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Ch. 1: Overview & Descriptive Statistics

§1.1 Populations and Samples

§1.2 Pictorial Methods

§1.3 Measures of Location

§1.4 Measures of Variability

Count: slides 1–35 (35 slides).

( [*] denotes content that will be given in class)
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�� ��What is Statistics Used For?

Statistics is used to:

make intelligent judgements and informed decisions

in the presence of uncertainty

In more detail, some of these uses are:

. Designing experiments to collect data

. Extracting information from the data

. Making decisions and predictions in the presence of

uncertainty and variation (a.k.a. data mining; predictive

analytics; machine learning)
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�� ��Fig 1: Population & Sample [*]
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§1.1 Populations and Samples

. Population: the universal set of all objects under study,

and it can be:

◦ real or concrete (e.g., college students in USA)

◦ virtual or hypothetical (e.g., all parts that could be

produced by a specific machine)

. Sample: any subset of the population (usually collected

in a prescribed manner)

. Variable: a characteristic of an object, often a numeric

measurement (e.g., weight), but can also be a category

(e.g., gender)
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�� ��Population and Sample: Examples

. Ex 1

Study aim : Investigate American people’s preference

between Republicans and Democrats

◦ Population: the preference of all Americans

◦ Sample: the preference of all Texans

. Ex 2

Study aim: Determine if a given coin is fair or not

◦ Population: the result from an infinite number of

experiments

◦ Sample: the result from 10 experiments.
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�� ��Descriptive Statistics

. Descriptive statistics summarize/describe important

features of the data, either graphically or numerically

. Mostly created by computer packages

. Challenger Data:
In 1986 the space shuttle Challenger exploded after
launch. Ex 1.1 in book (7th Ed.) gives the temperature
(0F ) at each of 36 launches. Summary statistics are:

min = 31.00, median = 67.50, mean = 65.86, max = 84.00
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�� ��Challenger Data: Stem & Leaf Plot [*]
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�� ��Inferential Statistics

. Descriptive statistics by themselves provide some

information but do not provide conclusions

. Inferential statistics methods allow us to draw

conclusions from data

. Because of variation in the data, we cannot draw

guaranteed conclusions . . .

. We must phrase the conclusions as probabilistic

statements (confidence intervals; hypothesis tests)
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�� ��Data Collection Methods

. Simple Random Sample (SRS): a sample drawn from a

well-defined pop. in such a way that all possible samples

of the same size have the same probability of being

selected. (The simplest of all sampling schemes.)

. Stratified Sample: Separate pop. into groups (strata), and

take samples from each one.

Ex: 3 types of DVD player manufactured, so we sample

from among customers that bought each type to

ascertain overall satisfaction.
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. Convenience Sample: Easily available and collected

without systematic randomization (may entail some

danger in that it may not be representative of entire pop.)

Ex: collection of bricks stacked in such a way that those

in middle harder to get, so we sample from those on top

only

. Notation. Sampled data values:

x1, x2, . . . , xn

The ordered sampled values are called order statistics:

x(1) ≤ x(2) ≤ · · · ≤ x(n)
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�� ��Types of Studies and Experiments

. Enumerative vs. Analytic Studies:

◦ Enumerative: finite, identifiable, unchanging

collection of objects that make up the population.

Ex: sample 10 furnaces from those already

manufactured this year, to make inference on the

lifetime of the units.

◦ Analytic: pop. is not finite or identifiable.

Ex: sample 10 furnaces from those to be manufactured

over the course of this year.
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. Designed Experiments: common in engineering;

experimental conditions are purposefully manipulated to

observe their effect on an outcome variable of interest.

Ex: assign 3 corrosion protection methods randomly to

each of 3 sets of 10 pipes.

. Observational Studies: are in contrast to designed

experiments in that the experimental conditions cannot

be purposefully manipulated. (Typically cannot ascribe

causality.)

Ex: observe the incidence of lung cancer among smokers

and non-smokers.
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§1.2 Pictorial Methods

. Histogram: plot with bars approximating the density

function of continuous numeric data (called barplot for

discrete data).

. Stem-and-Leaf plot: A type of histogram that separates

digits into “stems” and “leaves”.

. Probability plot (or QQ-plot): gives an indication of

whether a dataset could be normally distributed (later).

. Box-and-Whisker plot: A pictorial representation of the
data via a 5-number summary:

min, 1st quartile (Q1), median, 3rd quartile (Q3), max
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�� ��Ex: Golf Course Yards (Stem & Leaf) [*]

Ex 1.7 in book (7th Ed.) gives total yardage of a sample of
40 golf courses. Summary statistics are:

min = 6433, Q1 = 6674, median = 6872, Q3 = 7042, max = 7280
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�� ��Constructing Barplots & Histograms:

. Barplot: simply place a bar at each (discrete) data value

with height equal to the frequency (or relative frequency)

of that value.

. Histogram: divide data into equal-width bins (class

intervals), and determine number of bins (≈
√
n). Then

set:

◦ bin width ≈ x(n)−x(1)

number of bins
,

◦ start 1st bin at (or just below) x(1)

◦ determine frequency of each class, and mark bin boundaries on

x-axis

◦ draw a rectangle of height equal to the frequency (or relative

freq.) above each bin.
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�� ��Ex: Power Consumption [*]

Ex 1.10 in book (7th Ed.) gives electrical energy consumption
of a sample of 90 homes. Summary statistics are:

min = 2.97, max = 18.26, =⇒ bin width ≈
18.26− 2.97
√
90

≈ 2
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�� ��Unequal Bin-Width Histograms

. It’s possible (but unusual) to use different bin widths,

e.g., highly skewed data.

. In this case it’s important to make the area of each bar

proportional to the frequency/relative freq. (Failure to do

so is deceptive...)

. Steps (for relative freq.) are as before, except:

◦ determine relative freqs. as before (after choosing bin widths),

◦ rectangle height = relative freq.
bin width

,

Note: also works for equal bin-width histograms; vertical scale is

then a density function. (See book for Exs.)
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�� ��Categorical Data

. With categorical data we observe only the category or

label of the outcome, not a numerical value.

. Graphical displays for this kind of data are limited,

usually only pie-charts or bar-plots.

. Ex: Prob. 1.29 in book (7th Ed.) gives 60 obs on the type
of health complaint:

B=back pain: 7 obs.

C=coughing: 3 obs.

F=fatigue: 9 obs.

J=joint swelling: 10 obs.

M=muscle weakness: 4 obs.

N=nose running/irritation: 6 obs.

O=other: 21 obs.
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�� ��Health Complaints Ex: Bar-plot [*]
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§1.3 Measures of Location

. Mean: the sample mean is given by

x̄ =
1

n

n∑
i=1

xi

If each data value is a point mass on the number line,

then x̄ would be the balance point (center of mass). The

sample mean x̄ is an estimator of the population mean µ

(later).
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. Median: the sample median is the “middle” value in the

ordered data x(1) ≤ · · · ≤ x(n), i.e.

x̃ =

x([n+1]/2), if n is odd
x(n/2)+x(n/2+1)

2 , if n is even

Ex: median of {9, 4, 17} is x̃ = 9.

Ex: median of {4, 9, 3, 17} is x̃ = (4 + 9)/2 = 6.5.

The median is a more “representative” typical value than

the mean when the data are skewed.
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. Quartiles {Q1, Q2, Q3}: divide the data into quarters

(fourths). The median is the 2nd quartile: Q2 = x̃. To

find Q1 (1st quartile/fourth) and Q3 (3rd

quartile/fourth):

◦ Order the data: x(1) ≤ · · · ≤ x(n).

◦ Separate lower half of data from upper half (include x̃

in both halves if n is odd).

◦ Then, Q1 is the median of the lower half, and Q3 is

the median of the upper half.

22



'

&

$

%

. Percentiles and Quantiles. The p-th quantile (0 ≤ p ≤ 1)

is any value such that a proportion p of the data is below

it (and 1− p above it). A percentile is the same, but

expressed as a percentage.

So the p-th quantile is the 100p-th percentile. If you score

at the 90th percentile (0.9 quantile) on SAT, and your

score is 670, then 90% of all scores are below 670.
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�� ��Calculation of Quantiles [*]
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. Trimmed Mean. Note that x̄ is strongly influenced by

outliers (corresponds to 0% trimming) and x̃ is robust to

outliers but ignores the data outside of the middle

(corresponds to almost 100% trimming).

A compromise is to use a trimmed mean, where a fraction

of the data at both high and low ends is “trimmed”

(dropped), usually 5-25%, and the rest is averaged.
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�� ��Ex: Copper Content of Bidri (Ex 1.14 7th Ed.) [*]

n = 26 obs on percentage copper content of Bidri wares:

2.0, 2.4, 2.5, 2.6, 2.6, 2.7, 2.7, 2.8, 3.0, 3.1, 3.2, 3.3, 3.3

3.4, 3.4, 3.6, 3.6 3.6, 3.6, 3.7, 4.4, 4.6, 4.7, 4.8, 5.3, 10.1
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�� ��Numerical summaries of categorical data

Use sample proportions:

p̂ =
x

n
=

# successes

n

Ex (Health Complaints):

Tabulate sample proportions of each type of complaint.

B C F J M N O

x 7 3 9 10 4 6 21

p̂ 7
60

3
60

9
60

10
60

4
60

6
60

21
60
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§1.4 Measures of Variability/Spread/Dispersion

. Variance: the sample variance is defined as

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

Ignoring the division by n− 1 instead of n (which is a

correction factor to make it an unbiased estimator of the

population variance σ2, to be discussed later), s2 is

essentially the average squared distance from the mean.
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. Standard Deviation: the sample standard deviation is

simply the square root of the sample variance:

s =
√
s2

Note: s is a measure of variability on the same scale as

the data (unlike s2 which is in squared units).

. The following computational formula for s2 is easy to

derive, and makes its calculation easier by being based on

the sum and sum of squares:

s2 =
1

n− 1

 n∑
i=1

x2i −
1

n

(
n∑
i=1

xi

)2

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�� ��Properties of Variance and Standard Deviation

These measures of variability are not affected by shifting the

data by a constant, but they are affected by scaling. Let s2x
and s2y be the sample variances based on samples x1, . . . , xn

and y1, . . . , yn, respectively. Then, for any constant c, we

have the following:

. If y1 = x1 + c, . . . , yn = xn + c, then s2y = s2x and sy = sx.

. If y1 = cx1, . . . , yn = cxn, then s2y = c2s2x and sy = |c|sx.
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�� ��Boxplots (Box-and-Whisker plots)

A simple 5-number summary of a dataset that shows
location, scale, outliers, and symmetry:

. minimum: x(1),

. 1st quartile/lower fourth: Q1,

. median: Q2,

. 3rd quartile/upper fourth: Q3,

. maximum: x(n).

The box spans the middle half of the data, from Q1 to Q3,

with either a dot or a line at Q2. The whiskers extend from

the box to the min and max values that are not outliers.

(The outliers are individually marked with dots.)
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Def: (Interquartile Range/Fourth Spread)

fs = Q3 −Q1

This is a measure of spread (variability or dispersion) over

the middle 50% of the data.

Def: (Outlier) Any obs that is farther than 1.5fs from the

closest quartile (Q1 or Q3) is an outlier (or mild outlier).

An extreme outlier is any obs that is more than 3fs from the

closest quartile.
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�� ��Ex: Corrosion Data (Ex 1.17 7th Ed.)[*]

n = 19 obs on amount of corrosion (mg) in iron parts:

40, 52, 55, 60, 70, 75, 85, 85, 90, 90, 92, 94, 94, 95, 98, 100 115, 125, 125
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�� ��Ex: Pulse Widths Data (Ex 1.18 7th Ed.)

An example of a dataset with outliers (filled dots) and

extreme outliers (open dots).
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�� ��Ex: Gas Vapor Coefficient Data (Ex ??? 7th Ed.)

For two or more groups of obs of a numeric variable,

comparative (side-by-side) boxplots allow for easy comparison

of location, scale, outliers, and symmetry.
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Ch. 2: Probability

§2.1 Sample Spaces and Events

§2.2 Axioms, Interpretations, and Properties of Probability

§2.3 Counting Techniques

§2.4 Conditional Probability

§2.5 Independence

Count: slides 36–64 (29 slides).

( [*] denotes content that will be given in class)
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�� ��Roadmap: Where is Course Headed? [*]
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§2.1 Sample Spaces and Events

. Experiment: an activity or process whose outcome(s) is

subject to uncertainty (random outcomes). Forms the

basis for all the ensuing definitions and subsequent

probability calculations.

. Sample Space (S): the set of all possible outcomes of the

experiment.

. Event: any subset of outcomes, A, of the experiment

(A ⊂ S). A simple event consists of exactly one outcome,

whereas a compound event consists of more than one. An

event occurs if the outcome of the experiment falls in the

subset of outcomes that defines the event.
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�� ��Examples [*]

. Toss a coin. S = {H,T}. The event “head” is {H}.

. Toss 2 coins. S = {HH,HT, TH, TT}. The event

“exactly 1 head” is a compound event with the two

outcomes {HT, TH}.

. Battery Failures. Experiment: test each battery as it

comes off an (infinite) assembly line until we observe the

1st success. (Each battery tests as either S=success or

F=failure.)

◦ Sample space: S =

◦ The event “observe an S among the first 3 batteries”:

A =
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�� ��Events and Operations[*]

. Empty Event: event that never occurs; empty set φ.

. Union: A ∪B occurs if either A or B occur, or both.

. Intersection: A ∩B occurs if both A and B occur.

. Disjoint Events: A and B are disjoint if A ∩B = φ.

. Complement: A′ occurs if A does not occur; A′ = S \A.

. Venn Diagram: pictorial representation of events/sets:

.
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�� ��Examples [*]

. Toss a die. A = {number larger than 3} = {4, 5, 6}, and

B = {even number} = {2, 4, 6}.

A ∪B = { }, A ∩B = { }

. Battery Failures. Let A = {S, FS, FFS} and

B = {S, FFS, FFFFS}. Compute the outcomes in:

◦ A ∩B =

◦ C =

◦ C ′ =
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§2.2 Axioms, Interpretations, Probability Properties

. Def: (Probability) The experiment has unpredictable

outcomes in any one trial, but has a predictable long-run

behavior; relative frequencies of outcomes approach fixed

values (over many repetitions of the experiment), and are

called its probabilities. For a given event A, we denote its

probability by P (A).

. Axioms of Probability

◦ Axiom 1: For any event A, P (A) ≥ 0.

◦ Axiom 2: P (S) = 1.

◦ Axiom 3: If A1, A2, . . ., is a collection of mutually exclusive

events (Ai ∩Aj = φ for i 6= j), then

P (A1 ∪A2 ∪ . . .) =
∑
i

P (Ai)
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�� ��Simple Properties of Probability [*]

. Property 1: P (A) = 1− P (A′).

. Property 2: (Cf. with Axiom 3) For any events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Ex: In a certain suburb, 60% of households subscribe to the

Metro paper, 80% subscribe to the Local paper, and 50%

subscribe to both papers. If a household is selected at

random, what is the probability that it subscribes to:

. at least one of the two papers;

. exactly one of the two papers.
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�� ��Computing the Probability of Event A

. Define the experiment and list all the outcomes:

S = {s1, . . . , sn}

. Assign reasonable probabilities to the outcomes:

pi = P (si), i = 1, . . . , n

. Define A as a collection of outcomes: A =
⋃k
j=1 sj

. P (A) is the sum of all probabilities for outcomes in A:

P (A) =
k∑
j=1

P (sj) =
k∑
j=1

pj

44



'

&

$

%

�� ��Simplification Under Equally Likely Outcomes

If all outcomes are equally likely (pi = p for all i), then:

P (A) =
#A

#S
=

number of elements in A

number of elements in S
Ex: Roll a die. The probability of an odd number is:

P (A) =
#A

#S
=

#{1, 3, 5}
#{1, 2, 3, 4, 5, 6}

=
3

6
=

1

2

Ex: Toss coin twice. What is probability of at least one H?

. S = {HH,HT, TH, TT}: then A = {HT, TH,HH}, and since

all outcomes are equally likely, P (A) = 3/4.

. S = # H’s = {0, 1, 2}: then A = {1, 2}, but P (A) 6= 2
3 since

outcomes NOT equally likely. Using method in previous slide:

P (A) = P (1) + P (2) =
2

4
+

1

4
=

3

4
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�� ��Ex: Roll a die twice. A = {sum of rolls ≥ 4} [*]

. Sol. 1: Outcomes in S are equally likely.

S = {all tuples} = {(1, 1), (1, 2), (2, 1), . . . , (6, 6)}
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. Sol. 2: Outcomes in S are NOT equally likely [*] .

S = {all sums} = {2, 3, . . . , 12}
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§2.3 Counting Techniques

Since usage of the equally likely outcomes method involves

counting set elements, we need to learn how to “count”. Our

tools will be: product rule, permutations, and combinations.

Product Rule. Consider an ordered pair of objects (x, y),

where there are n1 choices for x and n2 choices for y. Then

the total number of distinct ordered pairs of objects that can

be formed is n1n2.

. Ex 1: Playing cards have 13 faces and 4 suits. There are thus

4× 13 = 52 face-suit combinations.

. Ex 2: An 8-bit binary word is a sequence of 8 digits, each of

which is either a 0 or a 1. There are thus 28 = 256 binary

words.
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�� ��Permutations and Combinations

. Permutation. Any ordered sequence of k distinct objects

taken from a set of n ≥ k distinct objects is called a

permutation of size k. The number of such sequences is

denoted by Pk,n, and can be counted by the Product Rule:

Pk,n = n(n− 1)(n− 2) · · · (n− k + 1) =
n!

(n− k)!

. Combination. Any unordered sequence of k distinct objects

taken from a set of n ≥ k distinct objects is called a

combination of size k. The number of such sequences is

denoted by Ck,n or
(
n
k

)
, is read “n choose k”, and can be

counted by starting from the corresponding permutation and

striking out all k! rearrangements of the k objects:

Ck,n =

(
n

k

)
=
Pk,n
k!

=
n!

(n− k)!k!
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�� ��Examples [*]

. Ex 1. Select leadership roles of {P,VP,T} for a company

from 10 available people.

◦ In how many ways can this be done?

◦ What is the probability Alex & Bob are both chosen?

. Ex 2. Select 3 people from 10 available to fill leadership

roles in a company.

◦ In how many ways can this be done?

◦ What is the probability Alex & Bob are both chosen?
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�� ��Ex: The Birthday Paradox [*]

One instructor and n = 72 students.

. What is the probability no student has same b-day as

instructor (event A)?

. What is the probability all students have different b-days

(event B′)?
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�� ��Ex: State Lottery (Lotto) [*]

Lotto officials pick 6 numbers randomly between 1 and 53.

What is the probability that among your selection of 6

numbers, you match exactly k of the official numbers?
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§2.4 Conditional Probability [*]

Ex: Have a group of 50 people. Of these, 26 are male, 18 of

which favor proposal A. The remaining 24 are female, 12 of

which favor proposal A. Randomly select one person.

. What is the probability the selected person favors

proposal A?

. What is the probability the selected person favors

proposal A, given that they are female?
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�� ��Definition of Conditional Probability [*]

The probability of event A happening given the additional

information that event B has happened, is called a

conditional probability (cf. 2nd question of previous example),

and is denoted by P (A|B). This involves a reduction in the

sample space which becomes just B, and can thus be

obtained from the following definition.

Def: If P (B) > 0, then P (A|B) is defined as

P (A|B) =
P (A ∩B)

P (B)

and can be visualized in the following Venn diagram:
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�� ��Examples [*]

. The probability that a project will be well-planned (WP ) is

0.8, and the probability that it will be well-planned and

well-executed (WE) is 0.72. What is the probability that a WP

project will be WE?

. Roll a die twice. Given that the first number is 1, what is the

probability that the total is 3?
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�� ��Multiplication Rule [*]

Solving for the joint probability P (A ∩B) in the definition of

conditional probability gives:

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)

Use this rule when it’s easy to compute conditionals, like

P (A|B) or P (B|A), and we have information about (or can

easily compute) the corresponding marginals, P (B) or P (A).

Ex: Have 3 red and 2 blue balls in a box. Randomly draw 2

balls. What is the probability both are red?
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�� ��Example (3 red and 2 blue balls): Continued [*]

Other ways to solve for the probability both balls are red.

. Tree Diagram.

. Permutations.

. Combinations.
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�� ��Ex: Three Students & One Super Bowl Ticket [*]

Ticket is hidden in one of 3 boxes and they will decide who

gets it as follows. One of them chooses a box, if the ticket is

inside he gets it, otherwise he’s out (along with the box).

Then the next student picks one of the 2 remaining boxes,

etc. Does it matter who goes first?
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�� ��Law of Total Probability & Bayes Theorem

Let A1, . . . , Ak be mutually exclusive events (Ai ∩Aj = φ)

which are exhaustive (
⋃k
i=1Ai = S). Then for any event B

we have the following two important results.

. Law of Total Probability:

P (B) =

k∑
i=1

P (B ∩Ai) =

k∑
i=1

P (B|Ai)P (Ai)

. Bayes Theorem:

P (Aj |B) =
P (Aj ∩B)

P (B)
=

P (B|Aj)P (Aj)∑k
i=1 P (B|Ai)P (Ai)
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�� ��Ex: Machines Producing Parts [*]

Three machines produce parts with the following defective rates:

M1 = 10%, M2 = 20%, M3 = 25%. The percentages of all parts

produced by the machines are: M1 = 60%, M2 = 20%, M3 = 20%.

. What is the probability that a randomly chosen part is

defective?

. What is the probability that a defective part is made by M1?

60



'

&

$

%

�� ��Ex: Lie Detector Test [*]

Let +/− denote event that lie-detector reads positive/negative. Let

T/L denote the event that the subject is telling truth/lying. The

reliability of the detector is: P (+|L) = 0.88 and P (−|T ) = 0.86.

Also, suppose most people don’t lie so that P (T ) = 0.99. If a

subject has a positive reading, what is the probability that he is in

fact telling the truth?
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§2.5 Independence

Def: Events A and B are independent if

P (A ∩B) = P (A)P (B)

or equivalently

P (A|B) = P (A) and P (B|A) = P (B)

Def: Events {A,B,C} are (mutually) independent if

P (A∩B) = P (A)P (B), P (A∩C) = P (A)P (C), P (B∩C) = P (B)P (C),

and

P (A ∩B ∩ C) = P (A)P (B)P (C)

(Generalizes in an obvious way to independence of k ≥ 3 events.)
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�� ��Ex: Toss Two Fair Coins [*]

S = {HH,HT, TH, TT}, and we define the events:

A = {1st coin H}, B = {2nd coin H}, C = {1 or 2 coins show H}

. Are A and B independent? Mutually exclusive?

. Are A and C independent? Mutually exclusive?
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�� ��Ex: Binary Signal Decoding [*]

A binary message consists of a single digit, either 0 or 1. Because

of random noise in the channel, the message could be incorrectly

received as the opposite digit with probability p. Which of the

following two schemes has the highest probability of resulting in

the correct transmission of a 1?

. Send the selected digit once.

. Send the selected digit 3 times in succession; message is

decoded via “majority rule”.
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Ch. 3: Discrete Random Variables

And Probability Distributions

§3.1 Random variables

§3.2 Discrete random variables & distributions

§3.3 Expected values

§3.4 Binomial distribution

§3.5 Hypergeometric & negative binomial distribution

§3.6 Poisson distribution

Count: slides 65–97 (33 slides).

( [*] denotes content that will be given in class)
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§3.1 Random Variables [*]

Def: A random variable (r.v.) X is any rule that associates a

real number with each outcome in the sample space

X : S 7−→ R

(More abstractly: X is a function or mapping from S to R.)
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�� ��Examples

. Bernoulli Experiment: has a binary outcome (success

or failure), e.g., tossing a coin. We can define e.g., X = 1

if success, and X = 0 if failure.

. Count Experiments: frequently the outcome of an

experiment is the number of times that a particular event

happens, e.g., X is the number of traffic accidents on a

given road over a year.

. Measurement Experiments: many of the examples

already presented (temperatures at shuttle launch,

material strength, golf course lengths, power

consumption, etc.) are numeric outcomes on a continuous

scale, e.g., X is the length of a particular golf course.
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�� ��Discrete Random Variables

Def: A random variable that can only assume distinct

(countable) values is said to be discrete. These can have

either a finite or (countably) infinite range.

Examples of discrete r.v.’s

. Bernoulli: possible values are 0 or 1, denoting “failure”

or “success”. E.g., toss a coin.

. Binomial: possible values are 0, 1, 2, . . . , n, which counts

the number of “successes” in n trials. E.g., number of

heads in n tosses of a coin.

. Geometric: possible values are 0, 1, 2, . . ., which counts

the number of trials until the first “success”. E.g.,

number of tosses until the first head.
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�� ��Continuous Random Variables

Def: A random variable that can (theoretically) assume any

value in an interval (finite or infinte) is said to be continuous.

Examples of continuous r.v.’s

. Measurements. Select random location in contiguous

U.S. and measure height above sea level. Could be any

value in the (approximate) range of [−300, 14500] feet.

. Time to Failure. Randomly select a new light bulb,

switch it on, and record the time until it burns out.

. Uniform Distribution. This is the most basic of all

r.v.’s, where the possible values occur with equal

probability in some finite range [a, b].
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§3.2 Discrete Random Variables & Distributions

A discrete distribution is described by giving its probability

mass function (pmf), p(x), either as a table, function, or

plot. The meaning of the pmf is that

p(x) = P (X = x)

and is in theory defined for all x, but in practice p(x) = 0

except at select distinct values.

Properties of the pmf:

. p(x) ≥ 0, for all −∞ < x <∞.

.

∑∞
x=−∞ p(x) = 1.
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�� ��Example: Table, Function, and Plot of a PMF

x 1 2 3 4

p(x) 0.4 0.3 0.2 0.1

p(x) =

 5−x
10 , x = 1, 2, 3, 4

0, otherwise
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�� ��Parameters of a Distribution

The distribution of many familiar r.v.’s will often depend on

variable quantities called parameters. Two examples are:

. Bernoulli. Single trial, results in “success” (X = 1) with

probability p, and “failure” (X = 0) with probabability 1− p.
The pmf is:

p(x) =


1− p, x = 0

p, x = 1

0, otherwise

. Geometric. Repeated (and independent) Bernoulli trials, X

counts number of trials until first success. The pmf is:

p(x) =

(1− p)x−1p, x = 1, 2, . . .

0, otherwise
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�� ��The Cumulative Distribution Function (CDF)

. Def. The cdf accumulates (adds up) pmf values left of x:

F (x) = P (X ≤ x) =

x∑
y=−∞

p(y)

. Limits. If X has a finite range, [a, b], then F (x) = 0 for

x < a and F (x) = 1 for x > b. In all cases we have:

lim
x↓−∞

F (x) = 0, and lim
x↑∞

F (x) = 1

. Graph. For discrete r.v.’s with pmf values on the

integers, the graph of f(x) is a step function, with jumps

occuring at the mass points.
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. Usage of the cdf. Mainly to calculate probabilities. If

a < b are any two numbers, and F (x−) denotes F (·)
evaluated immediately to the left of x, we have:

◦ P (a < X ≤ b) = F (b)− F (a)

◦ P (a ≤ X ≤ b) = F (b)− F (a−)

◦ P (a ≤ X < b) = F (b−)− F (a−)

◦ P (a < X < b) = F (b−)− F (a)

For a discrete r.v. X with pmf p(x) defined on the

integers, F (x) only changes at integer values, so that

F (a−) = F (a− 1), and thus:

p(a) = P (X = a) = F (a)− F (a− 1)
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�� ��Example (Slide 71): Plot of CDF

Recall pmf of Y in tabular form:

y 1 2 3 4

p(y) 0.4 0.3 0.2 0.1

For discrete r.v.’s, the cdf is always a step function with jumps

(mass points) at the integers:
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�� ��Ex: Geometric Random Variable CDF [*]

Let X denote the number of births a couple has until the first boy.

Assume the couple continues to have children indefinitely until that

happens, and that the probability of a boy in any one birth is p.

This is a Geometric r.v. with pmf:

p(x) =

(1− p)x−1p, x = 1, 2, . . .

0, otherwise

The cdf of X is given by:
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§3.3 Expected Values

Def: The expected value of discrete r.v. X with pmf p(x) and

values in the set X , is the sum of its values weighted by the

corresponding probabilities:

E(X) = µX =
∑
x∈X

xp(x)

Ex 3.17 (7th Ed.): The Apgar scores of newborns are integers in
the range 0 to 10, and can be modeled as r.v. X with pmf

x 0 1 2 3 4 5 6 7 8 9 10

p(x) 0.002 0.001 0.002 0.005 0.02 0.04 0.18 0.37 0.25 0.12 0.01

E(X) = 0(0.002) + 1(0.001) + · · ·+ 10(0.01) = 7.15

77



'

&

$

%

�� ��Ex: Geometric Random Variable Expectation [*]

Let X be the Geometric r.v. with pmf (cf. slide 76):

p(x) =

(1− p)x−1p, x = 1, 2, . . .

0, otherwise

We will now show that E(X) = 1/p:

E(X) =
∞∑
x=1

x(1− p)x−1p
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�� ��Expected Value of a Function of X

Def: For discrete r.v. X with pmf p(x) and values in the set

X , the expectation of the r.v. h(X) is defined as:

E[h(X)] =
∑
x∈X

h(x)p(x)

Linear Combination: For any constants a and b, it’s easy

to see that the expectation operator is linear, so that

E(aX + b) =
∑
x∈X

(ax+ b)p(x)

= a
∑
x∈X

xp(x) + b
∑
x∈X

p(x)

= a E(X) + b = a µX + b
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�� ��The Variance of a Random Variable

Def: For discrete r.v. X with E(X) = µ, pmf p(x), and values in

the set X , the variance of X is defined as:

V(X) = σ2
X = σ2 = E[(X − µ)2] =

∑
x∈X

(x− µ)2p(x)

The standard deviation is σ =
√

V(X).

Shortcut Formula:

σ2 =
∑
x∈X

(x− µ)2p(x) =
∑
x∈X

x2p(x)− 2µ
∑
x∈X

xp(x) + µ2
∑
x∈X

p(x)

= E(X2)− µ2

Linear Combination: For any constants a and b:

V(aX + b) = σ2
aX+b = a2σ2

X , and σaX+b = |a|σX
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§3.4 Binomial Distribution

Def: A Binomial experiment satisfies the following conditions:

(i) a fixed number of n trials are performed;

(ii) the trials are identical, and each results in a binary outome,

either success (S) with probability p or failure (F) with

probability 1− p;

(iii) the trials are idependent.

The binomial r.v. X counts the number out of the n trials that

result in S (success). We write X ∼ bin(n, p), and its pmf is:

b(x;n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n
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�� ��Mean, Variance, and CDF of the Binomial

For X ∼ bin(n, p), we have the following facts.

. E(X) = np and V(X) = np(1− p);

. the cdf is given by

F (x) = P (X ≤ x) =

x∑
y=0

(
n

y

)
py(1− p)n−y

There is no closed-form expression for F (x), so its values

have to be obtained case-by-case. Table A.1 in the

appendix of the book gives its values to 3 decimal places

for a few select values of n and p.
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�� ��Ex: 3.32 (7th Ed.) [*]

X is # of books out 15 that fail binding test; approx. 20% of books

independently fail the test; implies that:

X ∼ bin(n = 15, p = 0.2)

(a) What is the probability at most 8 fail?

(b) What is the probability exactly 8 fail?

(c) What is the probability at least 8 fail?

(d) What is the probability between 4 and 7 fail?

(e) Find the mean and variance of X.
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�� ��Ex: 3.32 (7th Ed.) Continued. . . [*]

(f) Plot the pmf and cdf of X ∼ bin(15, 0.2)
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§3.5 Hypergeometric & Negative Binomial R.V.’s

. Binomial r.v.: requires independent trials with constant

success probability p.

. Sampling with replacement: if we sample n objects from a

population of S/F objects (total size N) by first replacing each

selected object before sampling the next one, then p remains

unchanged from sampling to sampling (trial to trial), and the

trials are independent.

. Sampling without replacement: if we don’t replace the

objects after each trial, then p is changed for subsequent trials,

which are therefore no longer independent. However: if

n/N << 1, we can proceed as if sampling were with

replacement. . . (an approx. binomial experiment).
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�� ��The Hypergeometric R.V.

Def: In a Hypergeometric experiment, there are a total of N

objects, M of which are of type S and N −M of type F, and

we randomly sample n objects without replacement.

The hypergeometric r.v. X counts the number of objects of type S

out of the n trials. Write X ∼ hypergeom(n,M,N). Its pmf is:

h(x;n,M,N) =

(
M
x

)(
N−M
n−x

)(
N
n

) , max (0, n−N +M) ≤ x ≤ min (n,M)

The mean and variance of X are:

E(X) = n

(
M

N

)
V(X) =

(
N − n
N − 1

)
n

(
M

N

)(
1− M

N

)
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�� ��Exs: 3.35 and 3.36 (7th Ed.) [*]

Ex 3.35: Have 12 inkjet and 8 laser printers; randomly sample 5;

let X denote number of inkjets in sample. Compute the pmf of X:

Ex 3.36: In a pop. of 25 animals, 5 have been previously tagged.

If 10 animals are randomly selected for inspection, compute the

probability that:

. exactly 2 of the sampled animals were previously tagged;

. at most 2 of the sampled animals were previously tagged;
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�� ��Binomial Approx. to Hypergeometric [*]

Recall (slide 85): if n/N << 1, we can proceed as if sampling

were with replacement. . . , (an approx. binomial experiment):

hypergeom(n,M,N) ≈ bin (n, p = M/N)

Ex: Have 500, 000 drivers in a state, 400, 000 of which are insured.

Randomly sample 10 drivers, and let X be the # in the sample

that are insured.
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�� ��The Negative Binomial R.V.

Def: This is an experiment of repeated independent and identical

trials where each trial produces “success” (S) with probability p or

“failure” (F) with probability 1− p, just like the binomial.

Let X be the number of failures until the r-th success. The

distribution of X is called a negative binomial, and we write

X ∼ negbin(r, p). Its pmf is:

nb(x; r, p) =

(
x+ r − 1

r − 1

)
pr(1− p)x, x = 0, 1, 2, . . .

The mean and variance of X are:

E(X) =
r(1− p)

p
, V(X) =

r(1− p)
p2
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�� ��Special Case: The Geometric R.V.

Def: The special case of the negative binomial with r = 1 is called

the geometric, and we write X ∼ Geom(p). I.e., letting X be the

number of failures that precede the first S, the pmf is:

geom(x; p) = p(1− p)x, x = 0, 1, 2, . . .

with mean and variance, E(X) = (1− p)/p and V(X) = (1− p)/p2.

Note: A common reparametrization of the geometric is to let Y be

the number of trials until the first S. Its pmf is:

geom(y; p) = p(1− p)y−1, y = 1, 2, . . .

with mean and variance, E(Y ) = 1/p and V(Y ) = (1− p)/p2.

(In fact: Y = X + 1.)
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�� ��Ex 3.38 (7th Ed.) [*]

Want to recruit 5 couples for a study. Let p = 0.2 be the

probability that a randomly selected couple agrees to participate.

(a) How many couples do we need to ask until 5 agree?

(a) What is the probability exactly 15 couples must be asked until

5 agree?
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�� ��Ex: Winning at Table Tennis [*]

A plays B, A wins any one point with probability p, and the first

player to get 21 points wins the game (ignore winning by 2 points).

What is the probability A wins the next game?
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§3.6 Poisson Distribution

No formal experiment; X counts number of events over space

or time; have to explicitly state that X follows a Poisson r.v.;

but its pmf arises naturally as the result of a certain limiting

operation. . . (the Poisson Process, to be discussed later).

Def: The pmf of X ∼ Poisson(λ) is governed by the rate

parameter λ > 0, and is given by:

p(x;λ) =
λx

x!
e−λ, x = 0, 1, 2, . . .

with mean and variance, E(X) = λ = V(X).

Note: Table A.2 in appendix of book gives cdf values to 3 decimal

places for a few select values of λ (called µ).

93



'

&

$

%

�� ��Ex 3.39 (7th Ed.) [*]

Number of creatures caught in a trap (X) is Poisson distributed

with a mean of 4.5 per day. Find the following.

(a) The prob. that exactly 5 creatures are caught on a given day.

(b) The prob. that at most 5 creatures are caught on a given day.

(c) What is the standard deviation of X?

(d) Show that the pmf of X satisfies the properties of a pmf.
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�� ��Poisson Approx. to Binomial [*]

Theorem: In the binomial b(x;n, p) pmf, if n→∞ and p ↓ 0 in

such a way that np→ λ <∞, then the binomial pmf converges to

the Poisson pmf:

b(x;n, p) −→ p(x;λ), with λ = np

Ex 3.40 (7th Ed.): Let X be the number of typos in a 400-page

book. If the probability of a typo in any one page is 0.005, find the

probability that the book contains:

. exactly 1 typo;

. at most 3 typos.

95



'

&

$

%

�� ��The Poisson Process

A Poisson Process is generated by discrete events that occur over a

continuum like time or space, subject to the following conditions:

. there exists a parameter α > 0 such that, over short time

intervals δt, P (exactly one event over δt) ≈ αδt;

. P (more than one event over δt) ≈ 0;

. the number of events in an interval is independent of the

number of events prior to this interval (the process has “no

memory” or is “restartable”).

The parameter α is called the rate of the process, and is the

number of events per unit time. The number of events in an

interval of length t has a Poisson distribution with mean

λ = αt.
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�� ��Ex 3.42 (7th Ed.) [*]

Pulses arrive at a rate of 6/minute (according to a Poisson

Process). Let X denote the number of pulses in a 30 second

interval.

. What is the distribution of X?

. What is the probability that at least one pulse arrives in

the next 30 seconds?
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Ch. 4: Continuous Random Variables

And Probability Distributions

§4.1 Continuous random variables & probability density

functions

§4.2 Cumulative distribution function & expected values

§4.3 Normal distribution

§4.4 Gamma distribution and its relatives

§4.5 Other distributions

§4.6 The normal probability plot

Count: slides 98–131 (34 slides).

( [*] denotes content that will be given in class)
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§4.1 Continuous Random Variables

Def: A random variable that can (theoretically) assume any

value in an interval (finite or infinte) is said to be continuous.

Examples of continuous r.v.’s

. Measurements. Select random location in contiguous

U.S. and measure height above sea level. Could be any

value in the (approximate) range of [−300, 14500] feet.

. Time to Failure. Randomly select a new light bulb,

switch it on, and record the time until it burns out.

. Uniform Distribution. This is the most basic of all

r.v.’s, where the possible values occur with equal

probability in some finite range [a, b].
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�� ��The Probability Density Function

A probability density function (pdf) of a continuous

r.v. X is a function f(x) such that for any a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

Thus, the probability that X takes on values in the interval

[a, b] is the area under f(x). From this we get the (puzzling?)

result that for any given number c, P (X = c) = 0.

Properties of the pdf:

. f(x) ≥ 0, for all −∞ < x <∞.

.

∫∞
−∞ f(x)dx = 1.
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�� ��The PDF as a Limit of Histograms

The pdf can be viewed as a limit of discrete histograms.

Consider measuring the depth (X) of a lake at a set of

random locations. We can “discretize” X by measuring to

the nearest meter (a), centimeter (b), and so on. As we

measure more finely, the resulting sequence of histograms

approaches a smooth curve: the pdf (c).
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�� ��The Uniform Distribution [*]

A continuous r.v X is said to have a uniform distribution on

the interval [A,B] if its pdf is:

f(x;A,B) =

 1
B−A , A ≤ x ≤ B

0, otherwise

Ex: The wait time X at the bus stop is uniformly distributed

on the interval [0, 5] minutes. The probability that one has to

wait between 1 and 3 minutes is:
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�� ��Ex 4.5 (7th Ed.) [*]

Let X be the time headway (time difference in seconds) between 2

randomly chosen consecutive cars on a freeway. The pdf of X can

be modeled as follows:

f(x) =

0.15e−0.15(x−0.5), x ≥ 0.5

0, otherwise

. Show that f(x) satisfies the properties of a pdf.

. What is the probability that the time headway is at most 5

seconds?
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4.2 The CDF and Expectations [*]

Def: The cumulative distribution function (cdf) of a

continuous r.v X, is the function F (x) that, for every x ∈ R,

is defined by:

F (x) = P (X ≤ x) =

∫ x

−∞
f(y)dy

Thus F (x) is the area under the pdf f(y) to the left of x.

Fact: By the fundamental theorem of calculus, we have:

f(x) = F ′(x) =
dF (x)

dx

at every x ∈ R for which F ′(x) exists.
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Ex: The cdf of X ∼ Unif(A,B) is (cf. slide 102):

F (x) =


0, x < A∫ x
A

1
B−Ady = x−A

B−A , A ≤ x ≤ B
1, x > B

Note that F ′(x) = 1
B−A for A ≤ x ≤ B, and zero otherwise, as

expected!

Usage of cdf (continuous r.v. X): If a < b are any two

numbers, then because P (X = x) = 0 for any x, we have:

P (a ≤ X ≤ b) = F (b)− F (a)

= P (a < X ≤ b)

= P (a ≤ X < b)

= P (a < X < b)

105



'

&

$

%

�� ��Ex 4.7 (7th Ed.) [*]

The cdf of the dynamic load X r.v. on a bridge is modeled as:

F (x) =


0, x < 0

x
8 + 3

16x
2, 0 ≤ x ≤ 2

1, 2 < x

Find the:

. probability that the load is between 1 and 1.5;

. probability that the load exceeds 1;

. the pdf of X.
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�� ��Percentiles and Quantiles (cf. Slide 23)

Def: For any 0 < p < 1, the p-th quantile of continuous

r.v. X, is the real number η(p) that satisfies:

p = F (η(p)) =⇒ η(p) = F−1(p)

Remarks:

. η(p) is a population quantile instead of the sample

quantile defined in Ch. 1.

. η(p) is the value on the x-axis s.t. 100p% of the area

under the pdf f(x) lies to the left of η(p).

. The (population) median µ̃ = η(0.5) is the 0.5-quantile or

50th percentile, and is the value on the x-axis s.t. half the

area under the pdf f(x) lies to the left of it.
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�� ��Expected Values of a Continuous R.V.

Def: The expected value of continuous r.v. X with pdf f(x), is

the integral of its values weighted by the pdf:

E(X) = µX =

∫ ∞
−∞

xf(x)dx

In general, the expected value of some function h(X) is defined as:

E[h(X)] = µX =

∫ ∞
−∞

h(x)f(x)dx

Remarks:

. Expectation of a linear function: E(aX + b) = aµ+ b.
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. For a symmetric distribution, which means the pdf to the

left of the median µ̃ is a mirror image of the pdf to the

right of µ̃, the mean and median coincide: µ̃ = µ.
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�� ��Ex 4.9 (7th Ed.) [*]

The amount (proportion) of gravel X sold in a week has pdf:

f(x) =
3

2
(1− x2), 0 ≤ x ≤ 1

Find the following:

. the cdf F (x);

. the mean µ;

. the median µ̃.
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�� ��Ex 4.11 (7th Ed.) [*]

Species A & B compete for control of a resource. Let X be the

proportion controlled by species A, and suppose X ∼ Unif(0, 1).

Find the following:

. the function h(x) that defines the larger of the two proportions

controlled by each species (majority control);

. the expected proportion of the resource controlled by the

species with majority control.
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�� ��Variance of a Continuous R.V.

Def: For continuous r.v. X with E(X) = µ and pdf f(x), the

variance of X is defined as:

V(X) = σ2
X = σ2 = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2f(x)dx

The standard deviation is σ =
√

V(X).

Shortcut Formula:

σ2 =

∫
(x− µ)2f(x)dx =

∫
x2f(x)dx− 2µ

∫
xf(x)dx+ µ2

∫
f(x)dx

= E(X2)− µ2

Linear Combination: For any constants a and b:

V(aX + b) = σ2
aX+b = a2σ2

X , and σaX+b = |a|σX
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�� ��Ex 4.9 (7th Ed.) Continued. . . [*]

For the amount of gravel X sold in a week: µ = 3/8, and cdf & pdf:

F (x) =


0, x < 0

3
2

(
x− x3

3

)
, 0 ≤ x ≤ 1

1, 1 < x

, f(x) =

 3
2 (1− x2), 0 ≤ x ≤ 1

0, otherwise

Find the following:

. the variance of X;

. the variance of Y = 3X + 1.
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§4.3 The Normal Distribution

. The Normal or Gaussian distribution is central to statistics

(Ch. 5).

. The pdf of X ∼ N (µ, σ2) is:

f(x) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
, −∞ < x <∞

. Obviously: E(X) = µ, and this is the location of the peak.

. Not so obviously: V(X) = σ2, and this controls the width.
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�� ��The Standard Normal Distribution

. Z ∼ N (0, 1) is called the standard normal distribution,

and as we will see, all calculations for X ∼ N(µ, σ2) can

be related to an equivalent calculation for Z.

. The cdf of Z is denoted by Φ(z) = P (Z ≤ z), the values

for which are given to 4 decimal places in Table A.3.
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. Quantiles of Z ∼ N (0, 1) can also be obtained from Table

A.3, but it involves using the table in reverse, and

approximation is needed.

. Notation: zα is the (1− α) quantile, or 100(1− α)

percentile of Z.
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�� ��Ex: Standard Normal Probabilities & Quantiles [*]

. P (−0.38 < Z < 1.25) =?

. z0.05 =?
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�� ��Non-Standard Normal Distributions

Facts:

. If X ∼ N (µ, σ2) then Z = (X − µ)/σ ∼ N (0, 1). Thus the

computation of X probabilities can be converted to Z

probabilities as:

P (a ≤ X ≤ b) = P

(
a− µ
σ
≤ Z ≤ b− µ

σ

)
= Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)

. Since X = µ+ σZ, the relationship between the (1− α)

quantiles of X and Z is:

xα = µ+ σzα
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�� ��Ex 4.16 (7th Ed.) [*]

The reaction time X (secs) for in-traffic response to brake lights

from a randomly selected driver can be modeled as

X ∼ N (1.25, 0.462). Find:

. the probability the reaction time (of a randomly selected

driver) is between 1 and 1.75 secs;

. the reaction time that is exceeded by only 1% of the drivers.

119



'

&

$

%

�� ��Normal Approximation to Binomial [*]

Fact: If X ∼ Bin(n, p), then, provided np ≥ 10 and n(1− p) ≥ 10,

X is approximately normal with µ = np and σ2 = np(1− p). This

means in particular that (applying a continuity correction):

P (X ≤ x) ≈ Φ

(
x+ 0.5− np√
np(1− p)

)
, x = 0, 1, 2, . . . , n

Ex: 25% of drivers are uninsured. Let X be the number of

uninsured drivers in a random sample of 50. Compute the exact

and approx. probabilities of 5 ≤ X ≤ 15.
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§4.4 The Gamma Distribution

For α > 0, the gamma function is defined as:

Γ(α) =

∫ ∞
0

xα−1e−xdx

Properties:

. for α > 1, Γ(α) = (α− 1)Γ(α− 1)

. for positive ingteger n, Γ(n) = (n− 1)!

. Γ(1/2) =
√
π

Def: A continuous r.v. X is said to have a gamma distribution

with shape and scale parameters α > 0 and β > 0,

X ∼ gamma(α, β), if its pdf is:

f(x;α, β) =
1

βαΓ(α)
xα−1e−x/β , x ≥ 0
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�� ��Facts about X ∼ gamma(α, β) [*]

. Show that the pdf integrates to 1.

. Show that E(X) = αβ and V(X) = αβ2.

122



'

&

$

%

�� ��Some Gamma PDF Shapes
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�� ��Computing X ∼ gamma(α, β) Probabilities [*]

. Compute these via the standard gamma distribution,

i.e. Y ∼ gamma(α, β = 1).

. The cdf of Y ∼ gamma(α, 1) is given by the incomplete gamma

function (Table A.4):

F (y;α) =

∫ y

0

1

Γ(α)
xα−1e−xdx, y ≥ 0

. Theom: If X ∼ gamma(α, β), then for x > 0 the cdf of X is:

P (X ≤ x) = F (x;α, β) = F

(
x

β
;α

)

. Proof:
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�� ��Ex 4.24 (7th Ed.) [*]

Survival time X (weeks) of a randomly selected mouse exposed to

radiation can be modeled as: X ∼ gamma(α = 8, β = 15).

Calculate:

. the expected survival time;

. the probability the mouse survives between 60 and 120 weeks;

. the probability the mouse survives at least 30 weeks.
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�� ��The Exponential Distribution

. Def: A gamma(α = 1, β = 1/λ) is called an Exponential

distribution with parameter λ: X ∼ Exp(λ).

. Its pdf is:

f(x;λ) = λe−λx, x ≥ 0

. Its cdf is:

F (x;λ) = 1− e−λx, x ≥ 0

. E(X) = 1/λ and V(X) = 1/λ2.
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�� ��The Exponential and the Poisson Process (cf. slide 96)

. An exponential is often used to model the distribution of times

between successive occurrences of an event.

. This is because the exponential is closely related to the Poisson

Process . . .

. Theom: Suppose the number of events occurring in any time

interval of length t follows a Poisson Process of rate α. That is:

(i) the number of events over a time length t is Poisson with

mean αt, and

(ii) the numbers of events in non-overlapping intervals are

independent of one another.

Then, the distribution of the elapsed time between

successive events is exponential with parameter λ = α.
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�� ��Ex 4.22 (7th Ed.) [*]

Calls arrive at the rate of α = 0.5 per day according to a Poisson

Process. If we let X be the number of days between successive

calls, then by the above Theom, X ∼ Exp(λ = 0.5). Find:

. the expected time between calls;

. the probability that more than 2 days elapse between calls.
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�� ��The Memoryless Property of the Exponential

. Memoryless Property: If X ∼ Exp(λ), then:

P (X ≥ t+ t0 | X ≥ t0) =
P (X ≥ t+ t0 and X ≥ t0)

P (X ≥ t0)

=
P (X ≥ t+ t0)

P (X ≥ t0)

=
e−λ(t+t0)

e−λt0
= e−λt

= P (X ≥ t)

. LHS event says: lives at least t more units given that it has

lived t0 units. RHS event says: lives at least t units. (Thus the

system “forgets” it has already lived t0 units.)

. An amazing property! (Sadly not shared by biological

systems. . . ) A physical example is radioactive particle decay.
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§4.6 Assessing Normality: The Normal Probability Plot

. If x(1) < · · · < x(n) are the order statistics (ordered sample),

recall the sample quantile calculation from slide 24:

x(i) corresponds approx to p =
i− 0.5

n
quantile

. A plot of the (ui, vi) pairs of values:

ui =

(
i− 0.5

n

)
N (0, 1) quantile, vi = x(i), i = 1, . . . , n

is called a normal probability plot (or qq-plot).

. Use the qq-plot to assess whether the dataset {x1, . . . , xn}
could plausibly have come from a N (µ, σ2) distribution. . .

. Because X ∼ N (µ, σ2) and Z ∼ N (0, 1) are related via a linear

transformation, X = µ+ σZ, we don’t need to know µ & σ. . .

130



'

&

$

%

. We just check if the (ui, vi) points are plausibly falling on a

straight line, and if so, we would have no reason to discard the

assumption of normality.

. Ex: this qq-plot is very typical of what would happen if the

blue points did truly come from a normal (the blue line is

simply a “best-fit” line through the points).
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Ch. 5-6: Sampling Distributions And

Concepts of Point Estimation

§5.3 Statistics and their distributions

§5.4 Distribution of the sample mean

§5.5 The distribution of linear combinations

§6.1 General concepts of point estimation

Count: slides 132–153 (22 slides).

( [*] denotes content that will be given in class)
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§5.3 Statistics and Their Distributions

. A statistic is any value that can be calculated from sample

data.

. I.e., it is a function only of the sample x1, . . . , xn, and cannot

therefore depend on unknown quantities like parameters of a

distribution.

. Because the statistic is a function of x1, . . . , xn, which are the

realized values of random variables (X1, . . . , Xn), the statistic

itself is a random variable.

. Prior to data collection, there is uncertainty about the value of

the statistic, i.e., it has a distribution.

. Once the data are collected, we can evaluate the observed

value of the statistic.
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�� ��Common Statistics

. x: sample mean (realized value of X̄).

. x̃: sample median (realized value of X̃).

. s: standard deviation (realized value of S).

. p̂: proportion (realized value of P̂ ).

These are sometimes also called point estimates of some

parameter of the underlying distribution that gave rise to the

data.
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�� ��Random Samples

. The distribution of a statistic is called its sampling

distribution.

. Since evaluation of the sampling distribution is in general

quite difficult, we frequently make simplifying

assumptions.

. Common simplifying assumption: the data

X1, . . . , Xn constitute a random sample, that is, the Xi

are independent and identically distributed (IID).

. Simulation experiments allow us to approximate the

distributions of complicated statistics. . .
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�� ��Software Packages (Read §5.3)

. Allow the generation of random samples X1, . . . , Xn from

many different families of distributions. This is called

simulation.

. Given such a sample, we can evaluate the statistic of

interest, e.g., the sample mean X̄, and then repeat the

process a large number of times.

. The values of the statistic from this procedure can then

be used to investigate its sampling distribution; e.g., via

a histogram.

. By changing the simulation settings, we can examine how

the sampling distribution changes. . .

. Ex: what happens to X as n→∞?
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§5.4 The Distribution of the Sample Mean [*]

Let X1, . . . , Xn be an IID sample from a distribution X with

E(X) = µ and V(X) = σ2. Consider the following statistics:

Tn =
n∑
i=1

Xi = sample total, Xn = Tn/n = sample mean

. The mean and variance of Tn are:

. The mean and variance of X̄n are:

. If X ∼ N (µ, σ2), then Xn and Tn are also normal.
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�� ��The Central Limit Theorem (CLT) [*]

Theom: Let X1, . . . , Xn be an IID sample from a distribution X

with E(X) = µ and V(X) = σ2. Then, it follows that:

Xn − µ
σ/
√
n
−→ N (0, 1), as n→∞

Remarks:

. In practice, and for sufficiently large n, this result means that:

Xn ≈ N (µ, σ2/n).

. Result holds regardless of the distribution of X, which

can even be discrete!

. Convergence in CLT is faster for symmetric and continuous X,

but in general we can rely on the Rule of Thumb:
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�� ��Simulation Exercise to Illustrate CLT [*]

. Let X ∼ Unif(−1, 1). Then the mean and variance of X are:

. Simulate a random sample X1, . . . , Xn from X at each of

sample sizes n = 1, 2, . . . , 6, and form respective sample means:

X1, X2, X3, X4, X5, X6

. Repeat (replicate) 50, 000 times: so we have 50, 000 sample

means at each of the 6 sample sizes.

. Histograms of these will show convergence to normality with

decreasing variance (next slide).

. The exact statement from the CLT is:

Xn − µ
σ/
√
n

= −→ N (0, 1), as n→∞
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§5.5 Distribution of Linear Combinations [*]

Let X1, . . . , Xn be any collection of r.v.’s with respective means

and variances E(Xi) = µi and V(Xi) = σ2
i . For a1, . . . , an arbitrary

real numbers, consider the linear combination:

Y = a1X1 + · · ·+ anXn

Facts:

. The mean Y is:

. If the Xi’s are independent, then the variance of Y is:

. If the Xi’s are independent and normal, then Y is normal.
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�� ��The Difference Between Two RV’s [*]

A special case of the previous slide is the difference:

Y = X1 −X2

In this case:

(i) E(Y ) = µ1 − µ2.

(ii) If X1 and X2 are independent, then the variance of Y is:

. In (ii), note that it’s the variances that sum, not the standard

deviations:

σY =
√
σ2
1 + σ2

2 6= σ1 + σ2
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�� ��Problem 5.80 (7th Ed.) [*]

The luggage weight X of a randomly selected airline passenger is a

r.v. with a mean of 30 lbs and standard deviation of 6 lbs. On a

particular flight 50 passengers check in luggage.

(a) How unusual is a sample mean checked luggage weight in

excess of 35 lbs?

(b) Calculate the mean and standard deviation of the total

luggage weight.
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�� ��Problem 5.80 (7th Ed.) Continued [*]

(c) If individual luggage weights are independent and normally

distributed, what is the probability that the total luggage

weight is at most 1, 600 lbs?
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§6.1 General Concepts of Point Estimation

. A (point) estimate of a parameter θ is a single value, θ̂, that

can be regarded as a sensible value for θ.

. The corresponding r.v., Θ̂, is called an estimator. (This

parallels the concept of a r.v. X and a realized value x

“drawn” from the distribution of X.)

. For common parameters there is an obvious estimator, e.g.:

◦ If X ∼ Bin(n, p), we estimate p with the proportion of

successes in the sample: P̂ = X/n.

◦ If X is continuous with mean µ and variance σ2, good
estimators of these two parameters are the sample mean
and variance:

µ̂ = X =
n∑

i=1

Xi, σ̂2 = S2 =
1

n− 1

n∑
i=1

(Xi −X)2
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�� ��Ex 6.2 (7th Ed.): 20 obs on dielectric breakdown voltage
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�� ��Problem 6.2 (7th Ed.) Continued [*]

Since the distribution is symmetric (assuming normal), then we

have at least 4 possible competing estimators for the mean:

(i)

(ii)

(iii)

(iv)

Question: which should we choose?
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�� ��The Expectation & Variance of an Estimator [*]

. An estimator Θ̂ of θ is said to be unbiased if: E(Θ̂) = θ.

. The sample mean X is unbiased for µ if the sample is IID.

. The sample median X̃ is unbiased for µ if the sample is IID

and the distribution of the Xi is continuous and symmetric.

. The sample variance S2 =
∑n
i=1(Xi −X)2/(n− 1) is unbiased

for σ2 if the sample is IID. However, the sample standard

deviation S is a biased estimator of σ, since E(S) 6= σ.

. Given two unbiased estimators, we generally prefer the one

with:
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�� ��Simulation Exercise: Compare 4 Estimators of the Mean

Set µ = 6 and σ = 1.2, the sample size at n = 25, and

consider the following 4 estimators of µ:

X, X̃, midrange =
X(1) +X(n)

2
, trimmed mean (5%)

. Do loop (outer): for X ∈ {Normal, Cauchy, Uniform}:

◦ Do loop (inner): repeat 50000 times:

� draw a random sample X1, . . . , Xn from X;

� compute the 4 estimators of µ.
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�� ��Results of Simulation Exercise [*]

Empirical means (standard deviations) of the 50000

replicates. Which is the best estimator in each of the 3 cases?

Dist. of X mean median midrange trimmed mean

Normal 6.000 6.000 5.996 6.000

(0.2401) (0.2983) (0.4374) (0.2422)

Cauchy 2.394 6.001 -39.19 6.010

(735.5) (0.3994) (9193) (2.000)

Uniform 6.000 5.999 6.000 6.000

(0.3465) (0.5770) (0.1610) (0.3704)
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�� ��The Standard Error of an Estimator [*]

. Simulation Exercise: shows that in addition to the point

estimate Θ̂ of θ, we need some measure of its precision. . .

. The standard deviation of the estimate could be used, but it

will usually depend on (unknown) parameters. . . , e.g.:

◦ for X ∼ Bin(n, p): the usual estimator P̂ = X/n has a

standard deviation of
√
p(1− p)/n;

◦ for X continuous with mean µ and variance σ2: the usual

estimator of µ, X, has a standard deviation of σ/
√
n.

. Using estimates for the unknown parameters in the standard

deviation formula, gives the standard error (s.e.) of the

estimator; e.g.:
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�� ��Important Takeaway Messages From Chs. 5-6

. If X1, . . . , Xn ∼ IID(µ, σ2), then:

◦ using properties of E(·) and V(·): X ∼
(
µ, σ

2

n

)
◦ if n is large, using the CLT: X ≈ N

(
µ, σ

2

n

)
. If X ∼ Bin(n, p), then:

◦ using properties of E(·) and V(·): P̂ ∼
(
p, p(1−p)n

)
◦ if n is large, using the CLT: P̂ ≈ N

(
p, p(1−p)n

)
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Ch. 7: Confidence Intervals

From A Single Sample

§7.1 Basic properties of confidence intervals

§7.2 Large sample confidence intervals

§7.3 Intervals based on a normal population distribution

§7.4 Confidence intervals for the variance & std. deviation

Count: slides 154–178 (25 slides).

( [*] denotes content that will be given in class)
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§7.1 Basic Properties of Confidence Intervals

With a random sample X1, . . . , Xn drawn from the distribution of

X ∼ (µ, σ2) as background, recall basic concepts from Ch. 6:

. Estimate (θ̂): a sensible value for θ.

. Estimator (Θ̂): the r.v. corresponding to θ̂. (θ̂ is a draw from

the distribution of Θ̂.)

Now: introduce a new concept. . .

Def: A confidence interval (CI) is an interval (instead of point)

estimate for θ which has a given probability of covering (or

containing) the true value of θ.
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�� ��CI For µ When σ is Known [*]

. We assume the population is normal and σ is known, i.e.,

X1, . . . , Xn ∼ IID N (µ, σ2). Then, from Ch. 5 we have that:

Z =
X − µ
σ/
√
n
∼ N (0, 1)

. From this it follows that:

P

(
−1.96 <

X − µ
σ/
√
n
< 1.96

)
= 0.95

. Which implies that:

P

(
X − 1.96

σ√
n
< µ < X + 1.96

σ√
n

)
= 0.95

. And thus leads to the 95% CI on µ:
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�� ��Example 7.2 (7th Ed.) [*]

Have n = 31 obs from X ∼ N (µ, σ = 2) which gives x = 80.0, and

want a 95% CI for µ:

Question: what exactly does this CI mean?
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�� ��Simulation Exercise: Coverage of 95% CIs for the Mean

Let X ∼ N (µ = 6.3, σ = 0.75), set sample size at n = 10, and

recall the 95% CI for µ: x± 1.96σ/
√
n.

Do loop: repeat m = 50 times:

. draw a random sample X1, . . . , Xn from X;

. compute a 95% CI for µ.
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Answer to Question: If we replicate the simulation m =∞
times, then 95% of the CIs would contain µ.
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�� ��The General (1− α)100% CI for the Mean [*]

When X ∼ N (µ, σ2) and σ is known, the (1− α)100% CI for µ is:

Some common values of the quantile zα/2 are:

(1− α)100% α α/2 zα/2

80% 0.200 0.100 1.282

90% 0.100 0.050 1.645

95% 0.050 0.025 1.960

99% 0.010 0.005 2.576

Values are from: last row of Table A.5 (t distribution with df =∞).
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�� ��Confidence Level & Sample Size [*]

. Confidence level. Increasing (1− α) leads to a decrease in α,

and consequently an increase in the appropriate quantile zα/2.

In the limit, a 100% CI has α = 0, so that zα/2 =∞, which

leads to a CI of (−∞,∞).

. Sample size. Since the width of the (1− α)%100 CI is

w = 2zα/2σ/
√
n, solving for n gives:

n =
(

2zα/2
σ

w

)2
. Ex: If σ = 25, how large does n need to be for a 95% CI to

have width w = 10?
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§7.2 Large Sample CIs [*]

. Problem: in practice σ is usually unknown, so how can we

get around the need to have both a known σ and a normal X

in the previous section?

. Solution: the CLT! Also, since n is large enough, s will be a

good approx to σ, and thus:

Z =
X − µ
s/
√
n

≈ N (0, 1)

. Large Sample CI: this leads to the (1− α)%100 CI for µ:

. Rule of Thumb: this holds provided n > 40.
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�� ��Example 7.6 (7th Ed.) [*]

Have n = 48 obs on breakdown voltage which gives x = 54.7,

s = 5.23, and want a 95% CI for µ:
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�� ��Sample Size For Given CI Width [*]

. The formula from earlier for the n needed to get a (1− α)%100

CI of width w is:

n =
(

2zα/2
σ

w

)2
. Problem: How to estimate σ, since this is to be used before

collecting data?

. Answer: A rough estimate of σ is obtained by:
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�� ��CIs for a Population Proportion [*]

For a random sample of binary data (yes/no, S/F, etc.),

distribution of number of successes X is binomial: X ∼ Bin(n, p).

. Estimator of p: P̂ = # successes/n = X/n.

. Standard Deviation of P̂ :
√
p(1− p)/n.

. CLT: If n is large enough we have:

Z =
P̂ − P√
p(1− p)

≈ N (0, 1)

. Large Sample CI: this leads to the (1− α)%100 CI for p:

. Rule of Thumb: holds provided np̂ ≥ 10 and n(1− p̂) ≥ 10.
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. Adjusted CI for p: Book gives a more accurate CI for p that

is valid for all n:(
p̂+

z2α/2
2n

)
± zα/2

√
z2
α/2

4n2 + p̂(1−p̂)
n

1 +
z2
α/2

n

. Finding n for a (1− α)%100 CI of width w: Using same

ideas as before:

n ≈

(
2zα/2

√
p̂(1− p̂)
w

)2

◦ p̂ will be unknwon if no data has yet been collected, but

setting p̂ = 1/2 provides a conservative approach by giving

the largest possible n.

◦ A more complex formula based on the adjusted CI is

available (see book), but we won’t use it in this course. . .
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�� ��Example 7.8 & 7.9 (7th Ed.) [*]

Have n = 48 trials in a lab, 16 of which resulted in S (ignition of

substrate by cigarette). Let p denote the population proportion of

all trials resulting in S.

(a) Construct a large sample 95% CI for p.

(b) Find the required n for the CI to have width 0.1.
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�� ��Example 7.8 & 7.9: Continued [*]

(c) Construct an adjusted 95% CI for p.

168



'

&

$

%

�� ��One-Sided (1− α)%100 CIs

. Sometimes one is only interested in bounding the

parameter estimate from above or below.

. The difference with two-sided CIs is that the quantile

goes from zα/2 to zα on the finite side, while the other

side becomes infinite.

. Ex: in a one-sided CI for µ, the upper and lower CIs are:(
−∞, x+ zα

s√
n

)
and

(
x− zα

s√
n
, ∞

)
. Note: in all cases, the CIs enclose an area (probability)

of (1− α) under the appropriate normal pdf.
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�� ��Example 7.10 (7th Ed.) [*]

Have n = 48 shear strength obs which give x = 17.17 and s = 3.28.

Construct a lower 95% confidence bound for µ.
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§7.3 Intervals Based on a Normal Distribution

. In §7.2 we saw that large sample situations are the most

versatile since they easily accommodated all unknowns.

. Now: tackle case when n ≤ 40 and σ is unknown. . .

. There is no magic trick: must make assumptions to

compensate for lack of information. We assume the Xi come

from a normal distribution. This can be checked with a

normal probability plot.

. t distribution: Assuming X ∼ N (µ, σ2), then:

T =
X − µ
S/
√
n

∼ tn−1

a t distribution with (n− 1) degrees of freedom (df).

171



'

&

$

%

�� ��Properties of the T Distribution

. Each tν is centered at 0 and has the same basic shape as

a N (0, 1).

. However, the tν is more spread out than the N (0, 1).

. As ν ↑ ∞, the tν converges to the N (0, 1).
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�� ��T Distribution Quantiles (Critical Values)

. A tα,ν is the (1− α) quantile from a t distribution with ν

degrees of freedom (df). This is also called a t critical

value.

. Critical values for selected ν and α are given in Table

A.5 (and on the inside back cover).
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. Recall: in slide 160 we gave the critical values of zα/2 as:

(1− α)100% α α/2 zα/2

80% 0.200 0.100 1.282

90% 0.100 0.050 1.645

95% 0.050 0.025 1.960

99% 0.010 0.005 2.576

. These values are exactly:

zα/2 = tα/2,∞

obtained from the last row of Table A.5 (a t with df =∞).
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�� ��T-Based (1− α)%100 CIs and PIs [*]

. Two-Sided CI: The two-sided (1− α)%100 CI for µ is:

. One-Sided CI: One-sided (1− α)%100 lower & upper bound

CIs for µ are:

. Prediction Interval (PI): This is a CI on a single value of

X, not E(X) = µ, and will thus have more uncertainty

(variability). The formula for a (1− α)%100 PI is:
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�� ��Example: Pine Lumber (7th Ed.) [*]

Have modulus of elasticity values for n = 16 pine lumber

specimens, which give x = 14532.5 and s = 2055.67.

(a) Construct a 95% CI for µ.

(b) Check the normality assumption.
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�� ��Example 7.13: (7th Ed.) [*]

Have n = 10 obs on fat content of hot dogs give x = 21.9 and

s = 4.134. A 95% PI for the fat of content of my next hot dog is:

(Note: PIs are rarely used in practice.)
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�� ��Flowchart for (1− α)%100 CI for µ [*]
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Ch. 8: Tests of Hypotheses [*]

For A Single Sample

§8.1 Hypotheses and Test Procedures

§8.2–8.3 Tests About a Population Mean

§8.4 Tests About a Population Proportion

Count: slides 179–197 (19 slides).

( [*] denotes content that will be given in class)
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§8.1 Hypotheses and Test Procedures

. Statistical Hypothesis. This is a claim about the value of

one or more population parameters; commonly used in

comparative experiments. E.g., µ1 and µ2 are mean

compressive strengths of carboard produced by two different

processes, and we may want to test the claim that µ1 > µ2.

. Null Hypothesis. This claim usually represents the status

quo of “no change” or “nothing new”. It is written H0, and we

typically wish to find evidence against it.

. Alternative Hypothesis. This is the opposite claim to the

null, usually representing an interesting change to the status

quo. It is written Ha, and we typically wish to find evidence in

favor of it.
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�� ��Similarity With Judicial System

. Effect of Variability. We can never “prove” Ha (guilt) or H0

(innocence). All we can do is quantify (by means of a p-value)

how unlikely it is for Ha to have given rise to the data we

observed if H0 were true. . .

. Conclusions. The result of a test is that we either:

◦ fail to reject H0 (not enough evidence to reject it), or

◦ reject H0 (there is enough evidence to reject it).

. Analogy with mathematical logic. Suppose want to prove

claim: “there is no largest positive integer”. The proof by

contradiction argument starts by supposing n is the largest

integer (H0). But then n+ 1 > n, which is a contradiction,

whence the original claim must be false (reject H0)! However,

with hypothesis tests we only get “unlikely”, not “impossible”.
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�� ��Errors in Hypothesis Testing [*]

Truth

H0 Ha

Decision

H0 correct type II error

(prob= ) (prob= )

Ha type I error correct

(prob= ) (prob= )

. Type I Error: reject H0 when true. Usually the worst kind

of error, so we control it by choosing α = P (Type I Error).

. Type II Error: fail to reject H0 when Ha true. Having

chosen α, we have no control over β = P (Type II Error), other

than by increasing the sample size n.
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�� ��Notes [*]

. The total error is NOT α+ β.

. The power of the test is 1− β.

. α is also called the level of significance of the test;

sometimes abbreviated to level α test.

. Increasing α leads to a decrease in β (all else constant).

. Decreasing α leads to an increase in β (all else constant).

. Ex 1: compute α and β for the test that always accepts H0.

. Ex 2: compute α and β for the test that always rejects H0.
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�� ��Steps in Performing a level α Hypothesis Test [*]

1. Define H0 and Ha. (Implicitly assume H0 is true.)

2. Decide what α should be. (Usually 0.01 ≤ α ≤ 0.10.)

3. Compute the test statistic: a function of the data on which

to base the decision (H0 or Ha).

4. Determine either:

(i) the rejection region for the level α test (the set of all test

statistic values for which H0 will be rejected); or

(ii) the p-value for the test.

5. Determine if H0 can be rejected by checking if:

(i)

(ii)
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�� ��The P-Value [*]

Def: The p-value is the probability of observing a value of the

test statistic as or more “extreme” (contradictory to H0) than what

was actually observed, assuming H0 is true.

Notes:

. P-value (a.k.a. the significance level) is the smallest level of

significance at which H0 would be rejected (see figure below):

. 0 ≤ p-value ≤ 1: is the amount of evidence in favor of H0.

. Don’t need to know α in order to compute the p-value. . .
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�� ��The P-Value (Continued) [*]

. P-values for z-based tests can be calculated to 4 decimal places

from z-table (Table A.3).

. P-values for t-based tests can be calculated to 3 decimal places

from Table A.8.

. Statistical vs. practical significance. A test produces a

p-value < 0.001, and so the test is “statistically significant”. Is

this really important?
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�� ��Example 8.2: (7th Ed.) [*]

Let X be the drying time of paint (mins), and the established

knowledge (H0) is that X ∼ N (µ = 75, σ = 9). A new additive is

purported to decrease the mean drying time (σ is unchanged).

Main objective: test if additive really works.

. Test:

. Data:

. CLT:

. Rej. Region:
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�� ��Example 8.2: (Continued) [*]

. Type I error:

. Type II error:
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§8.2–8.3 Tests About The Population Mean (µ) [*]

For Cases 1–3 below we write the null hypothesis as H0 : µ = µ0,

and we consider the 3 types of alternatives in each case.

. Case 1. Normal population with known σ. The test stat is:

z =
x− µ0

σ/
√
n

∼ N (0, 1), under H0

Ha Rej. Region P-value Picture

µ > µ0

µ < µ0
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. Case 1. Normal population with known σ (continued). [*]

Ha Rej. Region P-value Picture

µ 6= µ0

Ha Formula for β = β(µ′) n for β = β(µ′)

1-tailed

2-tailed
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. Case 2. Large (n > 40) sample (any population). CLT

implies:

z =
x− µ0

s/
√
n

≈ N (0, 1), under H0

Testing procedures are identical to Case 1 with σ → s.

. Case 3. Normal population with known σ. From Ch. 7: [*]

t =
x− µ0

s/
√
n

∼ t(n− 1), under H0

Ha Rej. Region P-value Picture

µ 6= µ0
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. Case 3. Normal population with known σ (continued). [*]

Ha Rej. Region P-value Picture

µ > µ0

µ < µ0

Note: Formulas for Type II error, β(µ′), and n, don’t exist in

analytical form (must resort to computer).
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�� ��Problem 8.56: (7th ed.) [*]

n = 30 obs on % organic matter in soil specimens gives x = 2.481

and s = 1.616. The data look normal. Is there evidence that µ

differs from 3? (Test at levels α = 0.10 and α = 0.05.)
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�� ��Example 8.8: (7th ed.) [*]

Require DCP average value for pavement to be < 30 (must

conclusively show this before usage). A sample of n = 52 DCP obs

gives x = 28.76 and s = 12.2647. The data do NOT look normal.

. Is there enough evidence that µ < 30?
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�� ��Example 8.8 (Continued) [*]

. What is the power of the test if µ′ = 28.76? (Assume σ ≈ s.)

. What n is needed to have power of 80% if µ′ = 28.76?
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§8.4 Tests On a Population Proportion (Large Sample)

. Write the null as H0 : p = p0.

. Consider only large samples: np0 ≥ 10 and n(1− p0) ≥ 10.

. If X is the # of successes in a sample of size n, the CLT

implies X/n ∼ N (p, p(1− p)/n), so that:

z =
p̂− p0√
p0(1−p0)

n

≈ N (0, 1), under H0

. Testing procedures are identical to Case 1 of tests on the mean

(see slides 189–190); just replace µ→ p and µ0 → p0.

. Formulas for Type II error, β(p′), and the n needed for a level

α test to have β = β(p′), are also available, but are more

complicated (see §8.4 of book).
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�� ��Example 8.12: (7th ed.) [*]

A package delivery service claims to be 90% on time. A sample of

n = 225 deliveries shows that 80% of them are on time.

. Is there enough evidence that p < 0.9?

. If p′ = 0.8, how likely is it that an α = 0.01 test based on

n = 225 will detect such a departure from H0?
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Ch. 9: Inferences Based on Two Samples [*]

§9.1 Differences between two population means

§9.2 The two-sample t-test and confidence interval

§9.3 Analysis of paired data

§9.4 Inferences on the difference between two population

proportions

Count: slides 198–212 (15 slides).

( [*] denotes content that will be given in class)
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§9.1: Differences Between Two Population Means

The situation is as follows.

. X1, . . . , Xm is a random sample from X ∼ (µ1, σ
2
1).

. Y1, . . . , Yn is a random sample from Y ∼ (µ2, σ
2
2).

. The X and Y samples are independent from each other.

. We are interested in the difference in the (population) means:

µ1 − µ2 := ∆0

. The respective sample means are: x and y.

. In realistic situations, the variances σ2
1 and σ2

2 are not known,

in which case we use the corresponding sample variances: s21
and s22.

199



'

&

$

%

§9.2 Two-Sample Tests & CIs For µ1 − µ2 [*]

For Cases 1–3 below we write the null as

H0 : µ1 − µ2 = ∆0

Given the appropriate test statistic, the procedures are then

identical to Ch. 8. (We skip formulas for β and n.)

. Case 1. Normal populations with known σ1 and σ2.

◦ The test stat is:

z =
(x− y)−∆0√
σ2
1/m+ σ2

2/n
∼ N (0, 1), under H0

◦ The formula for a (1− α)100% CI for µ1 − µ2 is:
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. Case 2. Any populations with large samples

(m > 40 and n > 40). [*]

◦ The test stat is:

z =
(x− y)−∆0√
s21/m+ s22/n

∼ N (0, 1), under H0

◦ The formula for a (1− α)100% CI is:
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. Case 3. Normal populations with unknown σ1 and σ2. [*]

◦ The test stat is:

t =
(x− y)−∆0√
s21/m+ s22/n

∼ tν , under H0

◦ The formula for a (1− α)100% CI is:

(x− y)± tα/2,ν

√
s21
m

+
s22
n

◦ Formula for degrees of freedom ν:

◦ If can assume σ1 = σ2, then pooled t procedures apply:
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�� ��Example 9.7: (7th ed.) [*]

Data on tensile strength (psi) of specimens, both when a fusion

process was used (Y ) and not used (X). The sample info is:

m = 10, x = 2902.8, s1 = 277.3, (no fusion)

n = 8, y = 3108.1, s2 = 205.9, (fusion)

. Question: Is there enough evidence that fusion leads to

higher tensile strength? (Test at α = 0.05.)

. Answer:
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�� ��Example 9.7 (Continued) [*]

Is normality (of each sample) plausible?
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�� ��Example 9.7 (Continued) [*]

. Test of H0 : µ1 − µ2 = 0 vs. Ha : µ1 − µ2 < 0 gives:

. A 95% CI for µ1 − µ2 is:
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§9.3 Paired Samples

. Special situation consisting of n independently selected pairs:

(X1, Y1), . . . , (Xn, Yn), Di = Xi − Yi, i = 1, . . . , n

. The Di are independent, but the pair members (Xi, Yi) are not!

. Thus the two samples are NOT independent in the sense

defined in §9.1. (The X and Y samples are dependent.)

. The connection between Xi and Yi is that we usually have

measurements on the same experimental unit, just under

different conditions.

. Exs: measurements on a unit taken before and after some

change has been introduced, or after some time has passed.

. Inference: proceeds by applying one-sample procedures from

Ch. 7 to the differences Di = Xi − Yi.
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�� ��Example 9.9 (7th Ed.)

The amount of time-arm elevation (secs) below 30◦ is recorded for

a sample of n = 16 individuals before and after a change in work

condition. Results are tabulated as follows:

Subject 1 2 3 . . . 16

Before (x) 81 87 86 . . . 75

After (y) 78 91 78 . . . 62

Difference (d) 3 -4 8 . . . 13

From this we compute the sample mean and std. dev. of the

differences: d̄ = 6.75 and sD = 8.234.

Question: is there evidence of a difference in the mean after the

change in the work condition?
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�� ��Example 9.9 (Continued) [*]

. Answer 1: Test H0 : µD = 0 vs. Ha : µD 6= 0.

. Answer 2: Construct a 99% CI for µD.
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§9.4 Two Population Proportions

The situation is as follows.

. X ∼ Bin(m, p1) and Y ∼ Bin(n, p2), with X and Y

independent.

. Interested in making inference on the difference of (population)

proportions: p1 − p2 = 0. (Note: we will not discuss the more

difficult situation of p1 − p2 = ∆0 6= 0.)

. Define the sample proportions:

p̂1 =
X

m
, p̂2 =

Y

n
, p̂ =

X + Y

m+ n

. Both m and n are large: mp̂1 = X ≥ 10 and np̂2 = Y ≥ 10.
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Two-Sample Tests & CIs For p1 − p2 [*]

. For testing the null

H0 : µ1 − µ2 = 0

the test stat is:

z =
p̂1 − p̂2√

p̂(1− p̂)(1/m+ 1/n)
∼ N (0, 1), under H0

. The formula for a (1− α)100% CI is:
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�� ��Example 9.11 (7th Ed.)

Does the severity of a sentence differ for defendants who plead

guilty and for those who plead NOT guilty? A sample of n = 255

trials yielded the following results:

Plea

Guilty NOT Guilty

Result

Sentenced 101 (= x) 56 (= y)

Pardoned 90 8

Totals 191 (= m) 64 (= n)

Let:

p1 = proportion of guilty pleas that are sentenced

p2 = proportion of NOT guilty pleas that are sentenced
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�� ��Example 9.11 (Continued) [*]

. Answer 1: Test H0 : p1 − p2 = 0 vs. Ha : p1 − p2 6= 0.

. Answer 2: Construct a 95% CI for p1 − p2.
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