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Energy Functionals

• We denote by Ωpop1 the space of smooth immersed curves of
Mn

r (ρ) joining two points of it.

• We are going to consider energy functionals acting on Ωpop1

of the following form

Θ(γ) =

∫
γ
F(κ) + µτ + λ =

∫ L

0
(F(κ)(s) + µτ(s) + λ) ds ,

where F(u) is a C∞(R) function and µ, λ ∈ R.

• A version of the Lagrange multipliers allows us to interpret
this variational problem as the minimization of the curvature
energy

∫
γ F(κ) subject to two constraints: fixed length and

fixed total torsion.
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Reduction Theorem

From the first variation formula and the Frenet-Serret equations we
get that rankγ ≤ 3.

Moreover, we can prove that there exists a
parallel normal subbundle which contains the first normal
space.Then, we obtain

Reduction Theorem [2]

A critical point of Θ must lie in a 3-dimensional totally geodesic
submanifold of Mn

r (ρ).

Thus, we are interested in studying critical curves in
pseudo-Riemannian 3-space forms, M3

r (ρ).
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Euler-Lagrange Equations

The Euler-Lagrange equations for the curvature energy functional
Θ(γ) =

∫
γ F(κ) + µτ + λ, acting on Ωpop1 can be written as

µκτ = κ(F + λ)− Ḟ(κ2 − ε1ε3τ2 + ε2ρ)− ε1ε2Ḟss ,

µκs = −2ε1ε3τ Ḟs − ε1ε3τsḞ .

Generalized Kirchhoff Centerlines ([1], [2])

Curves whose curvature and torsion satisfy above equations will be
called generalized Kirchhoff centerlines.

Thus, under suitable boundary conditions, generalized Kirchhoff
centerlines are critical curves of our energy functionals.
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Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed
parametrization is said to be a Killing vector field along γ if it
evolves in the direction of W without changing shape, only
position.That is, if the following equations hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = W (τ)(t̄, 0) = 0 ,

and this is independent on the choice of the tangent variation of γ
to W .

Characterization of Centerlines ([1], [2])

The vector field I = ε1ε3µT + ḞB is a Killing vector field along γ,
if and only if, γ is a generalized Kirchhoff centerline.
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Evolution of Curves

Every non-totally geodesic surface of M3
r (ρ) can be seen as the

evolution of a Frenet curve of rank 2 or 3 under

xt = Φ xs × ∇̃xsxs .

In order to endow this evolution with a geometrical meaning, we
are going to consider that Φ = f (|∇̃xsxs |). Then, we have

Properties ([1], [2])

1. This is a length-preserving evolution.

2. The initial condition γ(s) = x(s, 0) evolves by the binormal
flow, xt = Ṗ(κ)B, where Ṗ = ε2ε3κf (κ).
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Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in M3
r (ρ) swept out by

γ(s) will be denoted Sγ and called a binormal evolution surface
with initial condition γ and velocity Ṗ.

We parametrize it by x(s, t) = γt(s), to obtain

1. The metric of Sγ

g = ε1ds
2 + ε3Ṗ

2dt2,

2. The Gaussian curvature of Sγ

K := −ε1
Ṗss

Ṗ
,

3. The second fundamental form of Sγ

ε2h = −κds2 + 2τ Ṗds dt + ε2Ṗ
2h22dt

2 .
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Ṗ
,

3. The second fundamental form of Sγ

ε2h = −κds2 + 2τ Ṗds dt + ε2Ṗ
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Fundamental Equations

The term h22 is defined by

h22 = 〈∇̃e2e2, e3〉 =
1

κ
{ε3

Ṗss

Ṗ
− ε2τ2 + ε1ε3ρ}.

Using this, we see that the Gauss-Codazzi equations boil down to

κt = −2Ṗsτ − τs Ṗ ,

ε3τt =

(
1

κ

(
ε2Ṗss + ε1Ṗ(κ2 − ε1ε3τ2 + ε2ρ)− ε1κP

))
s

.

Fundamental Theorem of Submanifolds ([1], [2])

For any pair of functions κ(s, t), τ(s, t) satisfying the
Gauss-Codazzi equations, there exists an isometric immersion
x : U → M3

r (ρ) foliated by a family of geodesics γt(s) = x(s, t)
evolving by the binormal flow.
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Travelling Wave Solutions

A travelling wave is a function u(x , t) = f (x − ηt), η ∈ R for some
smooth function f ,

that is we are considering travelling waves with
wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi
Equations ([1], [2])

They correspond to the curvature and torsion of generalized
Kirchhoff centerlines.Moreover, generalized Kirchhoff centerlines
evolve following the binormal flow by isometries of M3

r (ρ) and
slippery.



Travelling Wave Solutions

A travelling wave is a function u(x , t) = f (x − ηt), η ∈ R for some
smooth function f ,that is we are considering travelling waves with
wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi
Equations ([1], [2])

They correspond to the curvature and torsion of generalized
Kirchhoff centerlines.Moreover, generalized Kirchhoff centerlines
evolve following the binormal flow by isometries of M3

r (ρ) and
slippery.



Travelling Wave Solutions

A travelling wave is a function u(x , t) = f (x − ηt), η ∈ R for some
smooth function f ,that is we are considering travelling waves with
wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi
Equations ([1], [2])

They correspond to the curvature and torsion of generalized
Kirchhoff centerlines.

Moreover, generalized Kirchhoff centerlines
evolve following the binormal flow by isometries of M3

r (ρ) and
slippery.



Travelling Wave Solutions

A travelling wave is a function u(x , t) = f (x − ηt), η ∈ R for some
smooth function f ,that is we are considering travelling waves with
wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi
Equations ([1], [2])

They correspond to the curvature and torsion of generalized
Kirchhoff centerlines.Moreover, generalized Kirchhoff centerlines
evolve following the binormal flow by isometries of M3

r (ρ) and
slippery.



Foliations of BES

Thus, we have

1. A geodesic foliation F = {γt}t∈R of Sγ .

2. An everywhere orthogonal foliation F⊥ = {δs}s∈J , consisting
on integral curves of xt (this curves have constant curvature
in Sγ).

Theorem [2]

Consider the pseudo-Riemannian manifold (B × F , g), whose
canonical foliations FB and FF are orthogonal everywhere. Then,
the metric g is a warped product metric, if and only if, FB is a
totally geodesic foliation and FF is a spherical foliation.
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