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Historical Background

• 1691: Jacob Bernoulli proposed the problem of determining
the shape of elastic rods.

• 1697: Johan Bernoulli formulated the problem of finding the
curve with minimum length (geodesics)

L(γ) :=

∫
γ
ds .

• 1738: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=

∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elastic curves
(partially solved by Jacob Bernoulli 1692–1694).
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Free p-Elastic Curves

D. Bernoulli posed the problem more generally. He proposed to
investigate critical points of the functionals

Θp(γ) :=

∫
γ
κp ds .

• Case p = 0. Length functional and geodesics.

• Case p = 1. Total curvature. Its Euler-Lagrange equation is
trivial.

• Case p = 2. Bending energy and classical elastic curves.
(Applications: Willmore surfaces, models for lipid bilayers,
computer vision, geometric flows,...)

• Case p > 2. (Applications: Willmore-Chen submanifolds,
string theories,...)
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Free p-Elastic Curves

D. Bernoulli proposed to investigate critical points of the
functionals

Θp(γ) :=

∫
γ
κp ds .

• Case p = −1. Cycloids and so related to the brachistochrone
problem.

• Case p = 1/2. Catenaries. (Blaschke, 1921). Particular case
appearing in the theory of invariant CMC surfaces. (Arroyo,
Garay & P., 2018; Arroyo, Garay & P., 2019).

• Case p = 1/3. Equi-affine length and parabolas. (Blaschke,
1923).

• Cases p = (n − 2)/(n + 1). Arise in the theory of
biconservative hypersurfaces. (Montaldo & P., 2020;
Montaldo, Oniciuc & P., 2022).
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Free p-Elastic Curves

For an arbitrary p:

• They are the profile curves of rotational linear Weingarten
surfaces. (López & P., 2020). In particular, (p = 2) profile
curves for the Mylar ballon. (Mladenov & Oprea, 2003).

• They are the generating curves of cylinders critical for the
area functional and a vertical potential energy. (López & P.,
2022). In particular, (p = 2) is the lintearia. (J. Bernoulli).

• They are (generalized) singular minimal curves. (López & P.,
2023).

• They are the translating solitons to the flow by the powers of
the curvature. (P., submitted). With the exception of the
grim reaper.

The study of free p-elastic curves is a central topic in Differential
Geometry and Calculus of Variations.



Free p-Elastic Curves

For an arbitrary p:

• They are the profile curves of rotational linear Weingarten
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Motivation

• Free p-elastic curves in R2 are not closed, but for the
remarkable case p = 1.

• For some values of p ∈ R, there exist (non-trivial) closed free
p-elastic curves in S2:

1. Classical elastic curves (p = 2). (Langer & Singer, 1984).
2. The case p = 1/2. (Arroyo, Garay, Menćıa, Musso, P.,...).

• For a general value of p ∈ R, (non-trivial) closed free p-elastic
curves in S2 may not exist. Indeed, when p > 2 is natural, the
only closed free p-elastic curves are geodesics. (Arroyo, Garay
& Menćıa, 2003).

• Finding (non-trivial) closed free p-elastic curves is interesting
but not trivial.



Motivation

• Free p-elastic curves in R2 are not closed, but for the
remarkable case p = 1.

• For some values of p ∈ R, there exist (non-trivial) closed free
p-elastic curves in S2:

1. Classical elastic curves (p = 2). (Langer & Singer, 1984).
2. The case p = 1/2. (Arroyo, Garay, Menćıa, Musso, P.,...).
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• For a general value of p ∈ R, (non-trivial) closed free p-elastic
curves in S2 may not exist. Indeed, when p > 2 is natural, the
only closed free p-elastic curves are geodesics. (Arroyo, Garay
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Variational Problem

Let p ∈ R and consider the functionals

Θp(γ) :=

∫
γ
κp ds ,

acting on the space of smooth immersed spherical curves. When
p ∈ R \ N, we restrict to the subspace of convex curves.

The Euler-Lagrange Equation

A critical point γ of Θp must satisfy

p
d2

ds2
(
κp−1

)
+ (p − 1)κp+1 + pκp−1 = 0 .
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Critical Circles and First Integral

Critical Circles

If γ is a critical point of Θp with constant curvature κ then, either
p ∈ N (p 6= 1) and γ is a geodesic, or p ∈ [0, 1) and

κ =

√
p

1− p
.

First Integral

If γ is a critical point of Θp with non-constant curvature κ then

p2(p − 1)2κ2(p−2)
(
κ′
)2

+ (p − 1)2κ2p + p2κ2(p−1) = a ∈ R+ ,

must hold. (The case p = 2 is special.)
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Solutions with Periodic Curvature

Theorem (Gruber, P. & Toda, submitted)

Let γ be a p-elastic curve with non-constant periodic curvature.
Then, either p = 2 or p ∈ (0, 1).

Theorem (Gruber, P. & Toda, submitted)

Let p ∈ (0, 1) and a > a∗ := pp(1− p)1−p. Assume that γa is a
p-elastic curve with non-constant curvature. Then γa is defined on
R and its curvature is a periodic function.

• Consequently, a p-elastic curve (p 6= 2) has periodic curvature
if and only if p ∈ (0, 1).
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Geometric Description

Properties

Let γ be a p-elastic curve (p 6= 2) with periodic curvature.

Then:

1. The trajectory is contained in the region between two parallels
of the (upper) half-sphere.

2. It meets these parallels tangentially (at the maximum and
minimum curvatures).

3. The trajectory winds around the north pole without going
backwards.

4. It is closed if and only if the angular progression is a rational
multiple of 2π.

5. Theorem. Any arch is unstable. (Gruber, P. & Toda,
submitted).
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Closure Condition

Let γ be a p-elastic curve (p 6= 2) with periodic curvature. Then γ
is closed if and only if

Λp(a) := (1− p)
√
a

∫ %

0

κ2−p

a κ2(1−p) − p2
ds = 2πq ,

where q ∈ Q and a ∈ (a∗,∞).

Theorem (Gruber, P. & Toda, submitted)

Let n and m be two relatively prime natural numbers satisfying
m < 2n <

√
2m. Then, for every p ∈ (0, 1), there exists a closed

p-elastic curve with non-constant curvature.
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Example of Type (6, 11)



Evolution on the Energy Parameter



Evolution on the Energy Parameter



THE END

Thank You!


