

A New Characterization of Biconservative Surfaces in 3-Space Forms

Álvaro Pámpano Llarena

Differential Geometry Workshop

Vienna-Virtual, September 2 (2021)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let M^{n-1} be a hypersurface in a Riemannian manifold N^n .

Let M^{n-1} be a hypersurface in a Riemannian manifold N^n .

Definition

We say that M^{n-1} is biconservative if

$$2S_\eta \left(ext{grad} \ H
ight) + (n-1) H ext{ grad} \ H - rac{2H}{ ext{Ricci}(\eta)}^{ extsf{T}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

holds.

Let M^{n-1} be a hypersurface in a Riemannian manifold N^n .

Definition

We say that M^{n-1} is biconservative if

$$2S_\eta \left({f g}$$
rad $H
ight) + (n-1)H \, {f g}$ rad $H - 2H \, {f Ricci}(\eta)^{\mathcal{T}} = 0$

holds.

• If N^n is a space form, $N^n(\rho)$, the last term vanishes.

Let M^{n-1} be a hypersurface in a Riemannian manifold N^n .

Definition

We say that M^{n-1} is biconservative if

$$2S_\eta \left({f g} {f rad} \, H
ight) + (n-1) H \, {f g} {f rad} \, H - rac{2H}{2H} {f Ricci} (\eta)^{\mathcal{T}} = 0$$

holds.

- If N^n is a space form, $N^n(\rho)$, the last term vanishes.
- First examples: constant mean curvature hypersurface.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let M^{n-1} be a hypersurface in a Riemannian manifold N^n .

Definition

We say that M^{n-1} is biconservative if

$$2S_\eta \left({f g} {f rad} \, H
ight) + (n-1) H \, {f g} {f rad} \, H - rac{2H}{2H} {f Ricci} (\eta)^{\mathcal{T}} = 0$$

holds.

- If N^n is a space form, $N^n(\rho)$, the last term vanishes.
- First examples: constant mean curvature hypersurface.

From now on we will look for proper (non-CMC) biconservative surfaces in $N^3(\rho)$.

・ロト・日本・モト・モート ヨー うへで

Let S be a (proper) biconservative surface in $N^3(\rho)$.

Let S be a (proper) biconservative surface in $N^3(\rho)$.

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of $N^3(\rho)$ are rotational surfaces.

- ロ ト - 4 回 ト - 4 □ - 4

Let S be a (proper) biconservative surface in $N^3(\rho)$.

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of $N^3(\rho)$ are rotational surfaces. Moreover,

 $K = -3H^2 + \rho$

holds.

Let S be a (proper) biconservative surface in $N^3(\rho)$.

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of $N^3(\rho)$ are rotational surfaces. Moreover,

$$K = -3H^2 + \rho$$

holds.

• They are Weingarten surfaces $(\mathcal{W}(H, K) = 0)$.

Let S be a (proper) biconservative surface in $N^3(\rho)$.

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Proper biconservative surfaces of $N^3(\rho)$ are rotational surfaces. Moreover,

$$K = -3H^2 + \rho$$

holds.

- They are Weingarten surfaces $(\mathcal{W}(H, K) = 0)$.
- They are linear Weingarten surfaces, i.e. (Fu & Li, 2013)

$$3\kappa_1+\kappa_2=0\,,$$

where $\kappa_1 = -\kappa$.

・ロト・日本・モト・モート ヨー うへで

Theorem (López & --, 2020)

Let $S \subset \mathbb{R}^3$ be a rotational surface satisfying

$$\kappa_1 = a\kappa_2 + b$$
,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for $a \neq 1$ and $b \in \mathbb{R}$.

Theorem (López & --, 2020)

Let $S \subset \mathbb{R}^3$ be a rotational surface satisfying

$$\kappa_1 = a\kappa_2 + b$$
,

for $a \neq 1$ and $b \in \mathbb{R}$. If γ is a profile curve of S, then the curvature κ of γ satisfies the Euler-Lagrange equation associated to the curvature energy

$${oldsymbol \Theta}_\mu(\gamma) = \int_\gamma (\kappa-\mu)^n$$

where $\mu = -b/(a-1)$ and n = a/(a-1).

Theorem (López & --, 2020)

Let $S \subset \mathbb{R}^3$ be a rotational surface satisfying

$$\kappa_1 = a\kappa_2 + b$$
,

for $a \neq 1$ and $b \in \mathbb{R}$. If γ is a profile curve of S, then the curvature κ of γ satisfies the Euler-Lagrange equation associated to the curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) = \int_{\gamma} (\kappa - \mu)^n$$

where $\mu = -b/(a-1)$ and n = a/(a-1).

• Biconservative case: $\mu = 0$ and n = 1/4.

Curvature Energy Functional

(ロ)、(型)、(E)、(E)、 E) の(の)

Curvature Energy Functional

We consider the curvature energy functional

$$\Theta(\gamma) := \int_{\gamma} \kappa^{1/4} = \int_{0}^{L} \kappa^{1/4}(s) ds = \int_{0}^{1} \kappa^{1/4}(t) v(t) dt$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

acting on the space of smooth immersed curves in Riemannian 2-space forms $N^2(\rho)$, i.e. $\gamma : [0, L] \to N^2(\rho)$.

We consider the curvature energy functional

$$\Theta(\gamma) := \int_{\gamma} \kappa^{1/4} = \int_{0}^{L} \kappa^{1/4}(s) ds = \int_{0}^{1} \kappa^{1/4}(t) v(t) dt$$

acting on the space of smooth immersed curves in Riemannian 2-space forms $N^2(\rho)$, i.e. $\gamma : [0, L] \to N^2(\rho)$.

Euler-Lagrange equation

Regardless of the boundary conditions, any critical curve for Θ must satisfy

$$\kappa^{3/4} \frac{d^2}{ds^2} \left(\frac{1}{\kappa^{3/4}}\right) - 3\kappa^2 + \rho = 0.$$

We will call them, simply, critical curves.

Killing Vector Fields Along Curves

・ロト・日本・モト・モート ヨー うへで

Killing Vector Fields Along Curves

A vector field W along γ , is said to be a Killing vector field along γ if the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ . (Langer & Singer, 1984)

Killing Vector Fields Along Curves

A vector field W along γ , is said to be a Killing vector field along γ if the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ . (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

Consider $N^2(\rho)$ embedded as a totally geodesic surface of $N^3(\rho)$. Then, the vector fields

$$\begin{array}{lll} \mathcal{I} & = & \displaystyle \frac{1}{4\kappa^{3/4}}B\,, \\ \\ \mathcal{J} & = & \displaystyle -\frac{3}{4}\kappa^{1/4}\,T + \frac{d}{ds}\left(\frac{1}{4\kappa^{3/4}}\right)N \end{array}$$

are Killing vector fields along critical curves.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • の � @

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

・ロト・日本・モト・モート ヨー うへで

Let $\gamma(s) \subset N^2(\rho)$ be any critical curve for Θ . (We consider $N^2(\rho) \subset N^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

Let $\gamma(s) \subset N^2(\rho)$ be any critical curve for Θ . (We consider $N^2(\rho) \subset N^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I} = \frac{1}{4\kappa^{3/4}}B$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\gamma(s) \subset N^2(\rho)$ be any critical curve for Θ . (We consider $N^2(\rho) \subset N^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I}=rac{1}{4\kappa^{3/4}}B\,.$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $N^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)

Let $\gamma(s) \subset N^2(\rho)$ be any critical curve for Θ . (We consider $N^2(\rho) \subset N^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I}=rac{1}{4\kappa^{3/4}}B\,.$$

- 2. Let's denote by ξ the (unique) extension to a Killing vector field of $N^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)
- Since N³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.

Let $\gamma(s) \subset N^2(\rho)$ be any critical curve for Θ . (We consider $N^2(\rho) \subset N^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I}=rac{1}{4\kappa^{3/4}}B\,.$$

- 2. Let's denote by ξ the (unique) extension to a Killing vector field of $N^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)
- Since N³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & --, 2016)

$$S_{\gamma} := \left\{ x(s,t) := \phi_t(\gamma(s)) \right\}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

・ロト・日本・モト・モート ヨー うへで

By construction S_{γ} is a ξ -invariant surface.

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset N^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant);

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset N^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset N^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if d > 0 holds (constant of integration).

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset N^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if d > 0 holds (constant of integration).

• Since $\gamma(s)$ is a critical curve for Θ ,

Theorem (Montaldo & --, 2020)

The binormal evolution surface S_{γ} is a proper biconservative surface. It verifies:

 $3\kappa_1 + \kappa_2 = 0.$

(ロ)、(型)、(E)、(E)、 E) の(の)

Searching for closed (proper) biconservative surfaces, we need:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Searching for closed (proper) biconservative surfaces, we need:

• Spherical rotation, i.e. d > 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Searching for closed (proper) biconservative surfaces, we need:

- Spherical rotation, i.e. d > 0.
- Closed profile curve, i.e. closed critical curve for Θ .

Searching for closed (proper) biconservative surfaces, we need:

- Spherical rotation, i.e. d > 0.
- Closed profile curve, i.e. closed critical curve for Θ .

Closure Conditions

Let $\gamma(s) \subset N^2(\rho)$ be a critical curve for Θ with periodic curvature. Then, $\gamma(s)$ is closed if and only if

$$\Lambda(d) = 12 \int_0^{\varrho} rac{\kappa^{7/4}}{16 d \kappa^{3/2} -
ho} \, ds$$

equals 0 for $\rho \leq 0$

Searching for closed (proper) biconservative surfaces, we need:

- Spherical rotation, i.e. d > 0.
- Closed profile curve, i.e. closed critical curve for Θ .

Closure Conditions

Let $\gamma(s) \subset N^2(\rho)$ be a critical curve for Θ with periodic curvature. Then, $\gamma(s)$ is closed if and only if

$$\Lambda(d) = 12 \int_0^\varrho \frac{\kappa^{7/4}}{16d\kappa^{3/2} - \rho} \, ds$$

equals 0 for $\rho \leq 0$, or $2n\pi/(m\sqrt{\rho d})$ for $\rho > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

There are not closed non-CMC biconservative surfaces in $N^3(\rho)$ with $\rho \leq 0$.

There are not closed non-CMC biconservative surfaces in $N^3(\rho)$ with $\rho \leq 0$.

• First obtained in (Nistor & Oniciuc, 2019-2020), using a different technique.

There are not closed non-CMC biconservative surfaces in $N^3(\rho)$ with $\rho \leq 0$.

• First obtained in (Nistor & Oniciuc, 2019-2020), using a different technique.

• However, we will prove the existence in $\mathbb{S}^3(\rho)$.

There are not closed non-CMC biconservative surfaces in $N^3(\rho)$ with $\rho \leq 0$.

• First obtained in (Nistor & Oniciuc, 2019-2020), using a different technique.

• However, we will prove the existence in $\mathbb{S}^3(\rho)$.

Proposition (Montaldo & --, 2020)

Critical curves for Θ in $\mathbb{S}^2(\rho)$ have periodic curvature.

1. Let $x = \kappa^{1/2}$ and y = x', then the first integral of the Euler-Lagrange equation reads

$$y^{2} = \frac{4}{9}x^{2}(16dx^{3} - 9x^{4} - \rho) = \frac{4}{9}x^{2}Q(x).$$

・ロト・日本・モト・モート ヨー うへで

1. Let $x = \kappa^{1/2}$ and y = x', then the first integral of the Euler-Lagrange equation reads

$$y^{2} = \frac{4}{9}x^{2}\left(16dx^{3} - 9x^{4} - \rho\right) = \frac{4}{9}x^{2}Q(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. The constant of integration: $d > d_* = (27\rho)^{1/4}/4 > 0$.

1. Let $x = \kappa^{1/2}$ and y = x', then the first integral of the Euler-Lagrange equation reads

$$y^{2} = \frac{4}{9}x^{2}\left(16dx^{3} - 9x^{4} - \rho\right) = \frac{4}{9}x^{2}Q(x).$$

- 2. The constant of integration: $d > d_* = (27\rho)^{1/4}/4 > 0$.
- 3. Square root method and Poincare-Bendixon Theorem.

1. Let $x = \kappa^{1/2}$ and y = x', then the first integral of the Euler-Lagrange equation reads

$$y^{2} = \frac{4}{9}x^{2}\left(16dx^{3} - 9x^{4} - \rho\right) = \frac{4}{9}x^{2}Q(x).$$

- 2. The constant of integration: $d > d_* = (27\rho)^{1/4}/4 > 0$.
- 3. Square root method and Poincare-Bendixon Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Existence of Closed Critical Curves

Lemma (Montaldo & --, 2020)

The function $I(d) = \sqrt{\rho d} \Lambda(d)$ decreases in $d \in (d_*, \infty)$. Moreover,

 $\sqrt{2}\pi > I(d) > \pi$.

Existence of Closed Critical Curves

Lemma (Montaldo & --, 2020)

The function $I(d) = \sqrt{\rho d} \Lambda(d)$ decreases in $d \in (d_*, \infty)$. Moreover,

 $\sqrt{2}\,\pi>I(d)>\pi\,.$

Theorem (Montaldo & --, 2020)

There exists a discrete biparametric family of closed non-CMC biconservative surfaces in $\mathbb{S}^{3}(\rho)$. None of them is embedded.

Existence of Closed Critical Curves

Lemma (Montaldo & --, 2020)

The function $I(d) = \sqrt{\rho d} \Lambda(d)$ decreases in $d \in (d_*, \infty)$. Moreover,

 $\sqrt{2}\pi > I(d) > \pi$.

Theorem (Montaldo & --, 2020)

There exists a discrete biparametric family of closed non-CMC biconservative surfaces in $\mathbb{S}^{3}(\rho)$. None of them is embedded.

• For any *m* and *n* such that, $m < 2n < \sqrt{2}m$, we have a closed non-CMC biconservative surface.

Critical Curve for Θ (m = 3 and n = 2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Closed Biconservative Surface (m = 3 and n = 2)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Critical Curve for Θ (m = 5 and n = 3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE END

 S. Montaldo and A. Pámpano, On the Existence of Closed Biconservative Surfaces in Space Forms, to appear in Commun. Anal. Geom. (Available at ArXiv: arXiv: 2009.03233 [math.DG])

THE END

 S. Montaldo and A. Pámpano, On the Existence of Closed Biconservative Surfaces in Space Forms, to appear in Commun. Anal. Geom. (Available at ArXiv: arXiv: 2009.03233 [math.DG])

Thank You!