

Travelling Wave Solutions of the Codazzi-Betchov-Da Rios Evolution Equations

Álvaro Pámpano Llarena

School of Low Dimensional Topology

Zaragoza, January 18-27 of 2017

Index

Index

1. Generalized Kirchhoff Centerlines

Index

1. Generalized Kirchhoff Centerlines
2. Binormal Evolution Surfaces

Index

1. Generalized Kirchhoff Centerlines
2. Binormal Evolution Surfaces
3. Travelling Wave Solutions

Generalized Kirchhoff Centerlines

1. Energy Functionals

Generalized Kirchhoff Centerlines

1. Energy Functionals
2. Reduction Theorem

Generalized Kirchhoff Centerlines

1. Energy Functionals
2. Reduction Theorem
3. Euler-Lagrange Equations

Generalized Kirchhoff Centerlines

1. Energy Functionals
2. Reduction Theorem
3. Euler-Lagrange Equations
4. Killing Vector Fields

Energy Functionals

- We denote by $\Omega_{p_{o} p_{1}}$ the space of smooth immersed curves of $M_{r}^{n}(\rho)$ joining two points of it.

Energy Functionals

- We denote by $\Omega_{p_{o} p_{1}}$ the space of smooth immersed curves of $M_{r}^{n}(\rho)$ joining two points of it.
- We are going to consider energy functionals acting on $\Omega_{p_{o} p_{1}}$ of the following form

$$
\Theta(\gamma)=\int_{\gamma} \mathcal{F}(\kappa)+\mu \tau+\lambda=\int_{0}^{L}(\mathcal{F}(\kappa)(s)+\mu \tau(s)+\lambda) d s
$$

where $\mathcal{F}(u)$ is a $C^{\infty}(\mathbb{R})$ function and $\mu, \lambda \in \mathbb{R}$.

Energy Functionals

- We denote by $\Omega_{p_{0} p_{1}}$ the space of smooth immersed curves of $M_{r}^{n}(\rho)$ joining two points of it.
- We are going to consider energy functionals acting on $\Omega_{p_{o} p_{1}}$ of the following form

$$
\Theta(\gamma)=\int_{\gamma} \mathcal{F}(\kappa)+\mu \tau+\lambda=\int_{0}^{L}(\mathcal{F}(\kappa)(s)+\mu \tau(s)+\lambda) d s
$$

where $\mathcal{F}(u)$ is a $C^{\infty}(\mathbb{R})$ function and $\mu, \lambda \in \mathbb{R}$.

- A version of the Lagrange multipliers allows us to interpret this variational problem as the minimization of the curvature energy $\int_{\gamma} \mathcal{F}(\kappa)$ subject to two constraints: fixed length and fixed total torsion.

Reduction Theorem

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$.

Reduction Theorem

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space.

Reduction Theorem

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

Reduction Theorem [2]

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of $M_{r}^{n}(\rho)$.

Reduction Theorem

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

Reduction Theorem [2]

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of $M_{r}^{n}(\rho)$.

Thus, we are interested in studying critical curves in pseudo-Riemannian 3-space forms, $M_{r}^{3}(\rho)$.

Euler-Lagrange Equations

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma)=\int_{\gamma} \mathcal{F}(\kappa)+\mu \tau+\lambda$, acting on $\Omega_{p_{o} p_{1}}$ can be written as

$$
\begin{aligned}
\mu \kappa \tau & =\kappa(\mathcal{F}+\lambda)-\dot{\mathcal{F}}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right)-\varepsilon_{1} \varepsilon_{2} \dot{\mathcal{F}}_{s s} \\
\mu \kappa_{s} & =-2 \varepsilon_{1} \varepsilon_{3} \tau \dot{\mathcal{F}}_{s}-\varepsilon_{1} \varepsilon_{3} \tau_{s} \dot{\mathcal{F}}
\end{aligned}
$$

Euler-Lagrange Equations

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma)=\int_{\gamma} \mathcal{F}(\kappa)+\mu \tau+\lambda$, acting on $\Omega_{p_{o} p_{1}}$ can be written as

$$
\begin{aligned}
\mu \kappa \tau & =\kappa(\mathcal{F}+\lambda)-\dot{\mathcal{F}}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right)-\varepsilon_{1} \varepsilon_{2} \dot{\mathcal{F}}_{s s} \\
\mu \kappa_{s} & =-2 \varepsilon_{1} \varepsilon_{3} \tau \dot{\mathcal{F}}_{s}-\varepsilon_{1} \varepsilon_{3} \tau_{s} \dot{\mathcal{F}} .
\end{aligned}
$$

Generalized Kirchhoff Centerlines ([1], [2])

Curves whose curvature and torsion satisfy above equations will be called generalized Kirchhoff centerlines.

Euler-Lagrange Equations

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma)=\int_{\gamma} \mathcal{F}(\kappa)+\mu \tau+\lambda$, acting on $\Omega_{p_{o} p_{1}}$ can be written as

$$
\begin{aligned}
\mu \kappa \tau & =\kappa(\mathcal{F}+\lambda)-\dot{\mathcal{F}}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right)-\varepsilon_{1} \varepsilon_{2} \dot{\mathcal{F}}_{s s} \\
\mu \kappa_{s} & =-2 \varepsilon_{1} \varepsilon_{3} \tau \dot{\mathcal{F}}_{s}-\varepsilon_{1} \varepsilon_{3} \tau_{s} \dot{\mathcal{F}}
\end{aligned}
$$

Generalized Kirchhoff Centerlines ([1], [2])

Curves whose curvature and torsion satisfy above equations will be called generalized Kirchhoff centerlines.

Thus, under suitable boundary conditions, generalized Kirchhoff centerlines are critical curves of our energy functionals.

Killing Vector Fields

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=W(\tau)(\bar{t}, 0)=0
$$

and this is independent on the choice of the tangent variation of γ to W.

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=W(\tau)(\bar{t}, 0)=0
$$

and this is independent on the choice of the tangent variation of γ to W.

Characterization of Centerlines ([1], [2])

The vector field $\mathcal{I}=\varepsilon_{1} \varepsilon_{3} \mu T+\dot{\mathcal{F}} B$ is a Killing vector field along γ, if and only if, γ is a generalized Kirchhoff centerline.

Binormal Evolution Surfaces

Binormal Evolution Surfaces

1. Evolution of Curves

Binormal Evolution Surfaces

1. Evolution of Curves
2. Binormal Evolution Surfaces

Binormal Evolution Surfaces

1. Evolution of Curves
2. Binormal Evolution Surfaces
3. Fundamental Equations

Evolution of Curves

Every non-totally geodesic surface of $M_{r}^{3}(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$
x_{t}=\Phi x_{s} \times \widetilde{\nabla}_{x_{s}} x_{s}
$$

Evolution of Curves

Every non-totally geodesic surface of $M_{r}^{3}(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$
x_{t}=\Phi x_{s} \times \widetilde{\nabla}_{x_{s}} x_{s}
$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi=f\left(\left|\widetilde{\nabla}_{x_{s}} x_{s}\right|\right)$.

Evolution of Curves

Every non-totally geodesic surface of $M_{r}^{3}(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$
x_{t}=\Phi x_{s} \times \widetilde{\nabla}_{x_{s}} x_{s} .
$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi=f\left(\left|\widetilde{\nabla}_{x_{s}} x_{s}\right|\right)$. Then, we have

Properties ([1], [2])

1. This is a length-preserving evolution.

Evolution of Curves

Every non-totally geodesic surface of $M_{r}^{3}(\rho)$ can be seen as the evolution of a Frenet curve of rank 2 or 3 under

$$
x_{t}=\Phi x_{s} \times \widetilde{\nabla}_{x_{s}} x_{s} .
$$

In order to endow this evolution with a geometrical meaning, we are going to consider that $\Phi=f\left(\left|\widetilde{\nabla}_{x_{s}} x_{s}\right|\right)$. Then, we have

Properties ([1], [2])

1. This is a length-preserving evolution.
2. The initial condition $\gamma(s)=x(s, 0)$ evolves by the binormal flow, $x_{t}=\dot{P}(\kappa) B$, where $\dot{P}=\varepsilon_{2} \varepsilon_{3} \kappa f(\kappa)$.

Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in $M_{r}^{3}(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P}.

Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in $M_{r}^{3}(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P}.

We parametrize it by $x(s, t)=\gamma^{t}(s)$

Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in $M_{r}^{3}(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P}.

We parametrize it by $x(s, t)=\gamma^{t}(s)$, to obtain

1. The metric of S_{γ}

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} \dot{P}^{2} d t^{2}
$$

Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in $M_{r}^{3}(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P}.

We parametrize it by $x(s, t)=\gamma^{t}(s)$, to obtain

1. The metric of S_{γ}

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} \dot{P}^{2} d t^{2}
$$

2. The Gaussian curvature of S_{γ}

$$
K:=-\varepsilon_{1} \frac{\dot{P}_{s s}}{\dot{P}}
$$

Binormal Evolution Surfaces

Binormal Evolution Surfaces ([1], [2])

The corresponding immersed surface (U, x) in $M_{r}^{3}(\rho)$ swept out by $\gamma(s)$ will be denoted S_{γ} and called a binormal evolution surface with initial condition γ and velocity \dot{P}.

We parametrize it by $x(s, t)=\gamma^{t}(s)$, to obtain

1. The metric of S_{γ}

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} \dot{P}^{2} d t^{2}
$$

2. The Gaussian curvature of S_{γ}

$$
K:=-\varepsilon_{1} \frac{\dot{P}_{s s}}{\dot{P}}
$$

3. The second fundamental form of S_{γ}

$$
\varepsilon_{2} h=-\kappa d s^{2}+2 \tau \dot{P} d s d t+\varepsilon_{2} \dot{P}^{2} h_{22} d t^{2}
$$

Fundamental Equations

The term h_{22} is defined by

$$
h_{22}=\left\langle\widetilde{\nabla}_{e_{2}} e_{2}, e_{3}\right\rangle=\frac{1}{\kappa}\left\{\varepsilon_{3} \frac{\dot{P}_{s s}}{\dot{P}}-\varepsilon_{2} \tau^{2}+\varepsilon_{1} \varepsilon_{3} \rho\right\} .
$$

Fundamental Equations

The term h_{22} is defined by

$$
h_{22}=\left\langle\widetilde{\nabla}_{e_{2}} e_{2}, e_{3}\right\rangle=\frac{1}{\kappa}\left\{\varepsilon_{3} \frac{\dot{P}_{s s}}{\dot{P}}-\varepsilon_{2} \tau^{2}+\varepsilon_{1} \varepsilon_{3} \rho\right\} .
$$

Using this, we see that the Gauss-Codazzi equations boil down to

$$
\begin{aligned}
\kappa_{t} & =-2 \dot{P}_{s} \tau-\tau_{s} \dot{P} \\
\varepsilon_{3} \tau_{t} & =\left(\frac{1}{\kappa}\left(\varepsilon_{2} \dot{P}_{s s}+\varepsilon_{1} \dot{P}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right)-\varepsilon_{1} \kappa P\right)\right)_{s}
\end{aligned}
$$

Fundamental Equations

The term h_{22} is defined by

$$
h_{22}=\left\langle\widetilde{\nabla}_{e_{2}} e_{2}, e_{3}\right\rangle=\frac{1}{\kappa}\left\{\varepsilon_{3} \frac{\dot{P}_{s s}}{\dot{P}}-\varepsilon_{2} \tau^{2}+\varepsilon_{1} \varepsilon_{3} \rho\right\} .
$$

Using this, we see that the Gauss-Codazzi equations boil down to

$$
\begin{aligned}
\kappa_{t} & =-2 \dot{P}_{s} \tau-\tau_{s} \dot{P} \\
\varepsilon_{3} \tau_{t} & =\left(\frac{1}{\kappa}\left(\varepsilon_{2} \dot{P}_{s s}+\varepsilon_{1} \dot{P}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right)-\varepsilon_{1} \kappa P\right)\right)_{s}
\end{aligned}
$$

Fundamental Theorem of Submanifolds ([1], [2])

For any pair of functions $\kappa(s, t), \tau(s, t)$ satisfying the Gauss-Codazzi equations, there exists an isometric immersion $x: U \rightarrow M_{r}^{3}(\rho)$ foliated by a family of geodesics $\gamma^{t}(s)=x(s, t)$ evolving by the binormal flow.

Travelling Wave Solutions

Travelling Wave Solutions

\author{

1. Travelling Wave Solutions
}

Travelling Wave Solutions

1. Travelling Wave Solutions
2. Foliations of Binormal Evolution Surfaces

Travelling Wave Solutions

1. Travelling Wave Solutions
2. Foliations of Binormal Evolution Surfaces
3. Applications

Travelling Wave Solutions

A travelling wave is a function $u(x, t)=f(x-\eta t), \eta \in \mathbb{R}$ for some smooth function f,

Travelling Wave Solutions

A travelling wave is a function $u(x, t)=f(x-\eta t), \eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η.

Travelling Wave Solutions

A travelling wave is a function $u(x, t)=f(x-\eta t), \eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi Equations ([1], [2])

They correspond to the curvature and torsion of generalized Kirchhoff centerlines.

Travelling Wave Solutions

A travelling wave is a function $u(x, t)=f(x-\eta t), \eta \in \mathbb{R}$ for some smooth function f, that is we are considering travelling waves with wave number 1 and velocity (frequency) η.

Travelling Wave Solutions of Gauss-Codazzi Equations ([1], [2])

They correspond to the curvature and torsion of generalized Kirchhoff centerlines.Moreover, generalized Kirchhoff centerlines evolve following the binormal flow by isometries of $M_{r}^{3}(\rho)$ and slippery.

Foliations of BES

Thus, we have

1. A geodesic foliation $\mathcal{F}=\left\{\gamma^{t}\right\}_{t \in \mathbb{R}}$ of S_{γ}.

Foliations of BES

Thus, we have

1. A geodesic foliation $\mathcal{F}=\left\{\gamma^{t}\right\}_{t \in \mathbb{R}}$ of S_{γ}.
2. An everywhere orthogonal foliation $\mathcal{F}^{\perp}=\left\{\delta_{s}\right\}_{s \in J}$, consisting on integral curves of x_{t}

Foliations of BES

Thus, we have

1. A geodesic foliation $\mathcal{F}=\left\{\gamma^{t}\right\}_{t \in \mathbb{R}}$ of S_{γ}.
2. An everywhere orthogonal foliation $\mathcal{F}^{\perp}=\left\{\delta_{s}\right\}_{s \in J}$, consisting on integral curves of x_{t} (this curves have constant curvature in S_{γ}).

Foliations of BES

Thus, we have

1. A geodesic foliation $\mathcal{F}=\left\{\gamma^{t}\right\}_{t \in \mathbb{R}}$ of S_{γ}.
2. An everywhere orthogonal foliation $\mathcal{F}^{\perp}=\left\{\delta_{s}\right\}_{s \in J}$, consisting on integral curves of x_{t} (this curves have constant curvature in S_{γ}).

Theorem [2]

Consider the pseudo-Riemannian manifold ($B \times F, g$), whose canonical foliations \mathcal{F}_{B} and \mathcal{F}_{F} are orthogonal everywhere. Then, the metric g is a warped product metric, if and only if, \mathcal{F}_{B} is a totally geodesic foliation and \mathcal{F}_{F} is a spherical foliation.

Applications

Applications

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, Advances in Mathematical Physics 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51, 1972, pp. 477-485.

Applications

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, Advances in Mathematical Physics 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51, 1972, pp. 477-485.

2. Hopf Cylinders

- M. Barros, A. Ferrández, M.A. Javaloyes and P. Lucas, Relativistic particles with rigidity and torsion in $D=3$ spacetimes, Class. Quantum Grav. 22, pp. 489-513, 2005.

Applications

1. Hasimoto Surfaces

- O. J. Garay, A. Pámpano and C. Woo, Hypersurface constrained elasticae in Lorentzian space forms, Advances in Mathematical Physics 2015, 2015, Article ID 458178, 13 pp.
- H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51, 1972, pp. 477-485.

2. Hopf Cylinders

- M. Barros, A. Ferrández, M.A. Javaloyes and P. Lucas, Relativistic particles with rigidity and torsion in $D=3$ spacetimes, Class. Quantum Grav. 22, pp. 489-513, 2005.

3. Constant Mean Curvature BES

- W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativittstheorie I: Elementare Differentialgeometrie, Springer, Berlin, 1930.
- O. J. Garay and A. Pámpano, On a Blaschke's variational problem. In preparation, 2017.

References

1. O. J. Garay, A. Pámpano, Binormal Evolution of Curves with Prescribed Velocity, WSEAS transactions on fluid mechanics 11, 2016, pp. 112-120.
2. O. J. Garay and A. Pámpano, Travelling Wave Solutions of the Extended Codazzi-Betchov-Da Rios Evolution Equations, In preparation, 2017.

The End

