

ZTF-FCT Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnologia

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TRAVELLING WAVE SOLUTIONS OF THE CODAZZI-BETCHOV-DA RIOS EVOLUTION EQUATIONS

Álvaro Pámpano Llarena

School of Low Dimensional Topology

Zaragoza, January 18-27 of 2017

<□ > < @ > < E > < E > E のQ @

1. Generalized Kirchhoff Centerlines

- 2. Binormal Evolution Surfaces

- 2. Binormal Evolution Surfaces
- 3. Travelling Wave Solutions

(ロ)、(型)、(E)、(E)、 E) の(の)

1. Energy Functionals

- 1. Energy Functionals
- 2. Reduction Theorem

- 1. Energy Functionals
- 2. Reduction Theorem
- 3. Euler-Lagrange Equations

- 1. Energy Functionals
- 2. Reduction Theorem
- 3. Euler-Lagrange Equations
- 4. Killing Vector Fields

ENERGY FUNCTIONALS

• We denote by $\Omega_{\rho_o \rho_1}$ the space of smooth immersed curves of $M_r^n(\rho)$ joining two points of it.

ENERGY FUNCTIONALS

- We denote by Ω_{pop1} the space of smooth immersed curves of Mⁿ_r(ρ) joining two points of it.
- We are going to consider energy functionals acting on $\Omega_{p_op_1}$ of the following form

$$\Theta(\gamma) = \int_{\gamma} \mathcal{F}(\kappa) + \mu \tau + \lambda = \int_{0}^{L} (\mathcal{F}(\kappa)(s) + \mu \tau(s) + \lambda) ds,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\mathcal{F}(u)$ is a $C^{\infty}(\mathbb{R})$ function and $\mu, \lambda \in \mathbb{R}$.

ENERGY FUNCTIONALS

- We denote by Ω_{pop1} the space of smooth immersed curves of Mⁿ_r(ρ) joining two points of it.
- We are going to consider energy functionals acting on $\Omega_{p_op_1}$ of the following form

$$\Theta(\gamma) = \int_{\gamma} \mathcal{F}(\kappa) + \mu \tau + \lambda = \int_{0}^{L} (\mathcal{F}(\kappa)(s) + \mu \tau(s) + \lambda) \, ds \, ,$$

where $\mathcal{F}(u)$ is a $C^{\infty}(\mathbb{R})$ function and $\mu, \lambda \in \mathbb{R}$.

• A version of the Lagrange multipliers allows us to interpret this variational problem as the minimization of the curvature energy $\int_{\gamma} \mathcal{F}(\kappa)$ subject to two constraints: fixed length and fixed total torsion.

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$.

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

REDUCTION THEOREM [2]

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of $M_r^n(\rho)$.

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

REDUCTION THEOREM [2]

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of $M_r^n(\rho)$.

Thus, we are interested in studying critical curves in pseudo-Riemannian 3-space forms, $M_r^3(\rho)$.

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} \mathcal{F}(\kappa) + \mu \tau + \lambda$, acting on $\Omega_{\rho_o \rho_1}$ can be written as

$$\mu \kappa \tau = \kappa (\mathcal{F} + \lambda) - \dot{\mathcal{F}} (\kappa^2 - \varepsilon_1 \varepsilon_3 \tau^2 + \varepsilon_2 \rho) - \varepsilon_1 \varepsilon_2 \dot{\mathcal{F}}_{ss} , \mu \kappa_s = -2\varepsilon_1 \varepsilon_3 \tau \dot{\mathcal{F}}_s - \varepsilon_1 \varepsilon_3 \tau_s \dot{\mathcal{F}} .$$

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} \mathcal{F}(\kappa) + \mu \tau + \lambda$, acting on $\Omega_{p_o p_1}$ can be written as

$$\mu \kappa \tau = \kappa (\mathcal{F} + \lambda) - \dot{\mathcal{F}} (\kappa^2 - \varepsilon_1 \varepsilon_3 \tau^2 + \varepsilon_2 \rho) - \varepsilon_1 \varepsilon_2 \dot{\mathcal{F}}_{ss} , \mu \kappa_s = -2\varepsilon_1 \varepsilon_3 \tau \dot{\mathcal{F}}_s - \varepsilon_1 \varepsilon_3 \tau_s \dot{\mathcal{F}} .$$

GENERALIZED KIRCHHOFF CENTERLINES ([1], [2])

Curves whose curvature and torsion satisfy above equations will be called generalized Kirchhoff centerlines.

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} \mathcal{F}(\kappa) + \mu \tau + \lambda$, acting on $\Omega_{p_o p_1}$ can be written as

$$\mu \kappa \tau = \kappa (\mathcal{F} + \lambda) - \dot{\mathcal{F}} (\kappa^2 - \varepsilon_1 \varepsilon_3 \tau^2 + \varepsilon_2 \rho) - \varepsilon_1 \varepsilon_2 \dot{\mathcal{F}}_{ss} , \mu \kappa_s = -2\varepsilon_1 \varepsilon_3 \tau \dot{\mathcal{F}}_s - \varepsilon_1 \varepsilon_3 \tau_s \dot{\mathcal{F}} .$$

GENERALIZED KIRCHHOFF CENTERLINES ([1], [2])

Curves whose curvature and torsion satisfy above equations will be called generalized Kirchhoff centerlines.

Thus, under suitable boundary conditions, generalized Kirchhoff centerlines are critical curves of our energy functionals.

KILLING VECTOR FIELDS

KILLING VECTOR FIELDS

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

KILLING VECTOR FIELDS

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.That is, if the following equations hold

 $W(\mathbf{v})(\bar{t},0)=W(\kappa)(\bar{t},0)=W(\tau)(\bar{t},0)=0\,,$

and this is independent on the choice of the tangent variation of γ to W.

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.That is, if the following equations hold

 $W(\mathbf{v})(\bar{t},0) = W(\kappa)(\bar{t},0) = W(\tau)(\bar{t},0) = 0,$

and this is independent on the choice of the tangent variation of γ to W.

CHARACTERIZATION OF CENTERLINES ([1], [2])

The vector field $\mathcal{I} = \varepsilon_1 \varepsilon_3 \mu T + \dot{\mathcal{F}} B$ is a Killing vector field along γ , if and only if, γ is a generalized Kirchhoff centerline.

1. Evolution of Curves

- 1. Evolution of Curves
- 2. Binormal Evolution Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $1. \ \ {\rm Evolution} \ {\rm of} \ {\rm Curves}$
- 2. Binormal Evolution Surfaces
- 3. Fundamental Equations

Every non-totally geodesic surface of $M_r^3(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$x_t = \Phi \, x_s \times \widetilde{\nabla}_{x_s} x_s \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Every non-totally geodesic surface of $M_r^3(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$x_t = \Phi \, x_s \times \widetilde{\nabla}_{x_s} x_s \, .$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi = f(|\widetilde{\nabla}_{x_s} x_s|)$.

Every non-totally geodesic surface of $M_r^3(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$x_t = \Phi \, x_s \times \widetilde{\nabla}_{x_s} x_s \, .$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi = f(|\widetilde{\nabla}_{x_s} x_s|)$. Then, we have

PROPERTIES ([1], [2])

 $1. \ \mbox{This}$ is a length-preserving evolution.

Every non-totally geodesic surface of $M_r^3(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$x_t = \Phi \, x_s \times \widetilde{\nabla}_{x_s} x_s \, .$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi = f(|\widetilde{\nabla}_{x_s} x_s|)$. Then, we have

PROPERTIES ([1], [2])

- $1. \ \mbox{This}$ is a length-preserving evolution.
- 2. The initial condition $\gamma(s) = x(s, 0)$ evolves by the binormal flow, $x_t = \dot{P}(\kappa)B$, where $\dot{P} = \varepsilon_2 \varepsilon_3 \kappa f(\kappa)$.

BINORMAL EVOLUTION SURFACES ([1], [2])

The corresponding immersed surface (U, x) in $M_r^3(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P} .

- ロ ト - 4 回 ト - 4 □ - 4

BINORMAL EVOLUTION SURFACES ([1], [2])

The corresponding immersed surface (U, x) in $M_r^3(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P} .

(日) (同) (三) (三) (三) (○) (○)

We parametrize it by $x(s, t) = \gamma^t(s)$

BINORMAL EVOLUTION SURFACES ([1], [2])

The corresponding immersed surface (U, x) in $M_r^3(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P} .

We parametrize it by $x(s, t) = \gamma^t(s)$, to obtain

1. The metric of S_{γ}

$$g = \varepsilon_1 ds^2 + \varepsilon_3 \dot{P}^2 dt^2,$$

BINORMAL EVOLUTION SURFACES ([1], [2])

The corresponding immersed surface (U, x) in $M_r^3(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P} .

We parametrize it by $x(s, t) = \gamma^t(s)$, to obtain

1. The metric of S_{γ}

$$g = \varepsilon_1 ds^2 + \varepsilon_3 \dot{P}^2 dt^2,$$

2. The Gaussian curvature of S_{γ}

$$K := -\varepsilon_1 \frac{\dot{P}_{ss}}{\dot{P}},$$

(日) (同) (三) (三) (三) (○) (○)

BINORMAL EVOLUTION SURFACES ([1], [2])

The corresponding immersed surface (U, x) in $M_r^3(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P} .

We parametrize it by $x(s, t) = \gamma^t(s)$, to obtain

1. The metric of S_{γ}

$$g = \varepsilon_1 ds^2 + \varepsilon_3 \dot{P}^2 dt^2,$$

2. The Gaussian curvature of S_{γ}

$$K:=-\varepsilon_1\frac{\dot{P}_{ss}}{\dot{P}},$$

3. The second fundamental form of S_{γ}

$$\varepsilon_2 h = -\kappa ds^2 + 2\tau \dot{P} ds \, dt + \varepsilon_2 \dot{P}^2 h_{22} dt^2 \, .$$

FUNDAMENTAL EQUATIONS

The term h_{22} is defined by

$$h_{22} = \langle \widetilde{\nabla}_{e_2} e_2, e_3 \rangle = \frac{1}{\kappa} \{ \varepsilon_3 \frac{\dot{P}_{ss}}{\dot{P}} - \varepsilon_2 \tau^2 + \varepsilon_1 \varepsilon_3 \rho \}.$$

FUNDAMENTAL EQUATIONS

The term h_{22} is defined by

$$h_{22} = \langle \widetilde{\nabla}_{e_2} e_2, e_3 \rangle = \frac{1}{\kappa} \{ \varepsilon_3 \frac{\dot{P}_{ss}}{\dot{P}} - \varepsilon_2 \tau^2 + \varepsilon_1 \varepsilon_3 \rho \}.$$

Using this, we see that the Gauss-Codazzi equations boil down to

$$\kappa_{t} = -2\dot{P}_{s}\tau - \tau_{s}\dot{P},$$

$$\varepsilon_{3}\tau_{t} = \left(\frac{1}{\kappa}\left(\varepsilon_{2}\dot{P}_{ss} + \varepsilon_{1}\dot{P}(\kappa^{2} - \varepsilon_{1}\varepsilon_{3}\tau^{2} + \varepsilon_{2}\rho) - \varepsilon_{1}\kappa P\right)\right)_{s}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FUNDAMENTAL EQUATIONS

The term h_{22} is defined by

$$h_{22} = \langle \widetilde{\nabla}_{e_2} e_2, e_3 \rangle = \frac{1}{\kappa} \{ \varepsilon_3 \frac{\dot{P}_{ss}}{\dot{P}} - \varepsilon_2 \tau^2 + \varepsilon_1 \varepsilon_3 \rho \}.$$

Using this, we see that the Gauss-Codazzi equations boil down to

$$\kappa_{t} = -2\dot{P}_{s}\tau - \tau_{s}\dot{P},$$

$$\varepsilon_{3}\tau_{t} = \left(\frac{1}{\kappa}\left(\varepsilon_{2}\dot{P}_{ss} + \varepsilon_{1}\dot{P}(\kappa^{2} - \varepsilon_{1}\varepsilon_{3}\tau^{2} + \varepsilon_{2}\rho) - \varepsilon_{1}\kappa P\right)\right)_{s}$$

Fundamental Theorem of Submanifolds ([1], [2])

For any pair of functions $\kappa(s, t)$, $\tau(s, t)$ satisfying the Gauss-Codazzi equations, there exists an isometric immersion $x: U \to M_r^3(\rho)$ foliated by a family of geodesics $\gamma^t(s) = x(s, t)$ evolving by the binormal flow.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Travelling Wave Solutions

- 1. Travelling Wave Solutions
- 2. Foliations of Binormal Evolution Surfaces

- $1. \ \ {\rm Travelling} \ {\rm Wave} \ {\rm Solutions}$
- 2. Foliations of Binormal Evolution Surfaces
- 3. Applications

A travelling wave is a function $u(x, t) = f(x - \eta t)$, $\eta \in \mathbb{R}$ for some smooth function f,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A travelling wave is a function $u(x, t) = f(x - \eta t)$, $\eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A travelling wave is a function $u(x, t) = f(x - \eta t)$, $\eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η .

TRAVELLING WAVE SOLUTIONS OF GAUSS-CODAZZI EQUATIONS ([1], [2])

They correspond to the curvature and torsion of generalized Kirchhoff centerlines.

A travelling wave is a function $u(x, t) = f(x - \eta t)$, $\eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η .

TRAVELLING WAVE SOLUTIONS OF GAUSS-CODAZZI EQUATIONS ([1], [2])

They correspond to the curvature and torsion of generalized Kirchhoff centerlines. Moreover, generalized Kirchhoff centerlines evolve following the binormal flow by isometries of $M_r^3(\rho)$ and slippery.

FOLIATIONS OF BES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus, we have

1. A geodesic foliation $\mathcal{F} = \{\gamma^t\}_{t \in \mathbb{R}}$ of S_{γ} .

FOLIATIONS OF BES

Thus, we have

- 1. A geodesic foliation $\mathcal{F} = \{\gamma^t\}_{t \in \mathbb{R}}$ of S_{γ} .
- 2. An everywhere orthogonal foliation $\mathcal{F}^{\perp} = \{\delta_s\}_{s \in J}$, consisting on integral curves of x_t

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FOLIATIONS OF BES

Thus, we have

- 1. A geodesic foliation $\mathcal{F} = \{\gamma^t\}_{t \in \mathbb{R}}$ of S_{γ} .
- An everywhere orthogonal foliation *F*[⊥] = {δ_s}_{s∈J}, consisting on integral curves of x_t (this curves have constant curvature in S_γ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Foliations of BES

Thus, we have

- 1. A geodesic foliation $\mathcal{F} = \{\gamma^t\}_{t \in \mathbb{R}}$ of S_{γ} .
- An everywhere orthogonal foliation *F*[⊥] = {δ_s}_{s∈J}, consisting on integral curves of x_t (this curves have constant curvature in S_γ).

THEOREM [2]

Consider the pseudo-Riemannian manifold $(B \times F, g)$, whose canonical foliations \mathcal{F}_B and \mathcal{F}_F are orthogonal everywhere. Then, the metric g is a warped product metric, if and only if, \mathcal{F}_B is a totally geodesic foliation and \mathcal{F}_F is a spherical foliation.

Applications

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Applications

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, *Advances in Mathematical Physics* 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, *J. Fluid Mech.* 51, 1972, pp. 477-485.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applications

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, *Advances in Mathematical Physics* 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, *J. Fluid Mech.* 51, 1972, pp. 477-485.
- 2. Hopf Cylinders
 - M. Barros, A. Ferrández, M.A. Javaloyes and P. Lucas, Relativistic particles with rigidity and torsion in *D* = 3 spacetimes, *Class. Quantum Grav.* 22, pp. 489-513, 2005.

APPLICATIONS

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, *Advances in Mathematical Physics* 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, *J. Fluid Mech.* 51, 1972, pp. 477-485.
- 2. Hopf Cylinders
 - M. Barros, A. Ferrández, M.A. Javaloyes and P. Lucas, Relativistic particles with rigidity and torsion in *D* = 3 spacetimes, *Class. Quantum Grav.* 22, pp. 489-513, 2005.
- 3. Constant Mean Curvature BES
 - W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativittstheorie I: Elementare Differentialgeometrie, Springer, Berlin, 1930.
 - O. J. Garay and A. Pámpano, On a Blaschke's variational problem. In preparation, 2017.

References

- O. J. Garay, A. Pámpano, Binormal Evolution of Curves with Prescribed Velocity, WSEAS transactions on fluid mechanics 11, 2016, pp. 112-120.
- 2. O. J. Garay and A. Pámpano, Travelling Wave Solutions of the Extended Codazzi-Betchov-Da Rios Evolution Equations, In preparation, 2017.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The End

<□ > < @ > < E > < E > E のQ @