

Existence and Properties of
 Closed Free p-Elastic Curves

Álvaro Pámpano Llarena

Differential Geometry Seminar Torino

Texas Tech University

Turin, February 10, 2023

Historical Background

Historical Background

- 1691: Jacob Bernoulli proposed the problem of determining the shape of elastic rods.

Historical Background

- 1691: Jacob Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli formulated the problem of finding the curve with minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

Historical Background

- 1691: Jacob Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli formulated the problem of finding the curve with minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

- 1738: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

Historical Background

- 1691: Jacob Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli formulated the problem of finding the curve with minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

- 1738: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler described the shape of planar elastic curves (partially solved by Jacob Bernoulli 1692-1694).

Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$. Length functional and geodesics.

Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$. Length functional and geodesics.
- Case $p=1$. Total curvature. Its Euler-Lagrange equation is trivial.

Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$. Length functional and geodesics.
- Case $p=1$. Total curvature. Its Euler-Lagrange equation is trivial.
- Case $p=2$. Bending energy and classical elastic curves. (Applications: Willmore surfaces, models for lipid bilayers, computer vision, geometric flows,...)

Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$. Length functional and geodesics.
- Case $p=1$. Total curvature. Its Euler-Lagrange equation is trivial.
- Case $p=2$. Bending energy and classical elastic curves. (Applications: Willmore surfaces, models for lipid bilayers, computer vision, geometric flows,...)
- Case $p>2$. (Applications: Willmore-Chen submanifolds, string theories,...)

Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=-1$. Cycloids and so related to the brachistochrone problem.

Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=-1$. Cycloids and so related to the brachistochrone problem.
- Case $p=1 / 2$. Catenaries. (Blaschke, 1921). Particular case appearing in the theory of invariant CMC surfaces. (Arroyo, Garay \& P., 2018; Arroyo, Garay \& P., 2019).

Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=-1$. Cycloids and so related to the brachistochrone problem.
- Case $p=1 / 2$. Catenaries. (Blaschke, 1921). Particular case appearing in the theory of invariant CMC surfaces. (Arroyo, Garay \& P., 2018; Arroyo, Garay \& P., 2019).
- Case $p=1 / 3$. Equi-affine length and parabolas. (Blaschke, 1923).

Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=-1$. Cycloids and so related to the brachistochrone problem.
- Case $p=1 / 2$. Catenaries. (Blaschke, 1921). Particular case appearing in the theory of invariant CMC surfaces. (Arroyo, Garay \& P., 2018; Arroyo, Garay \& P., 2019).
- Case $p=1 / 3$. Equi-affine length and parabolas. (Blaschke, 1923).
- Cases $p=(n-2) /(n+1)$. Arise in the theory of biconservative hypersurfaces. (Montaldo \& P., 2020; Montaldo, Oniciuc \& P., 2022).

Free p-Elastic Curves

For an arbitrary p :

Free p-Elastic Curves

For an arbitrary p :

- They are the profile curves of rotational linear Weingarten surfaces. (López \& P., 2020). In particular, $(p=2)$ profile curves for the Mylar ballon. (Mladenov \& Oprea, 2003).

Free p-Elastic Curves

For an arbitrary p :

- They are the profile curves of rotational linear Weingarten surfaces. (López \& P., 2020). In particular, $(p=2)$ profile curves for the Mylar ballon. (Mladenov \& Oprea, 2003).
- They are the generating curves of cylinders critical for the area functional and a vertical potential energy. (López \& P., 2022). In particular, $(p=2)$ is the lintearia. (J. Bernoulli).

Free p-Elastic Curves

For an arbitrary p :

- They are the profile curves of rotational linear Weingarten surfaces. (López \& P., 2020). In particular, $(p=2)$ profile curves for the Mylar ballon. (Mladenov \& Oprea, 2003).
- They are the generating curves of cylinders critical for the area functional and a vertical potential energy. (López \& P., 2022). In particular, $(p=2)$ is the lintearia. (J. Bernoulli).
- They are (generalized) singular minimal curves. (López \& P., 2023).

Free p-Elastic Curves

For an arbitrary p :

- They are the profile curves of rotational linear Weingarten surfaces. (López \& P., 2020). In particular, $(p=2)$ profile curves for the Mylar ballon. (Mladenov \& Oprea, 2003).
- They are the generating curves of cylinders critical for the area functional and a vertical potential energy. (López \& P., 2022). In particular, $(p=2)$ is the lintearia. (J. Bernoulli).
- They are (generalized) singular minimal curves. (López \& P., 2023).
- They are the translating solitons to the flow by the powers of the curvature. (P., submitted). With the exception of the grim reaper.

Free p-Elastic Curves

For an arbitrary p :

- They are the profile curves of rotational linear Weingarten surfaces. (López \& P., 2020). In particular, $(p=2)$ profile curves for the Mylar ballon. (Mladenov \& Oprea, 2003).
- They are the generating curves of cylinders critical for the area functional and a vertical potential energy. (López \& P., 2022). In particular, $(p=2)$ is the lintearia. (J. Bernoulli).
- They are (generalized) singular minimal curves. (López \& P., 2023).
- They are the translating solitons to the flow by the powers of the curvature. (P., submitted). With the exception of the grim reaper.
The study of free p-elastic curves is a central topic in Differential
Geometry and Calculus of Variations.

Motivation

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

1. Classical elastic curves $(p=2)$. (Langer \& Singer, 1984).

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

1. Classical elastic curves $(p=2)$. (Langer \& Singer, 1984).
2. The case $p=1 / 2$. (Arroyo, Garay, Mencía, Musso, P.,...).

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

1. Classical elastic curves $(p=2)$. (Langer \& Singer, 1984).
2. The case $p=1 / 2$. (Arroyo, Garay, Mencía, Musso, P.,...).

- For a general value of $p \in \mathbb{R}$, (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} may not exist.

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

1. Classical elastic curves $(p=2)$. (Langer \& Singer, 1984).
2. The case $p=1 / 2$. (Arroyo, Garay, Mencía, Musso, P.,...).

- For a general value of $p \in \mathbb{R}$, (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} may not exist. Indeed, when $p>2$ is natural, the only closed free p-elastic curves are geodesics. (Arroyo, Garay \& Mencía, 2003).

Motivation

- Free p-elastic curves in \mathbb{R}^{2} are not closed, but for the remarkable case $p=1$.
- For some values of $p \in \mathbb{R}$, there exist (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} :

1. Classical elastic curves $(p=2)$. (Langer \& Singer, 1984).
2. The case $p=1 / 2$. (Arroyo, Garay, Mencía, Musso, P.,...).

- For a general value of $p \in \mathbb{R}$, (non-trivial) closed free p-elastic curves in \mathbb{S}^{2} may not exist. Indeed, when $p>2$ is natural, the only closed free p-elastic curves are geodesics. (Arroyo, Garay \& Mencía, 2003).
- Finding (non-trivial) closed free p-elastic curves is interesting but not trivial.

Variational Problem

Let $p \in \mathbb{R}$ and consider the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

acting on the space of smooth immersed spherical curves. When $p \in \mathbb{R} \backslash \mathbb{N}$, we restrict to the subspace of convex curves.

Variational Problem

Let $p \in \mathbb{R}$ and consider the functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

acting on the space of smooth immersed spherical curves. When $p \in \mathbb{R} \backslash \mathbb{N}$, we restrict to the subspace of convex curves.

The Euler-Lagrange Equation
A critical point γ of $\boldsymbol{\Theta}_{p}$ must satisfy

$$
p \frac{d^{2}}{d s^{2}}\left(\kappa^{p-1}\right)+(p-1) \kappa^{p+1}+p \kappa^{p-1}=0 .
$$

Critical Circles and First Integral

Critical Circles

If γ is a critical point of $\boldsymbol{\Theta}_{p}$ with constant curvature κ then, either $p \in \mathbb{N}(p \neq 1)$ and γ is a geodesic, or $p \in[0,1)$ and

$$
\kappa=\sqrt{\frac{p}{1-p}} .
$$

Critical Circles and First Integral

Critical Circles

If γ is a critical point of $\boldsymbol{\Theta}_{p}$ with constant curvature κ then, either $p \in \mathbb{N}(p \neq 1)$ and γ is a geodesic, or $p \in[0,1)$ and

$$
\kappa=\sqrt{\frac{p}{1-p}}
$$

First Integral

If γ is a critical point of $\boldsymbol{\Theta}_{p}$ with non-constant curvature κ then

$$
p^{2}(p-1)^{2} \kappa^{2(p-2)}\left(\kappa^{\prime}\right)^{2}+(p-1)^{2} \kappa^{2 p}+p^{2} \kappa^{2(p-1)}=a \in \mathbb{R}^{+}
$$

must hold. (The case $p=2$ is special.)

Solutions with Periodic Curvature

Solutions with Periodic Curvature

Theorem (Gruber, P. \& Toda, submitted)
Let γ be a p-elastic curve with non-constant periodic curvature. Then, either $p=2$ or $p \in(0,1)$.

Solutions with Periodic Curvature

Theorem (Gruber, P. \& Toda, submitted)
Let γ be a p-elastic curve with non-constant periodic curvature. Then, either $p=2$ or $p \in(0,1)$.

Theorem (Gruber, P. \& Toda, submitted)
Let $p \in(0,1)$ and $a>a_{*}:=p^{p}(1-p)^{1-p}$. Assume that γ_{a} is a p-elastic curve with non-constant curvature. Then γ_{a} is defined on \mathbb{R} and its curvature is a periodic function.

Solutions with Periodic Curvature

Theorem (Gruber, P. \& Toda, submitted)
Let γ be a p-elastic curve with non-constant periodic curvature. Then, either $p=2$ or $p \in(0,1)$.

Theorem (Gruber, P. \& Toda, submitted)
Let $p \in(0,1)$ and $a>a_{*}:=p^{p}(1-p)^{1-p}$. Assume that γ_{a} is a p-elastic curve with non-constant curvature. Then γ_{a} is defined on \mathbb{R} and its curvature is a periodic function.

- Consequently, a p-elastic curve $(p \neq 2)$ has periodic curvature if and only if $p \in(0,1)$.

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature.

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then:

1. The trajectory is contained in the region between two parallels of the (upper) half-sphere.

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then:

1. The trajectory is contained in the region between two parallels of the (upper) half-sphere.
2. It meets these parallels tangentially (at the maximum and minimum curvatures).

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then:

1. The trajectory is contained in the region between two parallels of the (upper) half-sphere.
2. It meets these parallels tangentially (at the maximum and minimum curvatures).
3. The trajectory winds around the north pole without going backwards.

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then:

1. The trajectory is contained in the region between two parallels of the (upper) half-sphere.
2. It meets these parallels tangentially (at the maximum and minimum curvatures).
3. The trajectory winds around the north pole without going backwards.
4. It is closed if and only if the angular progression is a rational multiple of 2π.

Geometric Description

Properties

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then:

1. The trajectory is contained in the region between two parallels of the (upper) half-sphere.
2. It meets these parallels tangentially (at the maximum and minimum curvatures).
3. The trajectory winds around the north pole without going backwards.
4. It is closed if and only if the angular progression is a rational multiple of 2π.
5. Theorem. Any arch is unstable. (Gruber, P. \& Toda, submitted).

Closure Condition

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then γ is closed if and only if

$$
\Lambda_{p}(a):=(1-p) \sqrt{a} \int_{0}^{\varrho} \frac{\kappa^{2-p}}{a \kappa^{2(1-p)}-p^{2}} d s=2 \pi q
$$

where $q \in \mathbb{Q}$ and $a \in\left(a_{*}, \infty\right)$.

Closure Condition

Let γ be a p-elastic curve $(p \neq 2)$ with periodic curvature. Then γ is closed if and only if

$$
\Lambda_{p}(a):=(1-p) \sqrt{a} \int_{0}^{\varrho} \frac{\kappa^{2-p}}{a \kappa^{2(1-p)}-p^{2}} d s=2 \pi q
$$

where $q \in \mathbb{Q}$ and $a \in\left(a_{*}, \infty\right)$.

Theorem (Gruber, P. \& Toda, submitted)

Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, for every $p \in(0,1)$, there exists a closed p-elastic curve with non-constant curvature.

Example of Type (2, 3)

Example of Type $(3,5)$

Example of Type (4, 7)

Example of Type (5, 8)

Example of Type (5, 9)

Example of Type $(6,11)$

Evolution on the Energy Parameter

Evolution on the Energy Parameter

THE END

Thank You!

