ZTF-FCT
Zientzia eta Teknologia Fakultatea Facultad de Ciencia y Tecnología

Invariant Surfaces in \mathbb{S}^{3} Based on Generalized Elastic Curves

Álvaro Pámpano Llarena

63rd Texas Geometry and Topology Conference
(Texas Tech University)
Lubbock, April 24-26 (2020)

Historical Background: Elastic Curves in \mathbb{R}^{2}

Historical Background: Elastic Curves in \mathbb{R}^{2}

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

Historical Background: Elastic Curves in \mathbb{R}^{2}

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy.

Historical Background: Elastic Curves in \mathbb{R}^{2}

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy. In modern terminology:

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

Historical Background: Elastic Curves in \mathbb{R}^{2}

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy.
In modern terminology:

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler.

Described the shape of planar elasticae (with constraint on the length).
Partially solved by J. Bernoulli, 1692-1694.

Historical Background: Elastic Curves in \mathbb{S}^{2}

Historical Background: Elastic Curves in \mathbb{S}^{2}

- 1986: R. Bryant \& P. Griffiths.

Extended the notion of elasticae to Riemannian manifolds (different approach).

Historical Background: Elastic Curves in \mathbb{S}^{2}

- 1986: R. Bryant \& P. Griffiths.

Extended the notion of elasticae to Riemannian manifolds (different approach).

- 1987: J. Langer \& D. A. Singer.

Consider elasticae in Riemannian manifolds (in particular, in the 2 -sphere $\mathbb{S}^{2}(\rho)$).
We follow here this approach.

Historical Background: Elastic Curves in \mathbb{S}^{2}

- 1986: R. Bryant \& P. Griffiths.

Extended the notion of elasticae to Riemannian manifolds (different approach).

- 1987: J. Langer \& D. A. Singer.

Consider elasticae in Riemannian manifolds (in particular, in the 2-sphere $\mathbb{S}^{2}(\rho)$).
We follow here this approach.

1985: U. Pinkall

Link between Willmore surfaces and elastica.

Scheme

Scheme

1. Part I. Generalized Elastic Curves

Scheme

\author{

1. Part I. Generalized Elastic Curves
}

2. Part II. Binormal Evolution

Scheme

1. Part I. Generalized Elastic Curves
2. Part II. Binormal Evolution
3. Part III. Vertical Lifts

Part I

Generalized Elastic Curves

Generalized Elastic Curves

Generalized Elastic Curves

For fixed real constants $\mu, p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{\mu, p}(\gamma):=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

Generalized Elastic Curves

For fixed real constants $\mu, p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{\mu, p}(\gamma):=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

- We assume that $\boldsymbol{\Theta}$ acts on the space of smooth immersed curves of $\mathbb{S}^{2}(\rho)$ joining two points of it, $\Omega_{p_{o} p_{1}}$, verifying $\kappa-\mu>0$ (when necessary).

Generalized Elastic Curves

For fixed real constants $\mu, p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{\mu, p}(\gamma):=\int_{\gamma}(\kappa-\mu)^{p}=\int_{0}^{L}(\kappa(s)-\mu)^{p} d s
$$

- We assume that $\boldsymbol{\Theta}$ acts on the space of smooth immersed curves of $\mathbb{S}^{2}(\rho)$ joining two points of it, $\Omega_{p_{o} p_{1}}$, verifying $\kappa-\mu>0$ (when necessary).
- We are mainly interested on the space of closed curves.

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

- If $p=0, \boldsymbol{\Theta}$ is nothing but the length functional.

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

- If $p=0, \boldsymbol{\Theta}$ is nothing but the length functional.
- If $p=1$ and $\mu=0$, we get the total curvature functional.

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

- If $p=0, \boldsymbol{\Theta}$ is nothing but the length functional.
- If $p=1$ and $\mu=0$, we get the total curvature functional.
- If $p=2$ and $\mu=0$, we recover the classical bending energy.

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

- If $p=0, \boldsymbol{\Theta}$ is nothing but the length functional.
- If $p=1$ and $\mu=0$, we get the total curvature functional.
- If $p=2$ and $\mu=0$, we recover the classical bending energy.
- If $p=2$ and $\mu \neq 0, \boldsymbol{\Theta}$ is the bending energy (circular at rest).

Classical Energies

The biparametric family of functionals

$$
\boldsymbol{\Theta}_{\mu, p}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p} d s
$$

includes the following classical energies:

- If $p=0, \boldsymbol{\Theta}$ is nothing but the length functional.
- If $p=1$ and $\mu=0$, we get the total curvature functional.
- If $p=2$ and $\mu=0$, we recover the classical bending energy.
- If $p=2$ and $\mu \neq 0, \boldsymbol{\Theta}$ is the bending energy (circular at rest).
- If $p=1 / 2$, we obtain an extension of an energy studied by Blaschke in 1930.

Variational Problem

Variational Problem

For simplicity we denote $P(\kappa):=(\kappa-\mu)^{p}$. Then,

Euler-Lagrange Equation

Regardless of the boundary conditions, a critical curve γ in $\mathbb{S}^{2}(\rho)$ satisfies

$$
\dot{P}_{s s}+\dot{P}\left(\kappa^{2}+\rho\right)-\kappa P=0 . \quad\left(\dot{P} \equiv \frac{d P}{d \kappa}\right)
$$

Variational Problem

For simplicity we denote $P(\kappa):=(\kappa-\mu)^{p}$. Then,

Euler-Lagrange Equation

Regardless of the boundary conditions, a critical curve γ in $\mathbb{S}^{2}(\rho)$ satisfies

$$
\dot{P}_{s s}+\dot{P}\left(\kappa^{2}+\rho\right)-\kappa P=0 . \quad\left(\dot{P} \equiv \frac{d P}{d \kappa}\right)
$$

Vector Fields Along Critical Curves

Consider $\mathbb{S}^{2}(\rho)$ embedded as a totally geodesic surface of $\mathbb{S}^{3}(\rho)$. Then, we have

$$
\mathcal{J}=(\kappa \dot{P}-P) T+\dot{P}_{s} N, \quad \mathcal{I}=\dot{P} B
$$

where $\{T, N, B\}$ denotes the Frenet frame of γ in $\mathbb{S}^{3}(\rho)$.

Parametrization of Critical Curves

Parametrization of Critical Curves

1. If $\kappa(s)=\kappa_{o}$ is constant, the critical curve is a circle.

Parametrization of Critical Curves

1. If $\kappa(s)=\kappa_{o}$ is constant, the critical curve is a circle.
2. If $\kappa(s)$ is not constant, then: first integral of the Euler-Lagrange equation

$$
\langle\mathcal{J}, \mathcal{J}\rangle+\rho\langle\mathcal{I}, \mathcal{I}\rangle=d>0 .
$$

Parametrization of Critical Curves

1. If $\kappa(s)=\kappa_{o}$ is constant, the critical curve is a circle.
2. If $\kappa(s)$ is not constant, then: first integral of the Euler-Lagrange equation

$$
\langle\mathcal{J}, \mathcal{J}\rangle+\rho\langle\mathcal{I}, \mathcal{I}\rangle=d>0 .
$$

3. In this case, using spherical coordinates in $\mathbb{S}^{2}(\rho) \subset \mathbb{R}^{3}$, we get the following parametrization of the critical curves:

$$
\gamma(s)=\frac{1}{\sqrt{\rho d}}\left(\sqrt{\rho} \dot{P}, \sqrt{d-\rho \dot{P}^{2}} \sin \Psi(s), \sqrt{d-\rho \dot{P}^{2}} \cos \Psi(s)\right)
$$

where

$$
\Psi(s)=\sqrt{\rho d} \int \frac{\kappa \dot{P}-P}{d-\rho \dot{P}^{2}} d s
$$

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

- A necessary, but not sufficient, condition for γ to close up is that the curvature $\kappa(s)$ is periodic.

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

- A necessary, but not sufficient, condition for γ to close up is that the curvature $\kappa(s)$ is periodic.
- Assume $\kappa(s)$ is periodic (of period ϱ). Then,

Closure Condition

The critical curve $\gamma(s)$ in $\mathbb{S}^{2}(\rho)$ is closed, if and only if,

$$
\Lambda(d)=\sqrt{\rho d} \int_{0}^{\varrho} \frac{\kappa \dot{P}-P}{d-\rho \dot{P}^{2}} d s=2 \frac{n}{m} \pi
$$

for any integers n and m.

Geometric Description (1)

We fix $p=1 / 2$ (i.e. the extended Blaschke's curvature energy).

Geometric Description (1)

We fix $p=1 / 2$ (i.e. the extended Blaschke's curvature energy).

Geometric Description (2)

(E) $\mu=-0.1$

Geometric Description (2)

Geometric Description (3)

Geometric Description (3)

- They never cut the axis $x_{1}=0$ (the equator), since $\dot{P}=\frac{1}{2 \sqrt{\kappa-\mu}}>0$.

Part II

Binormal Evolution

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)
Proposition (Langer \& Singer, 1984)
The vector fields \mathcal{I} and \mathcal{J} are Killing vector fields along critical curves.
(We are mainly interested in \mathcal{I}.)

Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)

Proposition (Langer \& Singer, 1984)

The vector fields \mathcal{I} and \mathcal{J} are Killing vector fields along critical curves.
(We are mainly interested in \mathcal{I}.)

- Killing vector fields along γ can be extended to Killing vector fields on the whole $\mathbb{S}^{3}(\rho)$. The extension is unique.

Binormal Evolution Surfaces

Let $\gamma(s) \subset \mathbb{S}^{2}(\rho)$ be any generalized elastic curve. (We consider $\mathbb{S}^{2}(\rho) \subset \mathbb{S}^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

Binormal Evolution Surfaces

Let $\gamma(s) \subset \mathbb{S}^{2}(\rho)$ be any generalized elastic curve. (We consider $\mathbb{S}^{2}(\rho) \subset \mathbb{S}^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\dot{P}(\kappa) B . \quad\left(P(\kappa):=(\kappa-\mu)^{p}\right)
$$

Binormal Evolution Surfaces

Let $\gamma(s) \subset \mathbb{S}^{2}(\rho)$ be any generalized elastic curve. (We consider $\mathbb{S}^{2}(\rho) \subset \mathbb{S}^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\dot{P}(\kappa) B . \quad\left(P(\kappa):=(\kappa-\mu)^{p}\right)
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $\mathbb{S}^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)

Binormal Evolution Surfaces

Let $\gamma(s) \subset \mathbb{S}^{2}(\rho)$ be any generalized elastic curve. (We consider $\mathbb{S}^{2}(\rho) \subset \mathbb{S}^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\dot{P}(\kappa) B . \quad\left(P(\kappa):=(\kappa-\mu)^{p}\right)
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $\mathbb{S}^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)
3 . Since $\mathbb{S}^{3}(\rho)$ is complete, the one-parameter group of isometries determined by ξ is $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.

Binormal Evolution Surfaces

Let $\gamma(s) \subset \mathbb{S}^{2}(\rho)$ be any generalized elastic curve. (We consider $\mathbb{S}^{2}(\rho) \subset \mathbb{S}^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\dot{P}(\kappa) B . \quad\left(P(\kappa):=(\kappa-\mu)^{p}\right)
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $\mathbb{S}^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)
3 . Since $\mathbb{S}^{3}(\rho)$ is complete, the one-parameter group of isometries determined by ξ is $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
3. We construct the binormal evolution surface (Garay \& -, 2016)

$$
S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\} .
$$

Geometric Properties

Geometric Properties

By construction S_{γ} is a ξ-invariant surface.

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset \mathbb{S}^{2}(\rho)(\gamma$ is planar $)$,

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset \mathbb{S}^{2}(\rho)(\gamma$ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{0}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset \mathbb{S}^{2}(\rho)(\gamma$ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{0}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

- Since $\gamma(s)$ is a generalized elastic curve,

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset \mathbb{S}^{2}(\rho)(\gamma$ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{0}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

- Since $\gamma(s)$ is a generalized elastic curve,

Theorem (-, 2018)

The binormal evolution surface S_{γ} is a linear Weingarten surface. It verifies:

$$
\kappa_{1}=a \kappa_{2}+b, \quad\left(\kappa_{i} \text { principal curvatures }\right)
$$

for $a=p /(p-1)$ and $b=-\mu /(p-1)$.

Weingarten Surfaces

A Weingarten surface in $\mathbb{S}^{3}(\rho)$ is a surface where the two principal curvatures (κ_{1} and κ_{2}) satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$.

Weingarten Surfaces

A Weingarten surface in $\mathbb{S}^{3}(\rho)$ is a surface where the two principal curvatures (κ_{1} and κ_{2}) satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here, we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.

Weingarten Surfaces

A Weingarten surface in $\mathbb{S}^{3}(\rho)$ is a surface where the two principal curvatures (κ_{1} and κ_{2}) satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here, we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.
Well known families of linear Weingarten surfaces are:

- Totally Umbilical Surfaces (Spheres \mathbb{S}^{2})

Weingarten Surfaces

A Weingarten surface in $\mathbb{S}^{3}(\rho)$ is a surface where the two principal curvatures (κ_{1} and κ_{2}) satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here, we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.
Well known families of linear Weingarten surfaces are:

- Totally Umbilical Surfaces (Spheres \mathbb{S}^{2})
- Isoparametric Surfaces (Tori $\mathbb{S}^{1} \times \mathbb{S}^{1}$)

Weingarten Surfaces

A Weingarten surface in $\mathbb{S}^{3}(\rho)$ is a surface where the two principal curvatures (κ_{1} and κ_{2}) satisfy a certain relation $\Phi\left(\kappa_{1}, \kappa_{2}\right)=0$. Here, we consider the linear relation

$$
\kappa_{1}=a \kappa_{2}+b
$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.
Well known families of linear Weingarten surfaces are:

- Totally Umbilical Surfaces (Spheres \mathbb{S}^{2})
- Isoparametric Surfaces (Tori $\mathbb{S}^{1} \times \mathbb{S}^{1}$)
- Constant Mean Curvature Surfaces (Rotational: Delaunay Surfaces in $\mathbb{S}^{3}(\rho)$)

Characterization of Profile Curves

Let M be a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$.

Characterization of Profile Curves

Let M be a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$. Since it is rotational, it can be described (locally) as

$$
M \equiv S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where

1. ϕ_{t} is a rotation, and
2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_{t}).

Characterization of Profile Curves

Let M be a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$. Since it is rotational, it can be described (locally) as

$$
M \equiv S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where

1. ϕ_{t} is a rotation, and
2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_{t}).

Theorem (—, 2018)

The profile curve γ of a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$ (for $a \neq 1$) is a planar $\left(\gamma(s) \subset \mathbb{S}^{2}(\rho)\right)$ generalized elastic curve for $\mu=-b /(a-1)$ and $p=a /(a-1)$.

Characterization of Profile Curves

Let M be a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$. Since it is rotational, it can be described (locally) as

$$
M \equiv S_{\gamma}:=\left\{x(s, t)=\phi_{t}(\gamma(s))\right\}
$$

where

1. ϕ_{t} is a rotation, and
2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_{t}).

Theorem (—, 2018)

The profile curve γ of a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$ (for $a \neq 1$) is a planar $\left(\gamma(s) \subset \mathbb{S}^{2}(\rho)\right)$ generalized elastic curve for $\mu=-b /(a-1)$ and $p=a /(a-1)$.

- The case $a=1$; rotational surfaces with constant skew curvature. (López \& —, 2020)

Particular Case 1: CMC

Particular Case 1: CMC

Specializing previous characterization we get

Theorem (Arroyo, Garay \& -, 2018)

A rotational surface with constant mean curvature H of $\mathbb{S}^{3}(\rho)$ is, locally, a binormal evolution surface with initial condition a generalized elastic curve in $\mathbb{S}^{2}(\rho)$ for $p=1 / 2$ and $\mu=-H$, i.e. for the extended Blaschke's energy

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{\mu, 1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa-\mu}
$$

where $\mu=-H$.

Particular Case 1: CMC

Specializing previous characterization we get
Theorem (Arroyo, Garay \& -, 2018)
A rotational surface with constant mean curvature H of $\mathbb{S}^{3}(\rho)$ is, locally, a binormal evolution surface with initial condition a generalized elastic curve in $\mathbb{S}^{2}(\rho)$ for $p=1 / 2$ and $\mu=-H$, i.e. for the extended Blaschke's energy

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{\mu, 1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa-\mu}
$$

where $\mu=-H$.
Basically, we need to understand these critical curves:

- If $\kappa=\mu$, we have global minima (acting on the space L^{1}).

Local Classification

Local Classification

Theorem (Arroyo, Garay \& -, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

Local Classification

Theorem (Arroyo, Garay \& -, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

1. The equator $\mathbb{S}^{2}(\rho)$; if $\kappa(s)=H=0$.

Local Classification

Theorem (Arroyo, Garay \& -, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

1. The equator $\mathbb{S}^{2}(\rho)$; if $\kappa(s)=H=0$.
2. A totally umbilical sphere; if $\kappa(s)=|H| \neq 0$.

Local Classification

Theorem (Arroyo, Garay \& -, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

1. The equator $\mathbb{S}^{2}(\rho)$; if $\kappa(s)=H=0$.
2. A totally umbilical sphere; if $\kappa(s)=|H| \neq 0$.
3. A Hopf torus

$$
\mathbb{S}^{1}\left(\sqrt{\rho+\kappa_{o}^{2}}\right) \times \mathbb{S}^{1}\left(\frac{\sqrt{\rho}}{\kappa_{o}} \sqrt{\rho+\kappa_{o}^{2}}\right)
$$

$$
\text { if } \kappa(s)=\kappa_{o}=-|H|+\sqrt{\rho+H^{2}} .
$$

Local Classification

Theorem (Arroyo, Garay \& -, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

1. The equator $\mathbb{S}^{2}(\rho)$; if $\kappa(s)=H=0$.
2. A totally umbilical sphere; if $\kappa(s)=|H| \neq 0$.
3. A Hopf torus

$$
\mathbb{S}^{1}\left(\sqrt{\rho+\kappa_{o}^{2}}\right) \times \mathbb{S}^{1}\left(\frac{\sqrt{\rho}}{\kappa_{o}} \sqrt{\rho+\kappa_{o}^{2}}\right)
$$

if $\kappa(s)=\kappa_{o}=-|H|+\sqrt{\rho+H^{2}}$.
4. A binormal evolution surface shaped on γ (planar critical curve of extended Blaschke's energy for $|\mu|=|H|$ with non-constant curvature).

Illustration (1)

Illustration (2)

Global Results

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay \& -, 2019)
For any $\mu \in \mathbb{R}$, there exist closed critical curves.

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay \& -, 2019)
For any $\mu \in \mathbb{R}$, there exist closed critical curves.
2. If γ is also simple, then S_{γ} is an embedded torus.

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay \& -, 2019)
For any $\mu \in \mathbb{R}$, there exist closed critical curves.
2. If γ is also simple, then S_{γ} is an embedded torus.

Theorem (Arroyo, Garay \& -, 2019)
If the closed critical curve is simple, then $\mu \neq-\sqrt{\rho / 3}$ is negative.

Global Results

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay \& -, 2019)
For any $\mu \in \mathbb{R}$, there exist closed critical curves.
2. If γ is also simple, then S_{γ} is an embedded torus.

Theorem (Arroyo, Garay \& -, 2019)
If the closed critical curve is simple, then $\mu \neq-\sqrt{\rho / 3}$ is negative.

- For this last theorem, we need to consider $n=1$ in the closure condition of critical curves, which yields to an already known condition.

Embedded CMC Tori in $\mathbb{S}^{3}(\rho)$

Theorem (Perdomo, 2010)
For any $m>1$ and any H such that

$$
|H| \in\left(\sqrt{\rho} \cot \frac{\pi}{m}, \sqrt{\rho} \frac{m^{2}-2}{2 \sqrt{m^{2}-1}}\right)
$$

there exists a non-isoparametric embedded constant mean curvature rotational tori.

Embedded CMC Tori in $\mathbb{S}^{3}(\rho)$

Theorem (Perdomo, 2010)

For any $m>1$ and any H such that

$$
|H| \in\left(\sqrt{\rho} \cot \frac{\pi}{m}, \sqrt{\rho} \frac{m^{2}-2}{2 \sqrt{m^{2}-1}}\right)
$$

there exists a non-isoparametric embedded constant mean curvature rotational tori.

(L) $m=3$

(M) $m=4$

(N) $m=5$

Relation with Famous Conjectures

Relation with Famous Conjectures

Pinkall-Sterling's Conjecture (Pinkall \& Sterling, 1989)
Any constant mean curvature tori embedded in $\mathbb{S}^{3}(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews \& Li, 2015].)

Relation with Famous Conjectures

Pinkall-Sterling's Conjecture (Pinkall \& Sterling, 1989)

Any constant mean curvature tori embedded in $\mathbb{S}^{3}(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews \& Li, 2015].)

- Once we fix H, for each $m>1$, there exists at most one embedded non-isoparametric tori of constant mean curvature.

Relation with Famous Conjectures

Pinkall-Sterling's Conjecture (Pinkall \& Sterling, 1989)
Any constant mean curvature tori embedded in $\mathbb{S}^{3}(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews \& Li, 2015].)

- Once we fix H, for each $m>1$, there exists at most one embedded non-isoparametric tori of constant mean curvature.
- Ripoll's Theorem (Ripoll, 1986). For any $H \neq 0, \pm \sqrt{\rho / 3}$, there exists a non-isoparametric torus of constant mean curvature.

Relation with Famous Conjectures

Pinkall-Sterling's Conjecture (Pinkall \& Sterling, 1989)
Any constant mean curvature tori embedded in $\mathbb{S}^{3}(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews \& Li, 2015].)

- Once we fix H, for each $m>1$, there exists at most one embedded non-isoparametric tori of constant mean curvature.
- Ripoll's Theorem (Ripoll, 1986). For any $H \neq 0, \pm \sqrt{\rho / 3}$, there exists a non-isoparametric torus of constant mean curvature.
- The only minimal tori is $\mathbb{S}^{1}(\sqrt{2 \rho}) \times \mathbb{S}^{1}(\sqrt{2 \rho})$.

Relation with Famous Conjectures

Pinkall-Sterling's Conjecture (Pinkall \& Sterling, 1989)

Any constant mean curvature tori embedded in $\mathbb{S}^{3}(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews \& Li, 2015].)

- Once we fix H, for each $m>1$, there exists at most one embedded non-isoparametric tori of constant mean curvature.
- Ripoll's Theorem (Ripoll, 1986). For any $H \neq 0, \pm \sqrt{\rho / 3}$, there exists a non-isoparametric torus of constant mean curvature.
- The only minimal tori is $\mathbb{S}^{1}(\sqrt{2 \rho}) \times \mathbb{S}^{1}(\sqrt{2 \rho})$.

Lawson's Conjecture (Lawson, 1970)

The only embedded minimal tori in $\mathbb{S}^{3}(\rho)$ is the Clifford torus. (Recently proved in [Brendle, 2013].)

Particular Case 2: Biconservative Surfaces

Particular Case 2: Biconservative Surfaces

Here, we use the work [Caddeo, Montaldo, Oniciuc \& Piu, 2014] (among others) to define them.

Definition

A surface $S \subset \mathbb{S}^{3}(\rho)$ is said to be biconservative if it satisfies

$$
A_{\eta}(\operatorname{grad} H)+H \operatorname{grad} H=0
$$

where η is the unit normal to S and A_{η} is the shape operator.

Particular Case 2: Biconservative Surfaces

Here, we use the work [Caddeo, Montaldo, Oniciuc \& Piu, 2014] (among others) to define them.

Definition

A surface $S \subset \mathbb{S}^{3}(\rho)$ is said to be biconservative if it satisfies

$$
A_{\eta}(\operatorname{grad} H)+H \operatorname{grad} H=0
$$

where η is the unit normal to S and A_{η} is the shape operator.
Theorem (Caddeo, Montaldo, Oniciuc \& Piu, 2014)
A biconservative surface of $\mathbb{S}^{3}(\rho)$ is either a constant mean curvature surface or a rotational surface.

Particular Case 2: Biconservative Surfaces

Here, we use the work [Caddeo, Montaldo, Oniciuc \& Piu, 2014] (among others) to define them.

Definition

A surface $S \subset \mathbb{S}^{3}(\rho)$ is said to be biconservative if it satisfies

$$
A_{\eta}(\operatorname{grad} H)+H \operatorname{grad} H=0
$$

where η is the unit normal to S and A_{η} is the shape operator.
Theorem (Caddeo, Montaldo, Oniciuc \& Piu, 2014)
A biconservative surface of $\mathbb{S}^{3}(\rho)$ is either a constant mean curvature surface or a rotational surface.

- Non-CMC biconservative surfaces are rotational linear Weingarten surfaces for

$$
3 \kappa_{1}+\kappa_{2}=0 .
$$

Characterization and Global Results

Theorem (Montaldo \& -, submitted)
All non-CMC biconservative surfaces of $\mathbb{S}^{3}(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 4}(\gamma)=\int_{\gamma} \kappa^{1 / 4}
$$

in $\mathbb{S}^{2}(\rho)$.

Characterization and Global Results

Theorem (Montaldo \& —, submitted)
All non-CMC biconservative surfaces of $\mathbb{S}^{3}(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 4}(\gamma)=\int_{\gamma} \kappa^{1 / 4}
$$

in $\mathbb{S}^{2}(\rho)$.

- All critical curves have periodic curvature.

Characterization and Global Results

Theorem (Montaldo \& -, submitted)
All non-CMC biconservative surfaces of $\mathbb{S}^{3}(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 4}(\gamma)=\int_{\gamma} \kappa^{1 / 4}
$$

in $\mathbb{S}^{2}(\rho)$.

- All critical curves have periodic curvature.
- Using closure conditions, we get

Theorem (Montaldo \& -, submitted)
For $m<2 n<\sqrt{2} m$, there exists a biparametric family of closed biconservative surfaces.

Characterization and Global Results

Theorem (Montaldo \& -, submitted)
All non-CMC biconservative surfaces of $\mathbb{S}^{3}(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 4}(\gamma)=\int_{\gamma} \kappa^{1 / 4}
$$

in $\mathbb{S}^{2}(\rho)$.

- All critical curves have periodic curvature.
- Using closure conditions, we get

Theorem (Montaldo \& -, submitted)
For $m<2 n<\sqrt{2} m$, there exists a biparametric family of closed biconservative surfaces. (None of them is embedded.)

Part III

Vertical Lifts

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.
It is usually called Hopf tube based on γ.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.
It is usually called Hopf tube based on γ.
3. Moreover, \widetilde{S}_{γ} is invariant under $\widetilde{\xi}$ (the vertical Killing vector field).

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.
It is usually called Hopf tube based on γ.
3. Moreover, \widetilde{S}_{γ} is invariant under $\widetilde{\xi}$ (the vertical Killing vector field). All $\widetilde{\xi}$-invariant surfaces of $\mathbb{S}^{3}(\rho)$ can be seen as vertical lifts of curves.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.
It is usually called Hopf tube based on γ.
3. Moreover, \widetilde{S}_{γ} is invariant under $\widetilde{\xi}$ (the vertical Killing vector field). All $\widetilde{\xi}$-invariant surfaces of $\mathbb{S}^{3}(\rho)$ can be seen as vertical lifts of curves.
4. If γ is closed, then \widetilde{S}_{γ} is a (flat) torus.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$.
It is usually called Hopf tube based on γ.
3. Moreover, \widetilde{S}_{γ} is invariant under $\widetilde{\xi}$ (the vertical Killing vector field). All $\widetilde{\xi}$-invariant surfaces of $\mathbb{S}^{3}(\rho)$ can be seen as vertical lifts of curves.
4. If γ is closed, then \widetilde{S}_{γ} is a (flat) torus. However, the horizontal lift of γ may not be closed.

Hopf Tori

We denote by $\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)$ the (classical) Hopf fibration.

1. Let γ be an immersed curve in $\mathbb{S}^{2}(4 \rho)$.
2. The surface $\widetilde{S}_{\gamma}:=\widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^{3}(\rho)$. It is usually called Hopf tube based on γ.
3. Moreover, \widetilde{S}_{γ} is invariant under $\widetilde{\xi}$ (the vertical Killing vector field). All $\widetilde{\xi}$-invariant surfaces of $\mathbb{S}^{3}(\rho)$ can be seen as vertical lifts of curves.
4. If γ is closed, then \widetilde{S}_{γ} is a (flat) torus. However, the horizontal lift of γ may not be closed.
(A condition on the enclosed area is essential, (Arroyo, Barros \& Garay, 2000).)

Horizontal Lift (Base Curve)

Horizontal Lift (One Lift)

Horizontal Lift (Six Lifts)

Horizontal Lift (One Hundred Lifts)

Surface Energies

Surface Energies

Consider the biparametric family of energies

$$
\mathcal{F}_{\lambda, p}(S) \equiv \mathcal{F}(S):=\int_{S}(H-\lambda)^{p} d A
$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

Surface Energies

Consider the biparametric family of energies

$$
\mathcal{F}_{\lambda, p}(S) \equiv \mathcal{F}(S):=\int_{S}(H-\lambda)^{p} d A
$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

- These energies are kind of p-Willmore energies, (Gruber, Toda \& Tran, 2019).

Surface Energies

Consider the biparametric family of energies

$$
\mathcal{F}_{\lambda, p}(S) \equiv \mathcal{F}(S):=\int_{S}(H-\lambda)^{p} d A
$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

- These energies are kind of p-Willmore energies, (Gruber, Toda \& Tran, 2019).
- We introduce the notation $P(H):=(H-\lambda)^{p}$.

Euler-Lagrange Equation

A critical point of $\mathcal{F}(S)$ in $\mathbb{S}^{3}(\rho)$ satisfies

$$
\Delta P^{\prime}+2 P^{\prime}\left(2 H^{2}-K+2 \rho\right)-4 P H=0
$$

where $P^{\prime} \equiv d P / d H$.

Critical p-Willmore Hopf Tori

Critical p-Willmore Hopf Tori

For a Hopf tori \widetilde{S}_{γ}, the mean curvature is given by

$$
H=\frac{1}{2}(\kappa \circ \widetilde{\pi}) \quad\left(\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)\right)
$$

where κ is the curvature of γ in $\mathbb{S}^{2}(4 \rho)$.

Critical p-Willmore Hopf Tori

For a Hopf tori \widetilde{S}_{γ}, the mean curvature is given by

$$
H=\frac{1}{2}(\kappa \circ \widetilde{\pi}) \quad\left(\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)\right)
$$

where κ is the curvature of γ in $\mathbb{S}^{2}(4 \rho)$.

- Let γ be a closed curve in $\mathbb{S}^{2}(4 \rho)$.

Critical p-Willmore Hopf Tori

For a Hopf tori \widetilde{S}_{γ}, the mean curvature is given by

$$
H=\frac{1}{2}(\kappa \circ \widetilde{\pi}) \quad\left(\widetilde{\pi}: \mathbb{S}^{3}(\rho) \rightarrow \mathbb{S}^{2}(4 \rho)\right)
$$

where κ is the curvature of γ in $\mathbb{S}^{2}(4 \rho)$.

- Let γ be a closed curve in $\mathbb{S}^{2}(4 \rho)$.
- Using H and the Symmetric Criticality Principle of Palais (Palais, 1979), we get

Theorem (—, submitted)

The Hopf torus $\widetilde{S}_{\gamma}=\widetilde{\pi}^{-1}(\gamma)$ based on γ is a critical point of $\mathcal{F}(S)$ if and only if γ is a generalized elastic curve in $\mathbb{S}^{2}(4 \rho)$ with $\mu=\lambda / 2$, i.e.,

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma}(\kappa-\mu)^{p}
$$

Correspondence Result

Correspondence Result

Theorem (—, submitted)

The Hopf torus \widetilde{S}_{γ} based on γ is critical for

$$
\mathcal{F}(S)=\int_{S}(H-\lambda)^{p} d A
$$

in $\mathbb{S}^{3}(\rho)$ if and only if the binormal evolution torus S_{γ} generated by evolving γ under its associated binormal flow is a (rotational) linear Weingarten torus in $\mathbb{S}^{3}(4 \rho)$, i.e. it satisfies

$$
\kappa_{1}=a \kappa_{2}+b
$$

between its principal curvatures κ_{i}.

Correspondence Result

Theorem (—, submitted)

The Hopf torus \widetilde{S}_{γ} based on γ is critical for

$$
\mathcal{F}(S)=\int_{S}(H-\lambda)^{p} d A
$$

in $\mathbb{S}^{3}(\rho)$ if and only if the binormal evolution torus S_{γ} generated by evolving γ under its associated binormal flow is a (rotational) linear Weingarten torus in $\mathbb{S}^{3}(4 \rho)$, i.e. it satisfies

$$
\kappa_{1}=a \kappa_{2}+b
$$

between its principal curvatures κ_{i}.

- There exists a correspondence between (rotational) linear Weingarten tori and critical p-Willmore Hopf tori in \mathbb{S}^{3}.

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

1. Let γ be a closed critical curve.

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

1. Let γ be a closed critical curve.
2. The parameters n and m in the closure condition satisfy:

$$
m<2 n<\sqrt{2} m
$$

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

1. Let γ be a closed critical curve.
2. The parameters n and m in the closure condition satisfy:

$$
m<2 n<\sqrt{2} m
$$

3. There are no simple closed critical curves $(n \neq 1)$.

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

1. Let γ be a closed critical curve.
2. The parameters n and m in the closure condition satisfy:

$$
m<2 n<\sqrt{2} m
$$

3. There are no simple closed critical curves $(n \neq 1)$.
4. The choices of smallest n and m is: $n=2$ and $m=3$.

Illustration of a Particular Case

We recover the Blaschke's curvature energy ($p=1 / 2$ and $\mu=0$):

$$
\boldsymbol{\Theta}(\gamma) \equiv \boldsymbol{\Theta}_{0,1 / 2}(\gamma)=\int_{\gamma} \sqrt{\kappa}
$$

in $\mathbb{S}^{2}(4 \rho)$.

1. Let γ be a closed critical curve.
2. The parameters n and m in the closure condition satisfy:

$$
m<2 n<\sqrt{2} m
$$

3. There are no simple closed critical curves $(n \neq 1)$.
4. The choices of smallest n and m is: $n=2$ and $m=3$.
5. We consider this critical curve, $\gamma_{2,3}$.

Critical Curve $\gamma_{2,3}$

Invariant Surfaces Associated to $\gamma_{2,3}$

(o) Minimal (Rotational) Torus

Invariant Surfaces Associated to $\gamma_{2,3}$

(Q) Minimal (Rotational) Torus

(R) Hopf Torus

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$
\mathcal{F}(S)=\int_{S} \sqrt{H} d A
$$

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$
\mathcal{F}(S)=\int_{S} \sqrt{H} d A
$$

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)
Furthermore,

- For any $m<2 n<\sqrt{2} m$, there exists a biparametric family of Hopf tori critical for $\mathcal{F}(S)$, i.e. 1/2-Willmore.

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$
\mathcal{F}(S)=\int_{S} \sqrt{H} d A
$$

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)
Furthermore,

- For any $m<2 n<\sqrt{2} m$, there exists a biparametric family of Hopf tori critical for $\mathcal{F}(S)$, i.e. 1/2-Willmore.
- There is a correspondence between minimal tori and $1 / 2$-Willmore Hopf tori in \mathbb{S}^{3}.

THE END

Thank You!

Acknowledgements: Research partially supported by MINECO-FEDER, PGC2018-098409-B-100 and by Gobierno Vasco, IT1094-16.

