−p
∑n−p

t=1 x
2
t

=

∑n
t=1+p xtxt−p

∑n−p
t=p+1 x

2
t +

∑p
t=1 x

2
t

. (3.2)
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The Yule-Walker algorithm (1.3.1) gives the estimates

φ̂YW =

∑n
t=1+p xtxt−p

∑n−p
t=p+1 x

2
t +

∑p
t=1 x

2
t +

∑n
t=n−p+1 x

2
t

(3.3)

=
1
n

∑n
t=1+p xtxt−p
1
n

∑n
t=1 x

2
t

=
γ̂p
γ̂0

(3.4)

σ̂2YW = (1− φ̂2YW )γ̂0 = σ2AL(φ̂YW ),

while from the Burg algorithm (1.4.4) we obtain

φ̂BG =

∑n
t=1+p xtxt−p

∑n−p
t=p+1 x

2
t +

1
2

∑p
t=1 x

2
t +

1
2

∑n
t=n−p+1 x

2
t

(3.5)

=
2γ̂p

γ̂0 +
1
n

∑n−p
t=p+1 x

2
t

=
2γ̂p

γ̂0 + ap
, where ap = 1

n

∑n−p
t=p+1 x

2
t

σ̂2BG = (1− φ̂2BG)γ̂0 = σ2AL(φ̂BG).

Remark 3.2.1 Since ap ≤ γ̂0, we easily see that |φ̂BG| ≥ |φ̂YW |, and thus

σ2AL(φ̂BG) ≤ σ2AL(φ̂YW ). Also note that the Burg estimator of a SAR(p) coincides

with the Nuttall-Strand estimator.

Remark 3.2.2 Since we are assuming a zero-mean process, we have opted not to

mean-correct the data prior to parameter estimation. This is an unrealistic assump-

tion in practice, but will help us fix the comparisons between the various estimators,

as well as examine the relative performance of the saddlepoint approximations to the

sampling distributions.

From (3.2), (3.3), and (3.5), and defining the generalized estimator

φ̂(c1, c2) =

∑n
t=1+p xtxt−p

∑n−p
t=p+1 x

2
t + c1

∑p
t=1 x

2
t + c2

∑n
t=n−p+1 x

2
t

,
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we see that φ̂(1, 0), φ̂(1, 1), and φ̂(1
2
, 1
2
), are the least squares, Yule-Walker, and Burg

estimators respectively.

From Brockwell and Davis (1991) problem 8.7, the -2 Log Likelihood for observations

X1, . . . , Xn from model (3.1), is given by

L(φ, σ2) = n log(2πσ2) + log |Gp|+
1

σ2

[

X′pG
−1
p Xp +

n∑

t=p+1

(Xt − φXt−p)
2

]

, (3.6)

where

X′p = [X1, . . . , Xp]
′

Gp = σ−2Γp =
γ0
σ2
Ip = (1− φ2)−1Ip

⇒ |Gp| = (1− φ2)−p and G−1p = (1− φ2)Ip,

and thus

L(φ, σ2) = n log(2πσ2)− p log(1− φ2) +
1

σ2

[

(1− φ2)

p
∑

t=1

X2
t +

n∑

t=p+1

(Xt − φXt−p)
2

]

.

Comparing this with equation (8.7.4) in Brockwell and Davis (1991), we see imme-

diately that the expression in square brackets must be the residual sum of squares

(RSS), ie.

RSS =
n∑

t=1

(Xt − X̂t)
2/rt−1 = (1− φ2)

p
∑

t=1

X2
t +

n∑

t=p+1

(Xt − φXt−p)
2. (3.7)

Defining σ2ML(φ) ≡ RSS(φ)
n

, and expanding the above, we see that σ2ML(φ) = γ̂0 −

2γ̂pφ + apφ
2. Since the maximum likelihood estimator (MLE) of σ2 for fixed φ is

RSS/n, ignoring constants we obtain the reduced -2 log likelihood :

RL(φ) = n log(γ̂0 − 2γ̂pφ+ apφ
2)− p log(1− φ2) (3.8)

∝ log

(
σ2ML(φ)

n

σ2AL(φ)
p

)

. (3.9)

Differentiating (3.8), we find that the MLE of φ (φ̂ML) is a root of the cubic

φ3 − (n− 2p)γ̂p
(n− p)ap

φ2 − nap + pγ̂0
(n− p)ap

φ+
nγ̂p

(n− p)ap
. (3.10)
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Example 3.2.1 500 observations were simulated from model (3.1) with p = 3,

φ = 0.74, and {Zt} ∼ IID N(0, 1). To 4 decimal places, we obtained the following

estimates: φ̂YW = 0.7055 (RL = −42.2659), φ̂BG = 0.7125 (RL = −42.3555),

φ̂ML = 0.7153 (RL = −42.3635).

Figure 3.1: Plot of σ2ML(φ) (short dashes and bounded below), σ2AL(φ) (long dashes
and bounded above), and a scaled and re-centered RL(φ) (solid line), for the simu-
lated data of example 3.2.1.

–2

2

4

6

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
phi

Figure 3.1 shows the two variance curves σ2ML(φ) and σ2AL(φ) for the data of exam-

ple 3.2.1, overlaid by the RL(φ) curve (suitably scaled and centered to fit on the
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same figure). The plot is typical of the shapes of the variance curves. Both are

quadratics in φ; σ2AL(φ) bounded above with roots at ±1, σ2ML(φ) bounded below

with σ2ML(φ) ≥ 0 for all |φ| ≤ 1 (since by (3.7) it is a sum of squares). The curves

intersect where

σ2ML(φ)− σ2AL(φ) = 0

⇒ φ ((ap + γ̂0)φ− 2γ̂p) = 0

⇒ φ = 0 or φ =
2γ̂p

γ̂0 + ap
≡ φ̃.

Remark 3.2.3 Thus the Burg white noise variance estimate coincides with the

RSS/n variance estimate, ie. σ2ML(φ̂BG) = σ2AL(φ̂BG).

It is clear from (3.4) that the Yule-Walker algorithm always gives a causal solution

for model (3.1). An easy geometric argument enables us to conclude likewise for

the Burg estimate φ̂BG: Since σ2ML(φ) ≥ 0 for |φ| ≤ 1, it always intersects the curve

σ2AL(φ) at φ = 0 and φ = φ̂BG in this causal region, so that we must have |φ̂BG| ≤ 1.

An immediate consequence is that 2|γ̂p| ≤ γ̂0 + ap.

3.3 Saddlepoint Approximating the Distribution of φ̂(c1, c2)

A realization X = [X1, . . . , Xn]
′ from model (3.1), has the multivariate normal

distribution

X ∼ Nn(0,Γn),

with probability density function

fX(x) = (2π)n/2|Γn|−1/2 exp
{

−1

2
x′Γ−1n x

}

,
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where

Γn =






γ(0) · · · γ(n− 1)
...

. . .
...

γ(n− 1) · · · γ(0)




 =

σ2

1− φ2
Jn,

and Jn is the (n× n) matrix whose (i, j)th entry is

Jn(i, j) =

{
φk, if |i− j| = kp, k = 0, 1, . . . , [n/p],
0, otherwise,

and [z] denotes the greatest integer less than or equal to z.

Defining the (i, j)th entry of the (n× n) matrix A to be

A(i, j) =

{
1
2
, if |i− j| = p,

0, otherwise,

and that of (n× n) matrix B to be

B(i, j) =







c1, if i = j and 1 ≤ i ≤ p,
1, if i = j and p+ 1 ≤ i ≤ n− p,
c2, if i = j and n− p+ 1 ≤ i ≤ n,
0, otherwise,

we can express the generic estimator φ̂(c1, c2) as a ratio of quadratic forms in normal

random variables

φ̂(c1, c2) =
X′AX

X′BX
=
Q1
Q2
.

The joint moment generating function (mgf) of Q1 and Q2 is given by

M(s, t) = IE exp{sQ1 + tQ2} = IE exp{X′ (sA+ tB)X} = IE exp{X′CX}, (3.11)

with C = sA+ tB. Therefore, we have

M(s, t) =

∫

IRn
(2π)n/2|Γn|−1/2 exp

{

−1

2
x′
(
Γ−1n − 2C

)
x

}

dx

=
|Γn|−1/2

∣
∣(Γ−1n − 2C)−1

∣
∣
−1/2

∫

IRn
(2π)n/2|

(
Γ−1n − 2C

)−1 |−1/2 exp
{

−1

2
x′
(
Γ−1n − 2C

)
x

}

dx

︸ ︷︷ ︸

1

= |In − 2ΓnC|−1/2

= |In − 2Γn (sA+ tB)|−1/2 ,
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defined for all s and t such that |In − 2Γn (sA+ tB)| > 0.

3.3.1 Some preliminary results

Suppose g(·) is a real-valued function, andX(s) a square matrix viewed as a function

of the scalar variable s. The chain rule for obtaining the derivative of g(X(s)) with

respect to s is, using the notation of Lutkepohl (1996)

∂g(X(s))

∂s
=

∂g(X)

∂vec(X)′
∂vec(X(s))

∂s

= vec

(
∂g(X)

∂X

)′
vec

(
∂X(s)

∂s

)

= vec

(((
∂g(X)

∂X

)′)′
)′

vec

(
∂X(s)

∂s

)

= Tr

[(
∂g(X)

∂X

)′
∂X(s)

∂s

]

, (3.12)

where we have used the fact that for square matrices A and B,

vec(A′)′vec(B) = Tr(AB) = Tr(BA),

and the shorthand, vec(X)′ ≡ (vec(X))′.

Applying this to M(s, t), we obtain

∂M(s, t)

∂t
= Tr

[(

∂ |In − 2Γn(sA+ tB)|−1/2
∂ (In − 2Γn(sA+ tB))

)′
∂(In − 2Γn(sA+ tB))

∂t

]

= −1

2
|In − 2Γn(sA+ tB)|−3/2 |In − 2Γn(sA+ tB)|

Tr
[
(In − 2Γn(sA+ tB))−1 (−2ΓnB)

]

= |In − 2Γn(sA+ tB)|−1/2Tr
[
(In − 2Γn(sA+ tB))−1 ΓnB

]
. (3.13)

Likewise,

∂M(s, t)

∂s
= |In − 2Γn(sA+ tB)|−1/2Tr

[
(In − 2Γn(sA+ tB))−1 ΓnA

]
.
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Thus,

IEQ1 =
∂M(s, t)

∂s

∣
∣
∣
∣
s=0=t

= Tr(ΓnA),

and

IEQ2 =
∂M(s, t)

∂t

∣
∣
∣
∣
s=0=t

= Tr(ΓnB). (3.14)

Defining Yr ≡ Q1 − rQ2 = X
′(A− rB)X, we obtain by linearity of the trace,

IEYr = Tr [Γn(A− rB)] .

3.3.2 The Cumulative Distribution Function (cdf)

In deriving the cdf of φ̂(c1, c2), we will use the notion of the constructed random

variable at zero, as in Butler and Paolella (1998):

F (r) = P

(
Q1
Q2
≤ r

)

= P (Q1 − rQ2 ≤ 0) = P (Yr ≤ 0),

where r ∈ (rL, rU) ⊆ (−1, 1) lies in the interior of the support of φ̂(c1, c2). These

lower and upper bounds of the support satisfy

rL = min

{
x′Ax

x′Bx
: x ∈ IRn,x 6= 0

}

,

and

rU = max

{
x′Ax

x′Bx
: x ∈ IRn,x 6= 0

}

.

Defining z = B1/2x, and noting that both A and B are symmetric, we can rewrite

these optimization expressions for ratios of quadratic forms as

rL = min

{
z′B−1/2AB−1/2z

z′z
: z ∈ IRn, z 6= 0

}

,

and

rL = min

{
z′B−1/2AB−1/2z

z′z
: z ∈ IRn, z 6= 0

}

,
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whence an application of the Raleigh-Ritz Theorem (see for example Lutke-

pohl (1996), section 5.2.2) gives

rL = λmin(B
−1/2AB−1/2), rU = λmax(B

−1/2AB−1/2), (3.15)

where λmin(B
−1/2AB−1/2) and λmax(B

−1/2AB−1/2) denote respectively the smallest

and largest eigenvalues of the real symmetric matrix B−1/2AB−1/2.

The mgf of Yr is then

MYr(s) = IE exp{sYr} = IE exp{X′(sA− srB)X} (3.16)

= |In − 2sΓn(A− rB)|−1/2

≡ |Ω(r, s)|−1/2 , (3.17)

since (3.16) is of the same format as (3.11). Note that for fixed r, MYr(s) is defined

for all s such that |Ω(r, s)| > 0. The cumulant generating function (cgf) of Yr is

then

KYr(s) = −1

2
log |Ω(r, s)| , (3.18)

whence, using (3.12) and Lutkepohl (1996) equation (10) of section 10.3.3,

K ′
Yr
(s) = −1

2
Tr

[(
∂ log |Ω(r, s)|
∂Ω(r, s)

)′
∂Ω(r, s)

∂s

]

= −1

2
Tr
[
Ω−1(r, s)(−2Γn(A− rB))

]

= Tr
[
Ω−1(r, s)Γn(A− rB)

]
.

Again from (3.12) and Lutkepohl (1996) equation (23) of section 10.3.2,

K ′′
Yr
(s) = Tr

[(
∂Tr [Ω−1(r, s)Γn(A− rB)]

∂Ω(r, s)

)′
∂Ω(r, s)

∂s

]

= Tr
[
−Ω−1(r, s)Γn(A− rB)Ω−1(r, s)(−2Γn(A− rB))

]

= 2Tr
[(

Ω−1(r, s)Γn(A− rB)
)2
]

. (3.19)
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Finally, applying (3.12) once more, and Lutkepohl (1996) equation (19) of section

10.3.2,

1

2
K ′′′
Yr
(s) = Tr









∂Tr

[

(Ω−1(r, s)Γn(A− rB))
2
]

∂Ω−1(r, s)





′
∂Ω−1(r, s)

∂s






= Tr

[

2Γn(A− rB)Ω−1(r, s)Γn(A− rB)
∂Ω−1(r, s)

∂s

]

. (3.20)

To compute the derivative of Ω−1(r, s) with respect to s, we appeal to the chain rule

(2) in section 10.7, and equation (1) of section 10.6 of Lutkepohl (1996):

∂vec(Ω−1(r, s))

∂s
=

∂vec(Ω−1(r, s))

∂vec (Ω(r, s))′
∂vec(Ω(r, s))

∂s

=
[
−(Ω−1(r, s))′ ⊗ Ω−1(r, s)

]
vec [−2Γn(A− rB)] ,

and therefore, from property [K-6] of section 1.6,

∂Ω−1(r, s)

∂s
= 2Ω−1(r, s)Γn(A− rB)Ω−1(r, s). (3.21)

Putting this in (3.20), gives finally:

K ′′′
Yr
(s) = 8Tr

[(
Γn(A− rB)Ω−1(r, s)

)3
]

.

The Lugannani and Rice approximation to the cdf of φ̂(c1, c2) at r, can then be

defined in terms of the approximation to the cdf of Yr at 0:

F̂ (r) = F̂Yr(0) =

{
Ψ(ŵ) + ψ(ŵ) [ŵ−1 − û−1] , if Tr [Γn(A− rB)] 6= 0,
1
2
+

K′′′
Yr
(0)√

72πK′′
Yr
(0)3/2 , if Tr [Γn(A− rB)] = 0,

where Ψ(·) and ψ(·) denote, respectively, the cdf and probability density function

(pdf) of a standard normal random variable. Also,

ŵ = sgn(ŝ)
√

−2KYr(ŝ) = sgn(ŝ)
√

log |Ω(r, ŝ)|

û = ŝ
√

K ′′
Yr
(ŝ) = ŝ

√

2Tr
[
(Ω−1(r, ŝ)Γn(A− rB))2

]
,
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and ŝ solves the saddlepoint equation

K ′
Yr
(ŝ) = Tr

[
Ω−1(r, ŝ)Γn(A− rB)

]
= 0, (3.22)

in the convergence region of the cgf (a neighborhood of 0). Due to the nature of the

mgf, the endpoints of this neighborhood must satisfy

|In − 2sΓn(A− rB)| = 0,

or, multiplying both sides by
(
1
2s

)n
,

∣
∣
∣
∣

1

2s
In − Γn(A− rB)

∣
∣
∣
∣
= 0,

which occurs when 1
2s

is any eigenvalue of Γn(A−rB). Thus ŝ is the unique solution

to (3.22) in the interval

1

2λmin(Γn(A− rB))
< ŝ <

1

2λmax(Γn(A− rB))
. (3.23)

3.3.3 The Probability Density Function (pdf)

The saddlepoint approximation to the density of φ̂(c1, c2) at r, f̂(r), can be expressed

in terms of the saddlepoint approximation to density of random variable Wr at 0,

f̂Wr(0), where Wr is the constructed random variable associated with mgf

MWr(s) =
1

IEQ2

∂M(s, t)

∂t

∣
∣
∣
∣
t=−rs

=
|Ω(r, s)|−1/2
Tr (ΓnB)

Tr
[
Ω−1(r, s)ΓnB

]
, (3.24)

which follows from (3.14) and (3.13). The relationship is

f̂(r) = IE(Q2)f̂Wr(0) =
Tr (ΓnB)
√

2πK ′′
Wr

(ŝ)
exp{KWr(ŝ)}, (3.25)

and ŝ solves the saddlepoint equation

K ′
Wr

(ŝ) = 0,
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in the interval defined by (3.23).

The cgf is

KWr(s) = log |Ω(r, s)|−1/2 − log Tr [ΓnB] + log Tr
[
Ω−1(r, s)ΓnB

]

= KYr(s)− log Tr [ΓnB] + log Tr [∆(r, s)] , (3.26)

where ∆(r, s) ≡ Ω−1(r, s)ΓnB. Its first derivative is from (3.12), (3.21), and Lutke-

pohl (1996) equation (2) of section 10.3.2

K ′
Wr

(s) = K ′
Yr
(s) +

∂ log Tr [∆(r, s)]

∂s

= K ′
Yr
(s) +

1

Tr [∆(r, s)]
Tr

[(
∂Tr [∆(r, s)]

∂Ω−1(r, s)

)′
Ω−1(r, s)

∂s

]

= K ′
Yr
(s) +

1

Tr [∆(r, s)]
Tr
[
(ΓnB)2Ω−1(r, s)Γn(A− rB)Ω−1(r, s)

]

= K ′
Yr
(s) + 2

Tr [Ω−1(r, s)D(r)∆(r, s)]

Tr [∆(r, s)]
,

where D(r) ≡ Γn(A− rB). Note that we have established:

∂Tr [∆(r, s)]

∂s
= 2Tr

[
Ω−1(r, s)D(r)∆(r, s)

]
. (3.27)

To obtain the second derivative, we use the quotient rule on the second term of

K ′
Wr

(s), to give

K ′′
Wr

(s) = K ′′
Yr
(s) +

2

Tr [∆(r, s)]

∂Tr [Ω−1(r, s)D(r)∆(r, s)]

∂s

− 2
Tr [Ω−1(r, s)D(r)∆(r, s)]

(Tr [∆(r, s)])2
∂Tr [∆(r, s)]

∂s
. (3.28)

By (3.12), (3.21), and Lutkepohl (1996) equation (21) of section 10.3.2,

∂Tr [Ω−1(r, s)D(r)∆(r, s)]

∂s

= Tr

[(
∂Tr [Ω−1(r, s)D(r)∆(r, s)]

∂Ω−1(r, s)

)′
Ω−1(r, s)

∂s

]

= Tr
[(
D(r)Ω−1(r, s)ΓnB + ΓnBΩ−1(r, s)D(r)

)
2Ω−1(r, s)D(r)Ω−1(r, s)

]

= 4Tr
[

∆(r, s)
(
Ω−1(r, s)D(r)

)2
]

.
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Using (3.19) and (3.27) in (3.28), gives finally

K ′′
Wr

(s) = 2Tr
[(

Ω−1(r, s)D(r)
)2
]

+ 8
Tr
[

∆(r, s) (Ω−1(r, s)D(r))
2
]

Tr [∆(r, s)]

− 4

(
Tr [Ω−1(r, s)D(r)∆(r, s)]

Tr [∆(r, s)]

)2

. (3.29)

Substituting for KWr(s) in (3.25), we obtain the saddlepoint approximation to the

density of the estimator φ̂(c1, c2):

f̂(r) =
Tr [∆(r, s)]

√
2π|Ω(r, s)|K ′′

Wr
(s)

, (3.30)

where, for fixed r ∈ (rL, rU), ŝ solves the saddlepoint equation

Tr
[
Ω−1(r, ŝ)Γn(A− rB)

]
= 0, (3.31)

in the neighborhood of 0 defined by (3.23).

3.4 Plots of Saddlepoint Densities

In this section we compute saddlepoint approximations to the density of the esti-

mator φ̂(c1, c2) of φ in model (3.1), with p = 2, and sample sizes of n = 30, 100.

We will compare the Yule-Walker (φ̂(1, 1)) and Burg (φ̂(1
2
, 1
2
)) densities, as well as

the asymptotic distribution, derived in Chapter 2. We will investigate the relative

shapes and locations of these densities for values of φ ranging from 0.5 to 0.97. The

range of the support for the Yule-Walker and Burg pdfs is from (3.15): ±0.9808 and

±1 respectively for n = 30; ±0.9981 and ±1 respectively for n = 100.

For saddlepoint determination in the n = 100 pdf plots, we will not use all of (3.24),

but retain only the portion that coincides with (3.17), i.e. take

MWr(s) ' |Ω(r, s)|−1/2.
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This greatly speeds up the computations since inverting matrices of size 100 at each

iteration of the saddlepoint finding routine makes for a very slow program. Another

advantage is that the saddlepoint ŝ is the same for both cdf and pdf approxima-

tions, while the accuracy lost in the pdf plots by using this incorrect saddlepoint is

essentially negligible.

Recall that both Yule-Walker and Burg have the same asymptotic distribution under

model (3.1). For the univariate case being considered, this distribution is, from

(2.17)

√
n
(

φ̂(c1, c2)− φ
)

d−→ N

(

0,
σ2

γ(0)

)

.

Since γ(0) = σ2

(1−φ2)
, we have

√
n
(

φ̂(c1, c2)− φ
)

d−→ N(0, 1− φ2),

=⇒ φ̂(c1, c2) ∼ AN

(

φ,
1− φ2

n

)

,

with corresponding asymptotically normal density

fAN(r) =

√
n

2π(1− φ2)
exp

{

−n(r − φ)2

2(1− φ2)

}

. (3.32)

Referring to figures 3.2 and 3.3, we see that for φ far from 1, all three estimators

have very similar densities, particularly at the larger sample size. As we gradually

approach 1, we observe the mode of the Yule-Walker density occurring at smaller

values of r relative to Burg and the asymptotic distribution (particularly evident at

smaller sample sizes). Due to the left-skewness of Yule-Walker and Burg, this offset

in the modes means that the former estimator has a larger bias than the latter. The

Yule-Walker density is also substantially flatter than Burg at higher values of φ,

indicative of a larger variability in the estimates. These findings are in agreement

with what was observed in the simulations of chapter one.
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Figure 3.2: Saddlepoint approximations to the densities of the estimators φ̂(1, 1)
(Yule-Walker, dotted) and φ̂(1

2
, 1
2
) (Burg, dashed) of the autoregressive coefficient

phi (φ) of model (3.1), with p = 2, and sample size 30. The asymptotic distribution
(3.32) is shown in solid lines.
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Figure 3.3: Saddlepoint approximations to the densities of the estimators φ̂(1, 1)
(Yule-Walker, dotted) and φ̂(1

2
, 1
2
) (Burg, dashed) of the autoregressive coefficient

phi (φ) of model (3.1), with p = 2, and sample size 100. The asymptotic distribution
(3.32) is shown in solid lines.
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3.5 Plots of Simulated Densities

In this section we undertake a large simulation study of the probability densities of

the following estimators of φ in model (3.1): Yule-Walker (φ̂(1, 1)), Burg (φ̂(1
2
, 1
2
)),

and Maximum Likelihood (φ̂ML). As in the previous section, we will concentrate

on models with p = 2, sample sizes of n = 30, 100, and values of φ ranging from

0.5 to 0.97. The densities are estimated by simulating 100, 000 realizations from

each model, computing each respective estimator, and plotting the frequency of

occurrence of each as a histogram scaled to be a probability density (the sum of

the bar heights times the bar widths equal to 1). We overlay the Yule-Walker and

Burg estimator histograms with the saddlepoint approximations to the pdfs of their

respective distributions.

Referring to figures 3.4 - 3.7, we see that for φ far from 1, the densities of the three

estimators are nearly coincidental. As we gradually approach 1 though, the salient

feature is the way in which the Burg and Maximum Likelihood density curves remain

very close together, while Yule-Walker tends to gain increasing bias and variance,

particularly at lower sample sizes. This agrees with the tendency noted in chapter

one of Burg to produce estimates of φ with a consistently higher likelihood. The

saddlepoint approximation to the pdf of the Yule-Walker and Burg estimators agrees

closely with the simulated pdfs.

3.6 Assessing the Accuracy of the Saddlepoint Approximations

In this section we compare the saddlepoint approximations of the cdf and pdf of

the Yule-Walker and Burg estimators of φ in model 3.1, with simulated values.

Due to the problems associated with density estimation, such a comparison is more

appropriately carried out for the cdf than the pdf.
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Figure 3.4: Probability density histograms of the distributions of the estimators
φ̂(1, 1) (Yule-Walker, top), φ̂(1

2
, 1
2
) (Burg, middle), and φ̂ML (Maximum Likelihood,

bottom), of the AR coefficient of model (3.1), with p = 2. The Yule-Walker and Burg
histograms are overlaid with their respective saddlepoint approximations. Each
histogram is based on 100, 000 simulated realizations, each of sample size 30. The
realizations on the left side of the figure were generated from a model with φ = 0.5,
and on the right from one with φ = 0.7.
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Figure 3.5: Probability density histograms of the distributions of the estimators
φ̂(1, 1) (Yule-Walker, top), φ̂(1

2
, 1
2
) (Burg, middle), and φ̂ML (Maximum Likelihood,

bottom), of the AR coefficient of model (3.1), with p = 2. The Yule-Walker and Burg
histograms are overlaid with their respective saddlepoint approximations. Each
histogram is based on 100, 000 simulated realizations, each of sample size 30. The
realizations on the left side of the figure were generated from a model with φ = 0.9,
and on the right from one with φ = 0.97.
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Figure 3.6: Probability density histograms of the distributions of the estimators
φ̂(1, 1) (Yule-Walker, top), φ̂(1

2
, 1
2
) (Burg, middle), and φ̂ML (Maximum Likelihood,

bottom), of the AR coefficient of model (3.1), with p = 2. The Yule-Walker and Burg
histograms are overlaid with their respective saddlepoint approximations. Each
histogram is based on 100, 000 simulated realizations, each of sample size 100. The
realizations on the left side of the figure were generated from a model with φ = 0.5,
and on the right from one with φ = 0.7.
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Figure 3.7: Probability density histograms of the distributions of the estimators
φ̂(1, 1) (Yule-Walker, top), φ̂(1

2
, 1
2
) (Burg, middle), and φ̂ML (Maximum Likelihood,

bottom), of the AR coefficient of model (3.1), with p = 2. The Yule-Walker and Burg
histograms are overlaid with their respective saddlepoint approximations. Each
histogram is based on 100, 000 simulated realizations, each of sample size 100. The
realizations on the left side of the figure were generated from a model with φ = 0.9,
and on the right from one with φ = 0.97.
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A technique common in the saddlepoint literature, is the comparison of the percent

relative error (PRE) in the cdfs. Denote by F̂sim(r) and F̂sad(r), the estimates of

the true cdf F (r) of the AR coefficient estimator φ̂(c1, c2) under model 3.1, obtained

via simulations and saddlepoint approximations, respectively. For F̂sim(r) we will

take the traditional empirical cdf estimator, ie. the proportion of realizations whose

value is less than or equal to r. With this notation, we define the PRE at the

quantile r as:

PRE =







F̂sad(r)−F̂sim(r)

F̂sim(r)
100, F̂sim(r) ≤ 0.5,

(1−F̂sad(r))−(1−F̂sim(r))

1−F̂sim(r)
100, F̂sim(r) > 0.5.

Thus, larger absolute values of PRE denote larger discrepancies between the sad-

dlepoint approximation and simulations, while a PRE value of 0 indicates perfect

agreement.

The results, presented in figures 3.8 - 3.13, show PREs generally falling in the range

of±5% for sample size 30, and±2% for sample size 100, with somewhat higher values

in the tails of the distributions. On the whole, the saddlepoint approximation for

this estimator expressible as a ratio of quadratic forms in normal random variables

is fairly accurate.

It is interesting to assess the robustness of the accuracy of the saddlepoint approx-

imations under certain types of model misspecification, such as might occur when

the data follows a process driven by heavy-tailed noise. In figures 3.14 - 3.19, we

see what happens when the saddlepoint approximations to the sampling distribu-

tions of the Yule-Walker and Burg estimators of φ under Gaussian model (3.1), are

used to approximate the same when the data is simulated from a process whose

driving white noise follows a double exponential (Laplace) distribution. The results

are similar to those of the previous examples near the center of the distributions,
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Figure 3.8: Comparisons of the saddlepoint approximations with simulations for the
sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.5 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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Figure 3.9: Comparisons of the saddlepoint approximations with simulations for the
sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.7 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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Figure 3.10: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.9 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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Figure 3.11: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.5 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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Figure 3.12: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.7 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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Figure 3.13: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.9 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The estimation is based on
100, 000 simulated realizations.
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but tend to be larger than their counterparts in the tails. Overall the saddlepoint

approximation is fairly robust in this particular scenario, but this is perhaps not

too surprising given that the sampling distributions of the estimators under the

Gaussian and Laplace noise models are similar.
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Figure 3.14: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.5 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Figure 3.15: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.7 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Figure 3.16: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.9 of model (3.1), with p = 2, and sample size
30. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Figure 3.17: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.5 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Figure 3.18: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.7 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Figure 3.19: Comparisons of the saddlepoint approximations with simulations for
the sampling distributions of the Yule-Walker (φ̂(1, 1), left) and Burg (φ̂(1

2
, 1
2
), right)

estimators of the AR coefficient φ = 0.9 of model (3.1), with p = 2, and sample size
100. The top figures show the saddlepoint pdfs (solid) and kernel density estimates
of the simulated pdfs (dashed). The bottom figures show the corresponding PREs
in comparing the saddlepoint to the simulated cdfs. The empirical pdfs and cdfs are
based on 100, 000 realizations, simulated from a model driven by Laplace noise.
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Appendix A

SOME MATRIX RESULTS AND IDENTITIES

A.1 Matrix calculus

In this section we state some matrix calculus results that will enable us to carry out

the minimization of (1.22) with respect to X. All results are adapted from Magnus

and Neudecker (1999).

A.1.1 Results

Definition A.1.1 Given the matrix function F (X), the Jacobian Matrix of F at

X is defined to be the matrix

∂ vec F (X)

∂(vec X)′

Theorem A.1.1

(First identification theorem of matrix differential calculus)

Let F (X) be a scalar-valued differentiable function of the (d × d) matrix X. Then

the Jacobian matrix of F at X is the (1× d2) matrix A(X) in

∂F (X) = A(X) vec ∂X, (A.1)

where A(X) may depend on X but not on ∂X.
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Remark A.1.1 To find the critical points of F (X), we seek to write its differential

in the form of (A.1). Its critical points are then found by equating the Jacobian

matrix to zero and solving for X.

Definition A.1.2 The Hessian Matrix of F at X is defined to be the matrix H(X)

as follows

H(X) =
∂2F (X)

∂(vec X)∂(vec X)′

Theorem A.1.2

(Second identification theorem of matrix differential calculus)

Let F (X) be a scalar-valued twice differentiable function of the (d × d) matrix X.

Suppose the second differential of F (X) can be expressed in the form

∂2F (X) = (vec ∂X)′B(X)(vec ∂X). (A.2)

Then, the Hessian matrix of F at X is just B(X) itself if it is symmetric, otherwise

take

H(X) =
1

2
(B(X) +B(X)′) ,

where B(X) may depend on X but not on ∂X.

Theorem A.1.3 If the Hessian H(X) of F (X) is positive semi definite (psd) for

all X, then F (X) is a convex function. In addition, if H(X) is positive definite

(pd), then F (X) is a strictly convex function.

Theorem A.1.4 If F (X) is a (strictly) convex function with Xc as a critical point,

then F (Xc) is a (unique) global minimum.

Definition A.1.3 For the (m× n) matrix A, and the (p× q) matrix B, define the

Kronecker product A⊗B as the (mn× pq) matrix

A⊗B = [aijB]
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A.1.2 Identities

In the following, let A and B be constant matrices, and X be the variable matrix

with respect to which differentiation is sought.

[D-1] ∂A = 0

[D-2] ∂(AX) = A ∂X

[D-3] ∂(XB) = (∂X)B

[D-4] ∂(X ′) = (∂X)′

[D-5] ∂(AXB) = A(∂X)B

[D-6] ∂(vec X) = vec(∂X)

[D-7] ∂(tr(AX)) = tr(A ∂X) = (vec A′)′vec(∂X)

[D-8] ∂(G(X) + F (X)) = ∂G(X) + ∂F (X)

[D-9] ∂(G(X)F (X)) = (∂G(X))F (X) +G(X)(∂F (X))

[D-10] ∂ ((vec X)′A(vec ∂X)) = (vec ∂X)′A(vec ∂X)

A.2 Vec and Kronecker product

Let A, B, C, D be conformable matrices; a, b vectors.

[K-1] vec(αA+ βB) = α vec A+ β vec B, where α, β are scalars

[K-2] tr(AB) = tr(BA), provided the product BA makes sense

[K-3] tr(A) = tr(A′)
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[K-4] tr(A′B) = (vec A)′vec B

[K-5] (A⊗B)′ = A′ ⊗B′

[K-6] vec(ABC) = (C ′ ⊗ A)vec B

[K-7] tr(A+B) = tr(A) + tr(B)

[K-8] (A⊗B)−1 = A−1 ⊗B−1, for generalized inverses

[K-9] (A⊗B)(C ⊗D) = (AC ⊗BD)

[K-10] vec(ab′) = b ⊗ a

[K-11] (A+B)⊗ C = A⊗ C +B ⊗ C

A.3 Positive definite (pd) and positive semi-definite (psd) symmetric
matrices

These can be found in say, Graybill (1983) and Lutkepohl (1996).

[M-1] Characterization 1 of pd and psd matrices : a square matrix A is psd iff it can

be written as A = B ′B, for some square matrix B. A is pd iff B is of full rank.

[M-2] Characterization 2 of pd and psd matrices : a square matrix A is psd iff its

eigenvalues are all non negative. A is pd iff all its eigenvalues are positive.

[M-3] The sum of psd matrices is again psd. If at least one of the matrices is pd,

then the whole sum is pd.

[M-4] The Kronecker product of pd matrices is again pd. If at least one of the

matrices is psd, then the whole Kronecker product is psd.

Proof: From Magnus and Neudecker (1999) theorem 1 page 28, if A and B

(both d× d) have eigenvalues λ1, . . . , λd and µ1, . . . , µd, respectively, then the
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d2 eigenvalues of their Kronecker product are precisely λiµj, i, j = 1, . . . , d.

The result then follows by M-2.

[M-5] If A is pd, then so are A−1 and A2.

[M-6] If A and B are psd, then so is ABA.

Proof: Let A = D′D, B = E ′E. Then,

ABA = D′DE ′ED′D = (ED′D)′(ED′D),

which by M-1 has the prerequisite psd form.
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RELATING THE CHARACTERISTIC POLYNOMIAL OF

BIVARIATE VAR MODELS TO THE COEFFICIENTS

In the multivariate full set VAR(p) setting, the vector autoregressive characteristic

polynomial of

Xt − Φ1Xt−1 − · · · − ΦpXt−p = Zt

is defined to be the polynomial of degree dp given by

|Φ(z)| = |Id − Φ1z − · · · − Φpz
p|.

Causality in the multivariate setting requires all roots of |Φ(z)| to be greater than

1 in magnitude, i.e. all roots must lie outside the unit circle in the complex plane.

Restricting ourselves to bivariate models,

|Φ(z)| =
(
1− Φ111 z − · · · − Φ11p z

p
) (

1− Φ221 z − · · · − Φ22p z
p
)

−
(
Φ121 z + · · ·+ Φ12p z

p
) (

Φ211 z + · · ·+ Φ21p z
p
)
, (B.1)

where

Φt ≡
[

Φ11t Φ12t
Φ21t Φ22t

]

, t = 1, . . . , p.

Using the notation

Φs,t ≡
[

Φ11s Φ12s
Φ21t Φ22t

]

≡
[

1st row of Φs

2nd row of Φt

]

, s, t = 1, . . . , p
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(note that Φt,t ≡ Φt), and expanding and combining terms of powers of z in (B.1),

we can write the characteristic polynomial for a bivariate VAR(p) as

|Φ(z)| = 1 + α1z + · · ·+ α2pz
2p,

where

αk =







−Tr(Φ1), k = 1

∑k−1
t=1 |Φt,k−t| − Tr(Φk), 2 ≤ k ≤ p

∑p
t=k−pΦ

11
t Φ22k−t −

(
Φ12k−pΦ

21
p + Φ21k−pΦ

12
p

)
, p+ 1 ≤ k ≤ 2p− 1

|Φp|, k = 2p.

If we specify the characteristic polynomial and attempt to find a set of corresponding

VAR coefficients, the resulting system will have 2p equations in twice as many

unknowns (4 for each Φt, t = 1, . . . , p). In the examples of section 1.9.2, we approach

this problem by fixing some of the elements of the coefficient matrices, thus obtaining

a system in as many equations as unknowns. For low order models, this can easily

be solved by an efficient non-linear system of equations solver.
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DESCRIPTION OF THE AR/VAR MODELING PROGRAMS

C.1 Introduction

The four VAR modeling algorithms presented in chapter 1, are all based on Al-

gorithm 1.4.1, which gives the Yule-Walker solution. The Burg and Vieira-Morf

solutions are obtained by modifying only the manner in which the forward reflec-

tion coefficients are computed, (1.16); while the Nuttall-Strand solution requires

modifications in both the forward and backward reflection coefficients, (1.16) and

(1.17).

Although typically not of interest, the backward coefficients must of necessity be

computed at every iteration. At the very least, Ψ̂K∗(km) and V̂K∗ should be eval-

uated in any given iteration, since the coefficients and white noise variance of the

forward modeling problem depend on them (Ψ̂K∗(km) in the current iteration, and

V̂K∗ possibly in a subsequent one). Defining the level of an iteration to be the cardi-

nality of the set K (i.e. m), a computational savings can sometimes be obtained in

the univariate case by evaluating the complete sets of both forward and backward

coefficients in key iterations. This happens for example when K∗ in one iteration

coincides with K of another at the same level.

Example C.1.1 As an illustration of the application of this type of algorithm in

the univariate setting, suppose for example that modeling on the subset of lags K =
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{1, 3, 4, 5} is desired. We can maximize the computational efficiency of the algorithm

by proceeding as follows:

Level K K∗ J J∗ Compute . . . coefficients
1 {1} {1} ∅ ∅ forward
1 {2} {2} ∅ ∅ forward
2 {1, 2} {1, 2} {1} {1} forward
2 {2, 3} {1, 3} {2} {1} forward and backward
3 {1, 3, 4} {1, 3, 4} {1, 3} {1, 3} forward
3 {1, 2, 4} {2, 3, 4} {1, 2} {2, 3} forward
4 {1, 3, 4, 5} {1, 2, 4, 5} {1, 3, 4} {1, 2, 4} forward

Note that the full application of the algorithm to compute both forward and backward

coefficients at the 4th iteration (K = {2, 3}), enables us to bypass an extra iteration

at level 2 with K = {1, 3}.

The “efficient” rendering of this type of algorithm in a programming language, is

in itself a substantial problem. Although far from efficient, we have succeeded in

implementing it in FORTRAN 90, using complex programming structures such as

recursive pointers, recursive subroutines, and data types that incorporate recursive

definitions. In this chapter we will give an overview of the programming logic and

layout employed in the development of these algorithms for univariate and bivariate

modeling problems. The FORTRAN 90 programs themselves are appended at the

end.

C.2 Building a Tree of Nodes

Consider modeling on the set of lags K = {1, 3, 7} as an example. In order to

determine where application of the algorithm should begin, we first need to work

down to level 1 by successively forming the J and J ∗ sets of lags for all parent

sets of lags K, as shown in figure C.1. We can therefore begin the algorithm by
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computing the coefficients on the sets of lags {1}, {2}, and {4}. With these, we can

now compute the coefficients on the sets of lags {1, 3} and {4, 6}, at level 2. Finally,

regarding these last two sets as our J and J ∗, we can compute the coefficients and

corresponding white noise variance on the set K = {1, 3, 7}.

Figure C.1: Recursive modeling on the set K = {1, 3, 7}.
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Figure C.1 exemplifies the logic that will be employed in the program. The first

step is to create a tree of nodes. A node will be a FORTRAN 90 user-defined data

type, containing the following components:

level - Level of the node in the tree, ranging from top (m), to bottom (1).

lags - Integer vector containing the current subset of lags on which modeling is

desired.

phi/A, B - Real vector containing the coefficients of the AR/VAR being modeled,

corresponding to each of the lags in lags. In the bivariate case, A and B, the

forward and backward coefficient matrices, respectively, will be of type matrix

(%mat), a user-defined data type consisting of a real (2× 2) matrix.
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v/vf, vb - The estimate of the white noise variance for the AR/VAR model. In the

bivariate case, we need to keep track of both the forward (vf), and backward

(vb) white noise covariance matrices (which will be of type matrix).

eps - Real vector of forward prediction residuals for the current model. In the

bivariate case, each component of this vector will be of type vector (%vec), a

user-defined data type consisting of a real vector of dimension 2.

eta - Real vector of backward prediction residuals for the current model. In the

bivariate case, each component of this vector will be of type vector.

reg, star - Pointers to the J and J ∗ subnodes one level down from the current

one. These are themselves of type node, and are therefore defined recursively.

Starting at level m, we successively compute the subnodes J and J ∗ for each set

of lags K, directing pointers to each of them as shown in figure C.1. When level

1 is reached, the tree of nodes will be initialized. With this framework, we can

now begin at level 1, filling each node with its constituents outlined in the above

description. With all nodes in level 1 filled, we move up the tree to level 2. At

each of these nodes, we will retrieve subnode information (J and J ∗), by following

the appropriate pointers that were allocated by the tree building routine. With this

information, we can now fill each of the nodes at this level. We continue in this

fashion, gradually migrating up the tree until the unique node at level m is filled.

Its now an easy matter to retrieve these coefficients, report them, and calculate the

−2 log likelihood (L) for the attained model.

The bulk of the program is defined within MODULE Tree, which is made known to

the main driving program Burg by the call: Use Tree. Upon execution, the user

will be prompted for the following inputs:
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• The file name containing the data to be modeled.

• The number of lags to be modeled: m.

• The specific lags on which subset AR/VAR modeling is desired: K.

• The modeling method: one of Yule-Walker, Burg, Vieira-Morf, and Nuttall-

Strand.

Program Burg itself only reads in these inputs and calls the subroutine Make Tree,

the latter being the driving subroutine in module Tree. The corresponding bivariate

modeling program is called Burg2.

C.3 Description of Principal Program Subroutines

As already stated, the core of the subset modeling programs Burg and Burg2 is the

globally visible MODULE Tree, with SUBROUTINE Make Tree its driving subroutine.

In this section, we will provide a brief description of the essential functions of each

of its constituent subroutines.

C.3.1 Build Node Tree

This is a RECURSIVE SUBROUTINE that initializes the tree of nodes by allocating

pointers to and from nodes. It takes on the level, lags, and a pointer of type

node as arguments. It begins execution at the unique node of level m (top node),

creating pointers to the J and J∗ subnodes (this node%reg and this node%star,

respectively). Following these pointers to levelm−1, Build Node Tree subsequently

allocates pointers to the subnodes in level m − 2. It achieves this by calling itself

with the appropriate arguments:level should be the current level minus one, and

pointers this node%reg and this node%star. The procedure is repeated, always
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following pointer this node%reg before this node%star, until level 1 is reached. At

this point, the two pointers are initialized and made to point nowhere (NULLIFIED).

By the order of precedence inherent in it, the routine then backs up one level and

proceeds to follow pointer this node%star to the “dead end” at level 1.

In this fashion, the tree is initialized from left (J) to right (J ∗), with the pointer

to the subnode J∗ of the rightmost node being allocated last. If we refer back to

figure C.1, the nodes for the tree of this example will be initialized in the following

order:

{1, 3, 7} → {1, 3} → {1} → {2} → {4, 6} → {4} → {2}.

Note that identical copies of nodes will sometimes be created ({2} in the above).

For small m, this is a minor inefficiency in the program that can be improved by a

more competent programmer!

In order for subsequent routines to identify an initialized but unfilled (constituents

of node empty) node, Build Node Tree will set this node%v (this node%vf%mat-

(1,1) in Burg2) to zero, upon allocation of pointers.

C.3.2 Fill Tree

A RECURSIVE SUBROUTINE, taking on a pointer of type node as argument. Its

function is to traverse the now initialized tree, and using the flag for an unfilled

node, fill it by calling Fill Node.

C.3.3 Fill Node

A RECURSIVE SUBROUTINE, called by Fill Tree, whose function is to fill the par-

ticular node that its pointer argument points to. It is in this routine that the
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various AR/VAR modeling algorithms proper are applied. After first initializing

some variables, the routine essentially applies algorithm 1.4.1, but modifying the

reflection coefficient calculation according to the modeling method selected. This

method is indicated by the global variable method, set in Burg/Burg2. Care must

be taken when calculating the forward and backward prediction errors, εK(t) and

ηK(t), before termination of the routine. We must ensure that each is calculated

over a sufficiently large range of t values that will span that required by any sub-

sequent nodes that may use them. A look at chapter 1 will verify that it will be

sufficient to take these ranges of definition to be t ∈ {1, . . . , n+km} for Yule-Walker,

and t ∈ {1 + km, . . . , n} for the remaining three methods.

C.3.4 Print Node Tree

With its pointer argument, the RECURSIVE SUBROUTINE Print Node Tree will tra-

verse the now completed tree of nodes, and proceed to print the estimated coeffi-

cients and white noise variance stored in each node. The addition of an appropriate

IF statement between recursive calls to itself, ensures that it will only print this

information for the top node.

C.3.5 Undo Node Tree

The RECURSIVE SUBROUTINE Undo Node Tree will undo the pointer allocation put

in place by Build Node Tree. As designed, the modeling programs themselves don’t

need this routine. It becomes desirable only if an extra loop is added to do repeated

modeling, such as in large scale simulations. In this way, repeated memory allocation

when initalizing pointers is avoided every time a new tree is built. This becomes

increasingly important as the number of modeled lags (m) grows, since the number

of nodes created by the programs in any one run is exactly 2m. In repeated modeling,
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large values of m will quickly exhaust the memory capacity of the average computer.

Again, there is room for improvement here for an astute programmer, in that it

would be more efficient to only initialize the tree of nodes once before plunging into

the DO loop of the repeated modeling scenario.

C.3.6 Causal Check

This routine is needed in the bivariate program only, in order to ensure the obtained

VAR model is causal before proceeding with the likelihood calculations. In the uni-

variate program, this function is performed within the likelihood calculation routine

itself. The strategy is to use the state space representation to write a VAR(p) as a

VAR(1), as follows:

Random vectors {Xt, . . . ,Xt−km} from model (2.1), will satisfy the relationships















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,

which can be written in the compact form

Yt
︸︷︷︸

(dkm×1)

= A
︸︷︷︸

(dkm×dkm)

Yt−1
︸︷︷︸

(dkm×1)

+ Wt
︸︷︷︸

(dkm×1)

. (C.1)

In block matrix form, vectors Yt and Wt have length km, while the square matrix

A has dimension km. Note that the only nonzero entries of the first block matrix

row of A are {ΦK(k1),ΦK(k2), . . . ,ΦK(km−1),ΦK(km)}, occurring at block matrix

column numbers {k1, k2, . . . , km−1, km}, respectively. The covariance matrix ofWt



122

is

ΣW = IE








Zt
0
...
0







[Z′t,0

′, . . . ,0′] =








Σ 0 · · · 0
0 0 · · · 0
...

. . .
...

0 · · · · · · 0







.

(C.1) is now a VAR(1) of dimension dkm, and its causality (and thus that of the

original process) can be assessed by determining if all eigenvalues of A are less than

1 in absolute value.

C.3.7 Likelihood/Approx Likelihood

In the univariate program, we compute the exact likelihood in SUBROUTINE Like-

lihood. The only sizeable difficulty is in evaluating the model autocovariances

γ(0), . . . , γ(km), accomplished by inverting the Yule-Walker equations. The −2 log

likelihood, L(φK , σ
2), for the data x1, . . . ,xn, is then evaluated via the Innovations

Algorithm (Brockwell and Davis (1991), proposition 5.2.2, and equation (8.7.4)):

L(φK , σ
2) = n log(2πσ2) +

n∑

t=1

log(rt−1) +
1

σ2

n∑

t=1

(xt − x̂t)2/rt−1.

In the bivariate program, SUBROUTINE Likelihood uses the same approach to com-

pute the likelihood, i.e. the Multivariate Innovations Algorithm (Brockwell and

Davis (1991), proposition 11.4.2, and equation (11.5.5)):

L(ΦK ,Σ) = nd log(2π) +
n∑

t=1

log |Vt−1|+
n∑

t=1

(Xt − X̂t)
′V −1t−1(Xt − X̂t).

Computing the model autocovariance matrices, Γ(1− km), . . . ,Γ(0), . . . ,Γ(km− 1),

is a much more formidable task here, but this can be accomplished via the state

space formulation of the previous subsection. Transforming the SVAR(K) to the

VAR(1) of equation (C.1), gives the following solution for the autocovariances ΓY (·)

of the process {Yt}:

ΓY (h) =

{
AΓY (h)A

′ + ΣW , h = 0
AΓY (h− 1), h > 0

,
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whence we obtain

vec (ΓY (0)) =
[
Id2k2

m
− A⊗ A

]−1
vec (ΣW ) .

The required autocovariance matrices can be found in the first block row and column

of the (km × km) block matrix ΓY (0), since

ΓY (0)
︸ ︷︷ ︸

(dkm×dkm)

=








Γ(0) Γ(1) · · · Γ(km − 1)
Γ(−1) Γ(0) · · · Γ(km − 2)

...
. . .

...
Γ(1− km) · · · Γ(−1) Γ(0)







.

Due to the computational intensity involved in finding ΓY (·) however, the bivariate

routine Likelihood is extremely slow. We opt instead to approximate the autoco-

variances via the causal representation

Γ(h) =
∞∑

j=0

Ψh+jΣΨ′j,

truncating the summation at 100 terms, and computing the likelihood via (1.31).

This “approximate likelihood”, is computed in SUBROUTINE Obj Fun. SUBROUTINE

Approx Likelihood not only calls Obj Fun in order to compute this approximate

likelihood for ΣAL, but also searches for the white noise covariance matrix that

maximizes the likelihood for the given VAR coefficient matrices (ΣML). It does so

by using ΣAL as an initial guess, and by repeated calls to SUBROUTINE Hooke, which

employs a direct search algorithm to locate the global minimum of an objective

function of several variables (Hooke and Jeeves (1961)).

C.3.8 Simulate/Simulate2

These appear in the modeling programs of appendix ?? only for completeness. They

are not called by the modeling programs themselves, but were used extensively to
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simulate realizations from causal subset univariate and bivariate VAR models with

Gaussian noise:

Xt =
∑

i∈K
ΦK(i)Xt−i + Zt, {Zt} ∼ IID N(0,Σ). (C.2)

The logic in both programs is identical:

• Obtain n+ 500 observations from the noise process {Zt}.

• Setting X1, . . . ,Xkm equal to zero, use (C.2) to obtain Xkm+1, . . . ,Xn+500.

• Select only the last n of these Xt’s as a bona fide sample from (C.2).
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