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Biconservative Surfaces

Let Mn−1 be a hypersurface in a Riemannian manifold Nn.

Definition

We say that Mn−1 is biconservative if

2Sη (gradH) + (n − 1)H gradH − 2H Ricci(η)T = 0

holds.

• If Nn is a space form, Nn(ρ), the last term vanishes.

• First examples: constant mean curvature hypersurface.

From now on we will look for proper (non-CMC) biconservative
surfaces in N3(ρ).
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Biconservative Surfaces in N3(ρ)

Let S be a (proper) biconservative surface in N3(ρ).

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of N3(ρ) are rotational surfaces.
Moreover,

K = −3H2 + ρ

holds.

• They are Weingarten surfaces (W(H,K ) = 0).

• They are linear Weingarten surfaces, i.e. (Fu & Li, 2013)

3κ1 + κ2 = 0 ,

where κ1 = −κ.
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Rotational Linear Weingarten Surfaces

Theorem (López & —, 2020)

Let S ⊂ R3 be a rotational surface satisfying

κ1 = aκ2 + b ,

for a 6= 1 and b ∈ R. If γ is a profile curve of S , then the
curvature κ of γ satisfies the Euler-Lagrange equation associated
to the curvature energy

Θµ(γ) =

∫
γ

(κ− µ)n

where µ = −b/(a− 1) and n = a/(a− 1).

• Biconservative case: µ = 0 and n = 1/4.
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Curvature Energy Functional

We consider the curvature energy functional

Θ(γ) :=

∫
γ
κ1/4 =

∫ L

0
κ1/4(s)ds =

∫ 1

0
κ1/4(t)v(t) dt

acting on the space of smooth immersed curves in Riemannian
2-space forms N2(ρ), i.e. γ : [0, L]→ N2(ρ).

Euler-Lagrange equation

Regardless of the boundary conditions, any critical curve for Θ
must satisfy

κ3/4
d2

ds2

(
1

κ3/4

)
− 3κ2 + ρ = 0 .

We will call them, simply, critical curves.
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Killing Vector Fields Along Curves

A vector field W along γ, is said to be a Killing vector field along
γ if the following equations hold

W (v) = W (κ) = 0

along γ. (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

Consider N2(ρ) embedded as a totally geodesic surface of N3(ρ).
Then, the vector fields

I =
1

4κ3/4
B ,

J = −3

4
κ1/4T +

d

ds

(
1

4κ3/4

)
N

are Killing vector fields along critical curves.
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Binormal Evolution Surfaces

Let γ(s)⊂ N2(ρ) be any critical curve for Θ. (We consider
N2(ρ) ⊂ N3(ρ) and γ being planar, i.e. τ = 0.)

1. Consider the Killing vector field along γ in the direction of the
(constant) binormal vector field:

I =
1

4κ3/4
B .

2. Let’s denote by ξ the (unique) extension to a Killing vector
field of N3(ρ). (It can be assumed to be: ξ = λ1X1 + λ2X2.)

3. Since N3(ρ) is complete, the one-parameter group of
isometries determined by ξ is {φt , t ∈ R}.

4. We construct the binormal evolution surface (Garay & —, 2016)

Sγ := {x(s, t) := φt (γ(s))} .
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Geometric Properties

By construction Sγ is a ξ-invariant surface. Moreover, it verifies:

• Since γ(s) ⊂ N2(ρ) (γ is planar),

Theorem (Arroyo, Garay & —, 2017)

The binormal evolution surface Sγ is either a flat isoparametric
surface (when κ(s) = κo is constant); or, it is a rotational surface
(when κ(s) is not constant). In particular, spherical rotational
surface if d > 0 holds (constant of integration).

• Since γ(s) is a critical curve for Θ,

Theorem (Montaldo & —, 2020)

The binormal evolution surface Sγ is a proper biconservative
surface. It verifies:

3κ1 + κ2 = 0 .
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Closure Conditions

Searching for closed (proper) biconservative surfaces, we need:

• Spherical rotation, i.e. d > 0.

• Closed profile curve, i.e. closed critical curve for Θ.

Closure Conditions

Let γ(s) ⊂ N2(ρ) be a critical curve for Θ with periodic curvature.
Then, γ(s) is closed if and only if

Λ(d) = 12

∫ %

0

κ7/4

16dκ3/2 − ρ
ds

equals 0 for ρ ≤ 0, or 2nπ/(m
√
ρd) for ρ > 0.
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Existence of Closed Biconservative Surfaces

Proposition (Montaldo & —, 2020)

There are not closed non-CMC biconservative surfaces in N3(ρ)
with ρ ≤ 0.

• First obtained in (Nistor & Oniciuc, 2019-2020), using a different
technique.

• However, we will prove the existence in S3(ρ).

Proposition (Montaldo & —, 2020)

Critical curves for Θ in S2(ρ) have periodic curvature.
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Idea of the Proof

1. Let x = κ1/2 and y = x ′, then the first integral of the
Euler-Lagrange equation reads

y2 =
4

9
x2
(
16dx3 − 9x4 − ρ

)
=

4

9
x2Q(x) .

2. The constant of integration: d > d∗ = (27ρ)1/4/4 > 0.

3. Square root method and Poincare-Bendixon Theorem.
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Existence of Closed Critical Curves

Lemma (Montaldo & —, 2020)

The function I (d) =
√
ρ d Λ(d) decreases in d ∈ (d∗,∞).

Moreover, √
2π > I (d) > π .

Theorem (Montaldo & —, 2020)

There exists a discrete biparametric family of closed non-CMC
biconservative surfaces in S3(ρ). None of them is embedded.

• For any m and n such that, m < 2n <
√

2m, we have a closed
non-CMC biconservative surface.
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non-CMC biconservative surface.



Critical Curve for Θ (m = 3 and n = 2)



Closed Biconservative Surface (m = 3 and n = 2)



Critical Curve for Θ (m = 5 and n = 3)
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