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Historical Background: Elastic Curves in R2

• 1691: J. Bernoulli.
Proposed the problem of determining the shape of elastic rods
(bending deformations of rods).

• 1742: D. Bernoulli.
In a letter to L. Euler suggested to study elasticae as
minimizers (critical points) of the bending energy.
In modern terminology:

E(γ) :=

∫
γ
κ2 ds .

• 1744: L. Euler.
Described the shape of planar elasticae (with constraint on
the length).
Partially solved by J. Bernoulli, 1692-1694.
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Historical Background: Elastic Curves in S2

• 1986: R. Bryant & P. Griffiths.
Extended the notion of elasticae to Riemannian manifolds
(different approach).

• 1987: J. Langer & D. A. Singer.
Consider elasticae in Riemannian manifolds (in particular, in
the 2-sphere S2(ρ)).
We follow here this approach.

1985: U. Pinkall

Link between Willmore surfaces and elastica.
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Part I

Generalized Elastic Curves



Generalized Elastic Curves

For fixed real constants µ, p ∈ R, we consider the biparametric
family of curvature energy functionals

Θ(γ) ≡ Θµ,p(γ) :=

∫
γ

(κ− µ)p =

∫ L

o
(κ(s)− µ)p ds .

• We assume that Θ acts on the space of smooth immersed
curves of S2(ρ) joining two points of it, Ωpop1 , verifying
κ− µ > 0 (when necessary).

• We are mainly interested on the space of closed curves.
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Classical Energies

The biparametric family of functionals

Θµ,p(γ) =

∫
γ

(κ− µ)p ds

includes the following classical energies:

• If p = 0, Θ is nothing but the length functional.

• If p = 1 and µ = 0, we get the total curvature functional.

• If p = 2 and µ = 0, we recover the classical bending energy.

• If p = 2 and µ 6= 0, Θ is the bending energy (circular at rest).

• If p = 1/2, we obtain an extension of an energy studied by
Blaschke in 1930.
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Variational Problem

For simplicity we denote P(κ) := (κ− µ)p. Then,

Euler-Lagrange Equation

Regardless of the boundary conditions, a critical curve γ in S2(ρ)
satisfies

Ṗss + Ṗ
(
κ2 + ρ

)
− κP = 0 .

(
Ṗ ≡ dP

dκ

)

Vector Fields Along Critical Curves

Consider S2(ρ) embedded as a totally geodesic surface of S3(ρ).
Then, we have

J =
(
κṖ − P

)
T + ṖsN , I = ṖB

where {T ,N,B} denotes the Frenet frame of γ in S3(ρ).
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Parametrization of Critical Curves

1. If κ(s) = κo is constant, the critical curve is a circle.

2. If κ(s) is not constant, then: first integral of the
Euler-Lagrange equation

〈J ,J 〉+ ρ〈I, I〉 = d > 0 .

3. In this case, using spherical coordinates in S2(ρ) ⊂ R3, we get
the following parametrization of the critical curves:

γ(s) =
1√
ρ d

(
√
ρ Ṗ,

√
d − ρ Ṗ2 sin Ψ(s),

√
d − ρ Ṗ2 cos Ψ(s)

)
where

Ψ(s) =
√
ρ d

∫
κṖ − P

d − ρ Ṗ2
ds .
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ds .



Parametrization of Critical Curves

1. If κ(s) = κo is constant, the critical curve is a circle.

2. If κ(s) is not constant, then: first integral of the
Euler-Lagrange equation

〈J ,J 〉+ ρ〈I, I〉 = d > 0 .

3. In this case, using spherical coordinates in S2(ρ) ⊂ R3, we get
the following parametrization of the critical curves:

γ(s) =
1√
ρ d

(
√
ρ Ṗ,
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Closure Condition

Let γ(s) be a critical curve with non-constant curvature κ(s).

• A necessary, but not sufficient, condition for γ to close up is
that the curvature κ(s) is periodic.

• Assume κ(s) is periodic (of period %). Then,

Closure Condition

The critical curve γ(s) in S2(ρ) is closed, if and only if,

Λ(d) =
√
ρ d

∫ %

o

κṖ − P

d − ρ Ṗ2
ds = 2

n

m
π ,

for any integers n and m.
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Geometric Description (1)

We fix p = 1/2 (i.e. the extended Blaschke’s curvature energy).

(a) µ = −1 (b) µ = −2
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We fix p = 1/2 (i.e. the extended Blaschke’s curvature energy).

(c) µ = −1 (d) µ = −2



Geometric Description (2)

(e) µ = −0.1

(f) µ = 1



Geometric Description (2)

(g) µ = −0.1 (h) µ = 1



Geometric Description (3)

• They never cut the axis x1 = 0 (the equator), since
Ṗ = 1

2
√
κ−µ > 0.
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Part II

Binormal Evolution



Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed
parametrization is said to be a Killing vector field along γ if it
evolves in the direction of W without changing shape, only
position. That is, the following equations hold

W (v) = W (κ) = 0

along γ. (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

The vector fields I and J are Killing vector fields along critical
curves.
(We are mainly interested in I.)

• Killing vector fields along γ can be extended to Killing vector
fields on the whole S3(ρ). The extension is unique.
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Binormal Evolution Surfaces

Let γ(s)⊂ S2(ρ) be any generalized elastic curve. (We consider
S2(ρ) ⊂ S3(ρ) and γ being planar, i.e. τ = 0.)

1. Consider the Killing vector field along γ in the direction of the
(constant) binormal vector field:

I = Ṗ(κ)B . (P(κ) := (κ− µ)p)

2. Let’s denote by ξ the (unique) extension to a Killing vector
field of S3(ρ). (It can be assumed to be: ξ = λ1X1 + λ2X2.)

3. Since S3(ρ) is complete, the one-parameter group of
isometries determined by ξ is {φt , t ∈ R}.

4. We construct the binormal evolution surface (Garay & —, 2016)

Sγ := {x(s, t) := φt (γ(s))} .
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Geometric Properties

By construction Sγ is a ξ-invariant surface. Moreover, it verifies:

• Since γ(s) ⊂ S2(ρ) (γ is planar),

Theorem (Arroyo, Garay & —, 2017)

The binormal evolution surface Sγ is either a flat isoparametric
surface (when κ(s) = κo is constant); or, it is a rotational surface
(when κ(s) is not constant).

• Since γ(s) is a generalized elastic curve,

Theorem ( —, 2018)

The binormal evolution surface Sγ is a linear Weingarten surface.
It verifies:

κ1 = aκ2 + b , (κi principal curvatures)

for a = p/(p − 1) and b = −µ/(p − 1).
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Weingarten Surfaces

A Weingarten surface in S3(ρ) is a surface where the two principal
curvatures (κ1 and κ2) satisfy a certain relation Φ(κ1, κ2) = 0.

Here, we consider the linear relation

κ1 = aκ2 + b

where a, b ∈ R and a 6= 0.
Well known families of linear Weingarten surfaces are:

• Totally Umbilical Surfaces (Spheres S2)

• Isoparametric Surfaces (Tori S1 × S1)

• Constant Mean Curvature Surfaces
(Rotational: Delaunay Surfaces in S3(ρ))
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Characterization of Profile Curves

Let M be a rotational linear Weingarten surface of S3(ρ).

Since it
is rotational, it can be described (locally) as

M ≡ Sγ := {x(s, t) = φt (γ(s))}
where

1. φt is a rotation, and

2. γ(s) is the profile curve (everywhere orthogonal to the orbits
of φt).

Theorem ( —, 2018)

The profile curve γ of a rotational linear Weingarten surface of
S3(ρ) (for a 6= 1) is a planar (γ(s) ⊂ S2(ρ)) generalized elastic
curve for µ = −b/(a− 1) and p = a/(a− 1).

• The case a = 1; rotational surfaces with constant skew
curvature. (López & —, 2020)
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Particular Case 1: CMC

Specializing previous characterization we get

Theorem (Arroyo, Garay & —, 2018)

A rotational surface with constant mean curvature H of S3(ρ) is,
locally, a binormal evolution surface with initial condition a
generalized elastic curve in S2(ρ) for p = 1/2 and µ = −H, i.e. for
the extended Blaschke’s energy

Θ(γ) ≡ Θµ,1/2(γ) =

∫
γ

√
κ− µ

where µ = −H.

Basically, we need to understand these critical curves:

• If κ = µ, we have global minima (acting on the space L1).
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Local Classification

Theorem (Arroyo, Garay & —, 2019)

Rotational surfaces with constant mean curvature H in S3(ρ) are
locally congruent to a piece of

1. The equator S2(ρ); if κ(s) = H = 0.

2. A totally umbilical sphere; if κ(s) = |H| 6= 0.

3. A Hopf torus

S1
(√

ρ+ κ2o

)
× S1

(√
ρ

κo

√
ρ+ κ2o

)
if κ(s) = κo = −|H|+

√
ρ+ H2.

4. A binormal evolution surface shaped on γ (planar critical
curve of extended Blaschke’s energy for |µ| = |H| with
non-constant curvature).
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Global Results

Binormal evolution surfaces Sγ of Point 4 depend greatly on γ
(critical curves have always periodic curvature).

1. If γ is closed, then Sγ is a torus.

Theorem (Arroyo, Garay & —, 2019)

For any µ ∈ R, there exist closed critical curves.

2. If γ is also simple, then Sγ is an embedded torus.

Theorem (Arroyo, Garay & —, 2019)

If the closed critical curve is simple, then µ 6= −
√
ρ/3 is negative.

• For this last theorem, we need to consider n = 1 in the closure
condition of critical curves, which yields to an already known
condition.
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Embedded CMC Tori in S3(ρ)

Theorem (Perdomo, 2010)

For any m > 1 and any H such that

|H| ∈
(
√
ρ cot

π

m
,
√
ρ

m2 − 2

2
√
m2 − 1

)
there exists a non-isoparametric embedded constant mean
curvature rotational tori.

(i) m = 3 (j) m = 4 (k) m = 5
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Relation with Famous Conjectures

Pinkall-Sterling’s Conjecture (Pinkall & Sterling, 1989)

Any constant mean curvature tori embedded in S3(ρ) must be
rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

• Once we fix H, for each m > 1, there exists at most one
embedded non-isoparametric tori of constant mean curvature.

• Ripoll’s Theorem (Ripoll, 1986). For any H 6= 0, ±
√
ρ/3,

there exists a non-isoparametric torus of constant mean
curvature.

• The only minimal tori is S1(
√

2ρ )× S1(
√

2ρ ).

Lawson’s Conjecture (Lawson, 1970)

The only embedded minimal tori in S3(ρ) is the Clifford torus.
(Recently proved in [Brendle, 2013].)
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Particular Case 2: Biconservative Surfaces

Here, we use the work [Caddeo, Montaldo, Oniciuc & Piu, 2014]

(among others) to define them.

Definition

A surface S ⊂ S3(ρ) is said to be biconservative if it satisfies

Aη (gradH) + H gradH = 0

where η is the unit normal to S and Aη is the shape operator.

Theorem (Caddeo, Montaldo, Oniciuc & Piu, 2014)

A biconservative surface of S3(ρ) is either a constant mean
curvature surface or a rotational surface.

• Non-CMC biconservative surfaces are rotational linear
Weingarten surfaces for

3κ1 + κ2 = 0 .
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Characterization and Global Results

Theorem (Montaldo & —, submitted)

All non-CMC biconservative surfaces of S3(ρ) are, locally, binormal
evolution surfaces with the initial condition critical for

Θ(γ) ≡ Θ0,1/4(γ) =

∫
γ
κ1/4

in S2(ρ).

• All critical curves have periodic curvature.

• Using closure conditions, we get

Theorem (Montaldo & —, submitted)

For m < 2n <
√

2m, there exists a biparametric family of closed
biconservative surfaces. (None of them is embedded.)
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Part III

Vertical Lifts



Hopf Tori

We denote by π̃ : S3(ρ)→ S2(4ρ) the (classical) Hopf fibration.

1. Let γ be an immersed curve in S2(4ρ).

2. The surface S̃γ := π̃−1(γ) is an isometrically immersed
surface in S3(ρ).
It is usually called Hopf tube based on γ.

3. Moreover, S̃γ is invariant under ξ̃ (the vertical Killing vector

field). All ξ̃-invariant surfaces of S3(ρ) can be seen as vertical
lifts of curves.

4. If γ is closed, then S̃γ is a (flat) torus. However, the
horizontal lift of γ may not be closed.
(A condition on the enclosed area is essential, (Arroyo, Barros

& Garay, 2000).)
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Surface Energies

Consider the biparametric family of energies

Fλ,p(S) ≡ F(S) :=

∫
S

(H − λ)p dA

defined on the space of surface immersions in S3(ρ).

• These energies are kind of p-Willmore energies, (Gruber, Toda

& Tran, 2019).

• We introduce the notation P(H) := (H − λ)p.

Euler-Lagrange Equation

A critical point of F(S) in S3(ρ) satisfies

∆P ′ + 2P ′
(
2H2 − K + 2ρ

)
− 4PH = 0

where P ′ ≡ dP/dH.
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Critical p-Willmore Hopf Tori

For a Hopf tori S̃γ , the mean curvature is given by

H =
1

2
(κ ◦ π̃)

(
π̃ : S3(ρ)→ S2(4ρ)

)
where κ is the curvature of γ in S2(4ρ).

• Let γ be a closed curve in S2(4ρ).

• Using H and the Symmetric Criticality Principle of Palais
(Palais, 1979), we get

Theorem (—, submitted)

The Hopf torus S̃γ = π̃−1(γ) based on γ is a critical point of F(S)
if and only if γ is a generalized elastic curve in S2(4ρ) with
µ = λ/2, i.e.,

Θ(γ) =

∫
γ

(κ− µ)p .
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Correspondence Result

Theorem (—, submitted)

The Hopf torus S̃γ based on γ is critical for

F(S) =

∫
S

(H − λ)p dA

in S3(ρ) if and only if the binormal evolution torus Sγ generated by
evolving γ under its associated binormal flow is a (rotational)
linear Weingarten torus in S3(4ρ), i.e. it satisfies

κ1 = aκ2 + b

between its principal curvatures κi .

• There exists a correspondence between (rotational) linear
Weingarten tori and critical p-Willmore Hopf tori in S3.
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Illustration of a Particular Case

We recover the Blaschke’s curvature energy (p = 1/2 and µ = 0):

Θ(γ) ≡ Θ0,1/2(γ) =

∫
γ

√
κ

in S2(4ρ).

1. Let γ be a closed critical curve.

2. The parameters n and m in the closure condition satisfy:

m < 2n <
√

2m .

3. There are no simple closed critical curves (n 6= 1).

4. The choices of smallest n and m is: n = 2 and m = 3.

5. We consider this critical curve, γ2,3.
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Critical Curve γ2,3



Invariant Surfaces Associated to γ2,3

(o) Minimal (Rotational) Torus

(p) Hopf Torus



Invariant Surfaces Associated to γ2,3

(q) Minimal (Rotational) Torus (r) Hopf Torus



Consequences

Corollary

The Hopf torus S̃γ based on γ2,3 is critical for

F(S) =

∫
S

√
H dA

in S3(ρ). (1/2-Willmore.)

Furthermore,

• For any m < 2n <
√

2m, there exists a biparametric family of
Hopf tori critical for F(S), i.e. 1/2-Willmore.

• There is a correspondence between minimal tori and
1/2-Willmore Hopf tori in S3.
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THE END

Thank You!
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