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Definition
We say that M1 is biconservative if
25, (grad H) + (n — 1)H grad H — 2H Ricci(n)" =0
holds.
o If N" is a space form, N"(p), the last term vanishes.

e First examples: constant mean curvature hypersurface.

From now on we will look for proper (non-CMC) biconservative
surfaces in N3(p).
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Let S be a (proper) biconservative surface in N3(p).

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of N3(p) are rotational surfaces.
Moreover,
K= —-3H?+p

holds.

e They are Weingarten surfaces (W(H, K) = 0).
e They are linear Weingarten surfaces, i.e. (Fu & Li, 2013)

3k1+ Ky =0,

where K1 = —k.
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Rotational Linear Weingarten Surfaces

Theorem (Lépez & —, 2020)

Let S C R® be a rotational surface satisfying
K1 = aka + b,

for a1 and b € R. If 7y is a profile curve of S, then the
curvature x of  satisfies the Euler-Lagrange equation associated
to the curvature energy

0.0 = [ (x—ny
where = —b/(a—1) and n=a/(a—1).

e Biconservative case: ;1 =0 and n = 1/4.
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Curvature Energy Functional

We consider the curvature energy functional
L 1
O(v) = / kU4 = / K1/4(s)ds = / kY4t v(t) dt

gl 0 0
acting on the space of smooth immersed curves in Riemannian
2-space forms N?(p), i.e. v: [0, L] — N?(p).
Euler-Lagrange equation
Regardless of the boundary conditions, any critical curve for ©
must satisfy

> (1
3/4 9 2,2 _
K =) <m3/4> 3+ p=0.

We will call them, simply, critical curves.
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A vector field W along v, is said to be a Killing vector field along
~ if the following equations hold

along 7. (Langer & Singer, 1984)
Proposition (Langer & Singer, 1984)

Consider N?(p) embedded as a totally geodesic surface of N3(p).
Then, the vector fields

1
1 = 4/@3/48’
S 0 VS Ny G Y
J 4" +ds 453/4

are Killing vector fields along critical curves.
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Let v(s)C N?(p) be any critical curve for @. (We consider
N2(p) © N3(p) and 7 being planar, i.e. 7=0.)
1. Consider the Killing vector field along ~ in the direction of the
(constant) binormal vector field:
1
I= 5B

2. Let's denote by & the (unique) extension to a Killing vector
field of N3(p). (It can be assumed to be: & = A1 X1 + A2 X>.)

3. Since N3(p) is complete, the one-parameter group of
isometries determined by £ is {¢;, t € R}.

4. We construct the binormal evolution surface (Garay & —, 2016)

Sy = {x(s,t) = e (7(s))} -



Q>
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Geometric Properties

By construction S, is a &-invariant surface. Moreover, it verifies:
e Since y(s) C N?(p) (v is planar),
Theorem (Arroyo, Garay & —, 2017)

The binormal evolution surface S, is either a flat isoparametric
surface (when k(s) = k, is constant); or, it is a rotational surface
(when £(s) is not constant). In particular, spherical rotational
surface if d > 0 holds (constant of integration).

e Since (s) is a critical curve for ©,

Theorem (Montaldo & —, 2020)

The binormal evolution surface S, is a proper biconservative
surface. It verifies:
3k1+ kr=0.
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Closure Conditions

Searching for closed (proper) biconservative surfaces, we need:
e Spherical rotation, i.e. d > 0.

e Closed profile curve, i.e. closed critical curve for ©.

Closure Conditions

Let v(s) C N?(p) be a critical curve for © with periodic curvature.
Then, 7(s) is closed if and only if

A(d ¢ W d
12/ 5
(d) /0 16dk3/2 — p °

equals 0 for p <0, or 2nm/(m+/pd) for p > 0.
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Existence of Closed Biconservative Surfaces

Proposition (Montaldo & —, 2020)

There are not closed non-CMC biconservative surfaces in N3(p)
with p < 0.

e First obtained in (Nistor & Oniciuc, 2019-2020), using a different
technique.

e However, we will prove the existence in S3(p).

Proposition (Montaldo & —, 2020)

Critical curves for @ in S2(p) have periodic curvature.
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Existence of Closed Critical Curves

Lemma (Montaldo & —, 2020)

The function /(d) = v/p d A(d) decreases in d € (d,, 00).
Moreover,

V271> I(d) > 7.

Theorem (Montaldo & —, 2020)

There exists a discrete biparametric family of closed non-CMC
biconservative surfaces in S3(p). None of them is embedded.

e For any m and n such that, m < 2n < \/2m, we have a closed
non-CMC biconservative surface.
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5 = = £ DA



Closed Biconservative Surface (m =3 and n = 2)

o 5 = = E DA



Critical Curve for ® (m =5 and n = 3)
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Thank You!



