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Abstract. We study equilibrium compact surfaces with boundary for an energy which is a linear combination of the Willmore
energy and a second term which measures the bending of the boundary, focusing our attention mainly on minimal surfaces. In this
case, the original problem reduces to the Plateau problem for fixed boundary elastic curves, with some topological restrictions.

INTRODUCTION

These brief notes are a printed version of the talk given by the author at the 18th International Conference of Numerical
Analysis and Applied Mathematics (Elastic Curves and Surfaces with Applications and Numerical Representations).
The purpose of the talk was to offer a partial announcement of some results included in the joint work with Prof.
Bennett Palmer, [6]. Interested readers are referred to this work for a complete and more general treatment.

The theory of elasticity is a classical subject which led to the earliest developments of Calculus of Variations,
[4]. In 1691, the classical problem of determining the shape of an ideal elastic rod which is being held bent by external
forces and moments acting at its ends was first formulated by J. Bernoulli. Following a model of D. Bernoulli, this rod
should bend along an elastic curve, i.e. a critical curve for the potential energy of strain

E[C] :=
∫

C

(
κ2 + λ

)
ds .

Using this formulation, L. Euler described the possible qualitative types for planar rod configurations, [1].
Much later, in 1811, S. Germain suggested to measure the free energy controlling the physical system associated

with an elastic plate by an integral over the plate surface. One of the simplest functionals to be considered is the two
dimensional counterpart of the bending energy E[C],

F [X] :=
∫

Σ

H2 dΣ .

Although this variational problem was already studied by Blaschke’s school in the 1920’s, it is nowadays known as
the Willmore energy due to the contributions of T. J. Willmore, [7].

Since then, in order to understand the geometry of naturally occurring surfaces, an ever increasing variety of
potential energy functionals have been studied. In these notes, we consider a combination of the Willmore energy of
surfaces and the elastic energy of curves for compact surfaces with boundary.

EULER-WILLMORE VARIATIONAL PROBLEM

Let Σ be a compact, connected surface with boundary and consider the immersion of Σ in the Euclidean 3-space, R3,

X : Σ→ R3 .

We assume that X(Σ) is an oriented surface of class C4 embedded in R3 with sufficiently smooth boundary, ∂Σ (the
boundary ∂Σ is always considered as being positively oriented). We fix ν to be a unit normal vector field along Σ, and
denote by H the mean curvature of the immersion.



The connected components of the boundary of Σ, ∂Σ, will be represented by arc-length parameterized curves C.
For a sufficiently smooth curve C : I → R3, we denote by s ∈ I = [0,L] the arc-length parameter of C, where L
stands for its length. Then, if ( )′ represents the derivative with respect to the arc-length, the vector field T (s) := C′(s)
is the unit tangent to C. Moreover, the (Frenet) curvature of C, κ, is defined by κ(s) := ||T ′(s)|| ≥ 0.

For an immersion X : Σ→ R3, the Euler-Willmore functional is the potential energy (W ≡Wa,α,β)

W[X] := a
∫

Σ

H2 dΣ +

∮
∂Σ

(
ακ2 + β

)
ds , (1)

where a > 0, α > 0 and β ∈ R. The parameter a is the bending rigidity of the surface, α represents the flexural rigidity
of the boundary and β is the line tension which can be interpreted as a Lagrange multiplier fixing the length of the
boundary. For convenience, we assume that all connected components of the boundary, ∂Σ, are made of the same
material, so that the parameters α and β are the same constants for all boundary components.

To compute the first variation of the potential energy W[X], (1), we first introduce the Darboux frame. The
Darboux frame of ∂Σ is the orthonormal frame {n,T, ν}, where n := T × ν denotes the conormal of the boundary. The
derivative of this frame with respect to the arc-length parameter s is given by

n′ = −κgT + τgν ,

T ′ = κgn + κnν ,

ν′ = −τgn − κnT ,

where the functions involved, κg, κn and τg, are, respectively, the geodesic curvature, the normal curvature and the
geodesic torsion.

Consider arbitrary variations of the immersion X : Σ → R3, i.e. X + εδX + O(ε2). Then, by standard arguments
of Calculus of Variations involving integration by parts, we obtain the Euler-Lagrange equations. By considering
compactly supported variations, on Σ,

∆H + 2H
(
H2 − K

)
= 0 , (2)

holds. At the same time, from the first variation formula, we also get the following boundary conditions

H = 0 , (3)
J′ · ν − a∂nH = 0 , (4)

J′ · n = 0 , (5)

where J′ is the derivative with respect to the arc-length parameter of the vector field J defined along ∂Σ as

J := 2αT ′′ +
(
3ακ2 − β

)
T .

Equations (3) and (4) come from normal variations, while (5) is deduced by considering variations tangent to the
surface.

For a rescaling of the immersion X : Σ→ R3 for σ > 0, i.e. X → σX, the Willmore energy remains invariant, the
length of the boundary rescales linearly, while the elastic boundary term rescales like σ−1. Therefore, if X : Σ → R3

is a critical immersion for the potential energyW[X], (1), the following relation holds:

β =
α

L [X|∂Σ]

∮
∂Σ

κ2 ds ,

where L [X|∂Σ] denotes the length of the boundary ∂Σ. In particular, the line tension, β, must be positive. From now
on, we assume that β > 0 holds.

EQUILIBRIUM CONFIGURATIONS WITH CONSTANT MEAN CURVATURE

Throughout this section, let us consider that X : Σ → R3 is a critical immersion for the potential energyW[X], (1),
with constant mean curvature. Clearly, from the Euler-Lagrange equation (3), we conclude that X(Σ) is a minimal



FIGURE 1. Minimal surfaces of disc type spanned by elastic curves of type G(q, 1) for q = 3, 4, 5 and 6. These configurations are
critical forW[X], (1).

surface, i.e. H ≡ 0 holds on Σ. In this case, both (2) and (3) are satisfied, while (4) and (5) become the Euler-Lagrange
equations of the classical elastic energy in R3,

E[C] :=
∫

C

(
κ2 + λ

)
ds , (6)

with λ := β/α > 0. That is, if X : Σ → R3 is a minimal critical immersion forW[X], (1), the boundary components
are closed and simple critical curves for E[C], (6), i.e. closed and simple elastic curves.

Among planar curves, the only closed critical curves for E[C], (6), are circles of radii ro =
√
α/β and elastic

figure-eights, the former being the only embedded ones. On the other hand, closed elastic curves in R3 were studied in
[2], proving that there exist infinitely many embedded closed non planar elastic curves lying on rotational tori. These
non planar elastic curves represent (q, p)-torus knots for 0 < 2p < q, denoted here by G(q, p). The parameters q and
p have a geometric meaning. Indeed, p represents the number of rounds around the z-axis (after rigid motions) that
the critical curve does in order to close, while q is the number of periods of the curvature needed to close. Closed
planar elastic curves can be included in this family of (q, p)-torus knots by considering circles for p = 0 and elastic
figure-eights for q = 2p. The deformation of the elastic circle into the elastic figure-eight through the family of non
planar elastic curves can be visualized in: https://www.youtube.com/watch?v=49CeK8g1RAo. (This video also includes
a counter of closed elastic curves.)

As a consequence, the original problem of obtaining critical immersions X : Σ→ R3 forW[X], (1), with H ≡ 0,
reduces to seeking minimal surfaces whose boundary is composed by fixed closed and simple elastic curves (which
represent torus knots of type G(q, p)). In the particular case that Σ � D is a topological disc, this is the classical
Plateau problem where the boundary is a fixed elastic curve.

In what follows we study separately two of the simplest topological types: disc type surfaces and annuli.

Disc Type Surfaces
Let Σ � D be a topological disc and consider a minimal immersion X : D→ R3 critical forW[X], (1). As mentioned
above, the boundary X(∂D) is the image of a closed and simple elastic curve, C.

First, if C is an elastic circle (i.e. its radius is ro =
√
α/β), then X(D) is a planar disc bounded by C. On the other

hand, if the elastic curve C is non planar, then it represents a torus knot G(q, p) with 0 < 2p < q. Therefore, in the
latter case, X(D) is a Seifert surface. We say that an orientable, connected surface that has as its boundary an oriented
knot (or link) is a Seifert surface, [5]. The genus of a knot is defined as the minimum of the genus of any of its Seifert
surfaces. In our case, the Seifert surface is a disc, so it has genus zero. Hence, the genus of the torus knot G(q, p) with
0 < 2p < q is also zero. The genus of torus knots can be computed explicitly (for details, see [5]) and so we conclude
that p = 1 and q > 2 must hold.

In conclusion, if X : D → R3 is a minimal critical immersion forW[X], (1), of a topological disc, then either
X(D) is a planar disc bounded by a circle of radius ro =

√
α/β, or its boundary is a closed and simple non planar elastic

curve representing a torus knot of type G(q, 1) for q > 2. For fixed q > 2, one can try to use numerical algorithms to
solve the Plateau problem for the fixed elastic curve of type G(q, 1). In Figure 1, we show some minimal embedded
disc type surfaces critical for W[X], (1). These surfaces have been obtained numerically implementing in Wolfram
Mathematica an algorithm based on the mean curvature flow.



FIGURE 2. Minimal annuli with boundary the union of congruent elastic curves for different torus knots G(q, p). From left to
right: G(3, 1), G(4, 1), G(5, 1), G(6, 1) and G(5, 2). These domains are critical forW[X], (1).

Topological Annuli

Assume now that Σ � A is a topological annulus. If we seek minimal immersions critical for W[X], (1), then both
boundary components are closed and simple elastic curves representing torus knots of type G(q, p) with 0 ≤ 2p < q
(recall that the elastic circle is included here as p = 0).

In this setting, by cobordism theory (for details, see [3]), we obtain that both connected components of the
boundary must be torus knots of the same type. The simplest case is when both of them are circles of radii ro =

√
α/β.

An example of this minimal annular surface is a suitable symmetric domain in a catenoid. We point out here that there
are also non axially symmetric minimal domains critical for W[X], (1). For instance, if we fix two circles of radii
ro =

√
α/β in two horizontal planes closed enough one from another, such that the circle’s centers are not vertically

aligned and search for the minimal surface whose boundary is the union of these circles, we get Riemann’s minimal
examples, which are non rotational minimal surfaces critical forW[X], (1).

However, if the boundary components are not circles, in order to produce examples, we can proceed as follows.
Fix C1 to be a closed and simple non planar elastic curve of type G(q, p) with 0 < 2p < q. This elastic curve C1
lies on a torus of revolution, hence, a small enough suitable rotation of C1 will give us a congruent copy, C2, which
also lies in the same torus. Next, we search for a minimal surface with boundary C1 ∪ C2. Numerically, one way of
doing this is to consider the piece of the rotational torus between C1 and C2 as the initial condition and then apply the
mean curvature flow. Implementing this algorithm in Wolfram Mathematica, we have obtained some minimal annuli
bounded by elastic curves representing different torus knots G(q, p) (see Figure 2).

ABSOLUTE MINIMIZERS

In this last section, we are going to approach the problem of minimizing the potential energyW[X], (1). Following
[6], for any immersion X : Σ→ R3 of a compact surface Σ with n boundary components, ∂Σ ≡ ∪n

i=1Ci, we have that

W[X] ≥ Wn := 4π n
√
α β .

Equality in above estimate holds if and only if X(Σ) is a minimal surface bounded by n circles of radii ro =
√
α/β, i.e.

elastic circles.
For a topological disc (Σ � D and n = 1) the minimumW1 is attained if and only if X(D) is a planar disc bounded

by a circle of radius ro =
√
α/β. However, for different topological types, there are multiple domains attaining the

minima Wn. For instance, for a topological annulus (Σ � A and n = 2) all previous critical examples bounded by
circles (suitable domains in the catenoid and in Riemann’s minimal examples) attain the minimumW2.

ACKNOWLEDGMENTS

The author would like to thank the Department of Mathematics of Idaho State University for its warm hospitality.



REFERENCES

[1] L. Euler, De Curvis Elasticis, In: Methodus Inveniendi Lineas Curvas Maximi Minimive Propietate Gau-
dentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti, Additamentum 1 Ser. 1 24, Lau-
sanne, 1744.

[2] J. Langer and D. A. Singer, Knotted Elastic Curves in R3, J. London Math. Soc. (2) 30 (1984), 512–520.
[3] R. A. Litherland, Signatures of Iterated Torus Knots, In: R. Fenn (eds) Topology of Low-Dimensional Man-

ifolds, Lecture Notes in Mathematics, 722, Springer, Berlin, 1979.
[4] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications 4th Ed., New York,

1944.
[5] K. Murasugi, Knot Theory and its Applications, Birkhauser, Boston, 1996.
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