

Invariant Surfaces in \mathbb{S}^3 Based on Generalized Elastic Curves

Álvaro Pámpano Llarena

63rd Texas Geometry and Topology Conference (Texas Tech University)

Lubbock, April 24-26 (2020)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(ロ)、(型)、(E)、(E)、 E) の(の)

• <u>1691</u>: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• <u>1691</u>: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• <u>1742</u>: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy.

• <u>1691</u>: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

• <u>1742</u>: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy. In modern terminology:

$$\mathcal{E}(\gamma) := \int_{\gamma} \kappa^2 \, d {\mathsf s} \, .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• <u>1691</u>: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformations of rods).

• <u>1742</u>: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as minimizers (critical points) of the bending energy. In modern terminology:

$$\mathcal{E}(\gamma) := \int_{\gamma} \kappa^2 \, d s \, .$$

• <u>1744</u>: L. Euler.

Described the shape of planar elasticae (with constraint on the length). Partially solved by J. Bernoulli, 1692-1694.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• <u>1986</u>: R. Bryant & P. Griffiths. Extended the notion of elasticae to Riemannian manifolds (different approach).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- <u>1986</u>: R. Bryant & P. Griffiths. Extended the notion of elasticae to Riemannian manifolds (different approach).
- <u>1987</u>: J. Langer & D. A. Singer.

Consider elasticae in Riemannian manifolds (in particular, in the 2-sphere $\mathbb{S}^2(\rho)$).

We follow here this approach.

- <u>1986</u>: R. Bryant & P. Griffiths. Extended the notion of elasticae to Riemannian manifolds (different approach).
- <u>1987</u>: J. Langer & D. A. Singer. Consider elasticae in Riemannian manifolds (in particular, in the 2-sphere S²(ρ)). We follow here this approach.

1985: U. Pinkall

Link between Willmore surfaces and elastica.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. Part I. Generalized Elastic Curves

1. Part I. Generalized Elastic Curves

2. Part II. Binormal Evolution

1. Part I. Generalized Elastic Curves

2. Part II. Binormal Evolution

3. Part III. Vertical Lifts

Part I

Generalized Elastic Curves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For fixed real constants μ , $p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$\mathbf{\Theta}(\gamma) \equiv \mathbf{\Theta}_{\mu,p}(\gamma) := \int_{\gamma} (\kappa - \mu)^p = \int_o^L (\kappa(s) - \mu)^p \, ds \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For fixed real constants μ , $p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$\mathbf{\Theta}(\gamma) \equiv \mathbf{\Theta}_{\mu,p}(\gamma) := \int_{\gamma} (\kappa - \mu)^p = \int_{o}^{L} (\kappa(s) - \mu)^p \, ds \, .$$

We assume that Θ acts on the space of smooth immersed curves of S²(ρ) joining two points of it, Ω_{pop1}, verifying κ − μ > 0 (when necessary).

For fixed real constants μ , $p \in \mathbb{R}$, we consider the biparametric family of curvature energy functionals

$$\mathbf{\Theta}(\gamma) \equiv \mathbf{\Theta}_{\mu,p}(\gamma) := \int_{\gamma} (\kappa - \mu)^p = \int_{o}^{L} (\kappa(s) - \mu)^p \, ds \, .$$

We assume that Θ acts on the space of smooth immersed curves of S²(ρ) joining two points of it, Ω_{pop1}, verifying κ − μ > 0 (when necessary).

• We are mainly interested on the space of closed curves.

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, oldsymbol{
ho}}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{
ho}} \, ds$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

includes the following classical energies:

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, p}(\gamma) = \int_{\gamma} (\kappa - \mu)^p \, ds$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

includes the following classical energies:

• If p = 0, Θ is nothing but the length functional.

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, p}(\gamma) = \int_{\gamma} (\kappa - \mu)^p \, ds$$

includes the following classical energies:

- If p = 0, Θ is nothing but the length functional.
- If p = 1 and $\mu = 0$, we get the total curvature functional.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, p}(\gamma) = \int_{\gamma} (\kappa - \mu)^p \, ds$$

includes the following classical energies:

- If p = 0, Θ is nothing but the length functional.
- If p = 1 and $\mu = 0$, we get the total curvature functional.
- If p = 2 and $\mu = 0$, we recover the classical bending energy.

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, oldsymbol{
ho}}(\gamma) = \int_{\gamma} (\kappa - \mu)^{oldsymbol{
ho}} \, ds$$

includes the following classical energies:

- If p = 0, Θ is nothing but the length functional.
- If p = 1 and $\mu = 0$, we get the total curvature functional.
- If p = 2 and $\mu = 0$, we recover the classical bending energy.
- If p = 2 and $\mu \neq 0$, Θ is the bending energy (circular at rest).

The biparametric family of functionals

$$oldsymbol{\Theta}_{\mu, p}(\gamma) = \int_{\gamma} (\kappa - \mu)^p \, ds$$

includes the following classical energies:

- If p = 0, Θ is nothing but the length functional.
- If p = 1 and $\mu = 0$, we get the total curvature functional.
- If p = 2 and $\mu = 0$, we recover the classical bending energy.
- If p = 2 and $\mu \neq 0$, Θ is the bending energy (circular at rest).
- If p = 1/2, we obtain an extension of an energy studied by Blaschke in 1930.

Variational Problem

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Variational Problem

For simplicity we denote $P(\kappa) := (\kappa - \mu)^p$. Then,

Euler-Lagrange Equation

Regardless of the boundary conditions, a critical curve γ in $\mathbb{S}^2(\rho)$ satisfies

$$\dot{P}_{ss} + \dot{P}(\kappa^2 + \rho) - \kappa P = 0.$$
 $\left(\dot{P} \equiv \frac{dP}{d\kappa}\right)$

Variational Problem

For simplicity we denote $P(\kappa) := (\kappa - \mu)^{p}$. Then,

Euler-Lagrange Equation

Regardless of the boundary conditions, a critical curve γ in $\mathbb{S}^2(\rho)$ satisfies

$$\dot{P}_{ss} + \dot{P}(\kappa^2 + \rho) - \kappa P = 0.$$
 $\left(\dot{P} \equiv \frac{dP}{d\kappa}\right)$

Vector Fields Along Critical Curves

Consider $S^2(\rho)$ embedded as a totally geodesic surface of $S^3(\rho)$. Then, we have

$$\mathcal{J} = \left(\kappa \dot{P} - P\right) T + \dot{P}_s N, \qquad \mathcal{I} = \dot{P} B$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

where $\{T, N, B\}$ denotes the Frenet frame of γ in $\mathbb{S}^{3}(\rho)$.

1. If $\kappa(s) = \kappa_o$ is constant, the critical curve is a circle.

- 1. If $\kappa(s) = \kappa_o$ is constant, the critical curve is a circle.
- 2. If $\kappa(s)$ is not constant, then: first integral of the Euler-Lagrange equation

$$\langle \mathcal{J}, \mathcal{J} \rangle + \rho \langle \mathcal{I}, \mathcal{I} \rangle = d > 0$$
.

- 1. If $\kappa(s) = \kappa_o$ is constant, the critical curve is a circle.
- 2. If $\kappa(s)$ is not constant, then: first integral of the Euler-Lagrange equation

$$\langle \mathcal{J}, \mathcal{J} \rangle + \rho \langle \mathcal{I}, \mathcal{I} \rangle = d > 0$$
.

3. In this case, using spherical coordinates in $\mathbb{S}^2(\rho) \subset \mathbb{R}^3$, we get the following parametrization of the critical curves:

$$\gamma(s) = \frac{1}{\sqrt{\rho \, d}} \left(\sqrt{\rho} \, \dot{P}, \sqrt{d - \rho \, \dot{P}^2} \sin \Psi(s), \sqrt{d - \rho \, \dot{P}^2} \cos \Psi(s) \right)$$

where

$$\Psi(s) = \sqrt{
ho d} \int rac{\kappa \dot{P} - P}{d -
ho \dot{P}^2} \, ds$$

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

 A necessary, but not sufficient, condition for γ to close up is that the curvature κ(s) is periodic.

Closure Condition

Let $\gamma(s)$ be a critical curve with non-constant curvature $\kappa(s)$.

- A necessary, but not sufficient, condition for γ to close up is that the curvature κ(s) is periodic.
- Assume $\kappa(s)$ is periodic (of period ϱ). Then,

Closure Condition

The critical curve $\gamma(s)$ in $\mathbb{S}^2(\rho)$ is closed, if and only if,

$$\Lambda(d) = \sqrt{\rho d} \int_o^{\varrho} \frac{\kappa \dot{P} - P}{d - \rho \dot{P}^2} ds = 2 \frac{n}{m} \pi \,,$$

for any integers n and m.

Geometric Description (1)

We fix p = 1/2 (i.e. the extended Blaschke's curvature energy).
Geometric Description (1)

We fix p = 1/2 (i.e. the extended Blaschke's curvature energy).

(C) $\mu = -1$

Geometric Description (2)

・ロト・日本・モート モー うへぐ

(E)
$$\mu = -0.1$$

Geometric Description (2)

・ロト・日本・モート モー うへぐ

Geometric Description (3)

(日)、(四)、(E)、(E)、(E)

Geometric Description (3)

• They never cut the axis $x_1 = 0$ (the equator), since $\dot{P} = \frac{1}{2\sqrt{\kappa-\mu}} > 0.$

Part II

Binormal Evolution

Killing Vector Fields

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$W(v) = W(\kappa) = 0$$

along $\gamma.$ (Langer & Singer, 1984)

Killing Vector Fields

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ . (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

The vector fields \mathcal{I} and \mathcal{J} are Killing vector fields along critical curves. (We are mainly interested in \mathcal{I} .)

Killing Vector Fields

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ . (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

The vector fields \mathcal{I} and \mathcal{J} are Killing vector fields along critical curves. (We are mainly interested in \mathcal{I} .)

 Killing vector fields along γ can be extended to Killing vector fields on the whole S³(ρ). The extension is unique.

・ロト・日本・モート モー うへぐ

Let $\gamma(s) \subset S^2(\rho)$ be any generalized elastic curve. (We consider $S^2(\rho) \subset S^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

Let $\gamma(s) \subset S^2(\rho)$ be any generalized elastic curve. (We consider $S^2(\rho) \subset S^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I} = \dot{P}(\kappa)B$$
. $(P(\kappa) := (\kappa - \mu)^p)$

Let $\gamma(s) \subset S^2(\rho)$ be any generalized elastic curve. (We consider $S^2(\rho) \subset S^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I} = \dot{P}(\kappa)B$$
. $(P(\kappa) := (\kappa - \mu)^p)$

Let's denote by ξ the (unique) extension to a Killing vector field of S³(ρ). (It can be assumed to be: ξ = λ₁X₁ + λ₂X₂.)

Let $\gamma(s) \subset S^2(\rho)$ be any generalized elastic curve. (We consider $S^2(\rho) \subset S^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I} = \dot{P}(\kappa)B$$
. $(P(\kappa) := (\kappa - \mu)^p)$

- Let's denote by ξ the (unique) extension to a Killing vector field of S³(ρ). (It can be assumed to be: ξ = λ₁X₁ + λ₂X₂.)
- Since S³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.

Let $\gamma(s) \subset S^2(\rho)$ be any generalized elastic curve. (We consider $S^2(\rho) \subset S^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$\mathcal{I} = \dot{P}(\kappa)B$$
. $(P(\kappa) := (\kappa - \mu)^p)$

- 2. Let's denote by ξ the (unique) extension to a Killing vector field of $\mathbb{S}^{3}(\rho)$. (It can be assumed to be: $\xi = \lambda_{1}X_{1} + \lambda_{2}X_{2}$.)
- Since S³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & --, 2016)

$$S_{\gamma} := \{x(s,t) := \phi_t(\gamma(s))\}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

By construction S_{γ} is a ξ -invariant surface.

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset \mathbb{S}^2(\rho)$ (γ is planar),

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset \mathbb{S}^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset \mathbb{S}^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

• Since $\gamma(s)$ is a generalized elastic curve,

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset \mathbb{S}^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

• Since $\gamma(s)$ is a generalized elastic curve,

Theorem (--, 2018)

The binormal evolution surface S_{γ} is a linear Weingarten surface. It verifies:

 $\kappa_1 = a\kappa_2 + b$, (κ_i principal curvatures)

for a = p/(p-1) and $b = -\mu/(p-1)$.

A Weingarten surface in $\mathbb{S}^3(\rho)$ is a surface where the two principal curvatures (κ_1 and κ_2) satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$.

A Weingarten surface in $\mathbb{S}^3(\rho)$ is a surface where the two principal curvatures (κ_1 and κ_2) satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here, we consider the linear relation

$$\kappa_1 = a\kappa_2 + b$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.

A Weingarten surface in $\mathbb{S}^3(\rho)$ is a surface where the two principal curvatures (κ_1 and κ_2) satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here, we consider the linear relation

$$\kappa_1 = a\kappa_2 + b$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.

Well known families of linear Weingarten surfaces are:

Totally Umbilical Surfaces (Spheres S²)

A Weingarten surface in $\mathbb{S}^3(\rho)$ is a surface where the two principal curvatures (κ_1 and κ_2) satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here, we consider the linear relation

$$\kappa_1 = a\kappa_2 + b$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.

Well known families of linear Weingarten surfaces are:

- Totally Umbilical Surfaces (Spheres S²)
- Isoparametric Surfaces (Tori $\mathbb{S}^1 \times \mathbb{S}^1$)

A Weingarten surface in $\mathbb{S}^3(\rho)$ is a surface where the two principal curvatures (κ_1 and κ_2) satisfy a certain relation $\Phi(\kappa_1, \kappa_2) = 0$. Here, we consider the linear relation

$$\kappa_1 = a\kappa_2 + b$$

where $a, b \in \mathbb{R}$ and $a \neq 0$.

Well known families of linear Weingarten surfaces are:

- Totally Umbilical Surfaces (Spheres S²)
- Isoparametric Surfaces (Tori $\mathbb{S}^1 \times \mathbb{S}^1$)
- Constant Mean Curvature Surfaces (Rotational: Delaunay Surfaces in S³(ρ))

Let *M* be a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$.

Let *M* be a rotational linear Weingarten surface of $\mathbb{S}^3(\rho)$. Since it is rotational, it can be described (locally) as

$$M \equiv S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\}$$

where

- 1. ϕ_t is a rotation, and
- 2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_t).

Let *M* be a rotational linear Weingarten surface of $\mathbb{S}^3(\rho)$. Since it is rotational, it can be described (locally) as

$$M \equiv S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\}$$

where

- 1. ϕ_t is a rotation, and
- 2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_t).

Theorem (--, 2018)

The profile curve γ of a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$ (for $a \neq 1$) is a planar ($\gamma(s) \subset \mathbb{S}^{2}(\rho)$) generalized elastic curve for $\mu = -b/(a-1)$ and $\rho = a/(a-1)$.

Let *M* be a rotational linear Weingarten surface of $\mathbb{S}^3(\rho)$. Since it is rotational, it can be described (locally) as

$$M \equiv S_{\gamma} := \{x(s,t) = \phi_t(\gamma(s))\}$$

where

- 1. ϕ_t is a rotation, and
- 2. $\gamma(s)$ is the profile curve (everywhere orthogonal to the orbits of ϕ_t).

Theorem (--, 2018)

The profile curve γ of a rotational linear Weingarten surface of $\mathbb{S}^{3}(\rho)$ (for $a \neq 1$) is a planar ($\gamma(s) \subset \mathbb{S}^{2}(\rho)$) generalized elastic curve for $\mu = -b/(a-1)$ and $\rho = a/(a-1)$.

The case a = 1; rotational surfaces with constant skew curvature. (López & —, 2020)

Particular Case 1: CMC

Specializing previous characterization we get

Theorem (Arroyo, Garay & --, 2018)

A rotational surface with constant mean curvature H of $\mathbb{S}^3(\rho)$ is, locally, a binormal evolution surface with initial condition a generalized elastic curve in $\mathbb{S}^2(\rho)$ for p = 1/2 and $\mu = -H$, i.e. for the extended Blaschke's energy

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{\mu,1/2}(\gamma)=\int_{\gamma}\sqrt{\kappa-\mu}$$

where $\mu = -H$.

Specializing previous characterization we get

Theorem (Arroyo, Garay & --, 2018)

A rotational surface with constant mean curvature H of $\mathbb{S}^3(\rho)$ is, locally, a binormal evolution surface with initial condition a generalized elastic curve in $\mathbb{S}^2(\rho)$ for p = 1/2 and $\mu = -H$, i.e. for the extended Blaschke's energy

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{\mu,1/2}(\gamma)=\int_{\gamma}\sqrt{\kappa-\mu}$$

where $\mu = -H$.

Basically, we need to understand these critical curves:

• If $\kappa = \mu$, we have global minima (acting on the space L^1).

Theorem (Arroyo, Garay & --, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

Theorem (Arroyo, Garay & --, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

1. The equator $\mathbb{S}^2(\rho)$; if $\kappa(s) = H = 0$.

Theorem (Arroyo, Garay & --, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. The equator $\mathbb{S}^2(\rho)$; if $\kappa(s) = H = 0$.
- 2. A totally umbilical sphere; if $\kappa(s) = |H| \neq 0$.
Local Classification

Theorem (Arroyo, Garay & --, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

- 1. The equator $\mathbb{S}^2(\rho)$; if $\kappa(s) = H = 0$.
- 2. A totally umbilical sphere; if $\kappa(s) = |H| \neq 0$.
- 3. A Hopf torus

$$\mathbb{S}^1\left(\sqrt{\rho+\kappa_o^2}\right)\times\mathbb{S}^1\left(\frac{\sqrt{\rho}}{\kappa_o}\sqrt{\rho+\kappa_o^2}\right)$$

if $\kappa(s) = \kappa_o = -|H| + \sqrt{\rho + H^2}$.

Local Classification

Theorem (Arroyo, Garay & --, 2019)

Rotational surfaces with constant mean curvature H in $\mathbb{S}^{3}(\rho)$ are locally congruent to a piece of

- 1. The equator $\mathbb{S}^2(\rho)$; if $\kappa(s) = H = 0$.
- 2. A totally umbilical sphere; if $\kappa(s) = |H| \neq 0$.
- 3. A Hopf torus

$$\mathbb{S}^1\left(\sqrt{\rho+\kappa_o^2}\right)\times\mathbb{S}^1\left(\frac{\sqrt{\rho}}{\kappa_o}\sqrt{\rho+\kappa_o^2}\right)$$

if $\kappa(s) = \kappa_o = -|H| + \sqrt{\rho + H^2}$.

4. A binormal evolution surface shaped on γ (planar critical curve of extended Blaschke's energy for $|\mu| = |H|$ with non-constant curvature).

Illustration (1)

Illustration (2)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay & --, 2019)

For any $\mu \in \mathbb{R}$, there exist closed critical curves.

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay & --, 2019)

For any $\mu \in \mathbb{R}$, there exist closed critical curves.

2. If γ is also simple, then S_{γ} is an embedded torus.

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay & --, 2019)

For any $\mu \in \mathbb{R}$, there exist closed critical curves.

2. If γ is also simple, then S_{γ} is an embedded torus.

Theorem (Arroyo, Garay & —, 2019)

If the closed critical curve is simple, then $\mu \neq -\sqrt{\rho/3}$ is negative.

Binormal evolution surfaces S_{γ} of Point 4 depend greatly on γ (critical curves have always periodic curvature).

1. If γ is closed, then S_{γ} is a torus.

Theorem (Arroyo, Garay & --, 2019)

For any $\mu \in \mathbb{R}$, there exist closed critical curves.

2. If γ is also simple, then S_{γ} is an embedded torus.

Theorem (Arroyo, Garay & —, 2019)

If the closed critical curve is simple, then $\mu \neq -\sqrt{\rho/3}$ is negative.

• For this last theorem, we need to consider *n* = 1 in the closure condition of critical curves, which yields to an already known condition.

Embedded CMC Tori in $\mathbb{S}^{3}(\rho)$

Theorem (Perdomo, 2010)

For any m > 1 and any H such that

$$|H| \in \left(\sqrt{\rho}\cot\frac{\pi}{m}, \sqrt{\rho}\,\frac{m^2-2}{2\sqrt{m^2-1}}
ight)$$

there exists a non-isoparametric embedded constant mean curvature rotational tori.

Embedded CMC Tori in $\mathbb{S}^{3}(\rho)$

Theorem (Perdomo, 2010)

For any m > 1 and any H such that

$$|H| \in \left(\sqrt{\rho}\cot\frac{\pi}{m}, \sqrt{\rho}\,\frac{m^2-2}{2\sqrt{m^2-1}}
ight)$$

there exists a non-isoparametric embedded constant mean curvature rotational tori.

(ロ)、(型)、(E)、(E)、 E) の(の)

Pinkall-Sterling's Conjecture (Pinkall & Sterling, 1989) Any constant mean curvature tori embedded in $S^3(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

Pinkall-Sterling's Conjecture (Pinkall & Sterling, 1989) Any constant mean curvature tori embedded in $S^3(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

 Once we fix H, for each m > 1, there exists at most one embedded non-isoparametric tori of constant mean curvature.

Pinkall-Sterling's Conjecture (Pinkall & Sterling, 1989) Any constant mean curvature tori embedded in $S^3(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

 Once we fix H, for each m > 1, there exists at most one embedded non-isoparametric tori of constant mean curvature.

• **Ripoll's Theorem (Ripoll, 1986)**. For any $H \neq 0$, $\pm \sqrt{\rho/3}$, there exists a non-isoparametric torus of constant mean curvature.

Pinkall-Sterling's Conjecture (Pinkall & Sterling, 1989) Any constant mean curvature tori embedded in $S^3(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

 Once we fix H, for each m > 1, there exists at most one embedded non-isoparametric tori of constant mean curvature.

- **Ripoll's Theorem (Ripoll, 1986)**. For any $H \neq 0$, $\pm \sqrt{\rho/3}$, there exists a non-isoparametric torus of constant mean curvature.
- The only minimal tori is $\mathbb{S}^1(\sqrt{2\rho}) \times \mathbb{S}^1(\sqrt{2\rho})$.

Pinkall-Sterling's Conjecture (Pinkall & Sterling, 1989) Any constant mean curvature tori embedded in $S^3(\rho)$ must be rotationally symmetric. (Recently proved in [Andrews & Li, 2015].)

- Once we fix H, for each m > 1, there exists at most one embedded non-isoparametric tori of constant mean curvature.
- **Ripoll's Theorem (Ripoll, 1986)**. For any $H \neq 0$, $\pm \sqrt{\rho/3}$, there exists a non-isoparametric torus of constant mean curvature.
- The only minimal tori is $\mathbb{S}^1(\sqrt{2\rho}) \times \mathbb{S}^1(\sqrt{2\rho})$.

Lawson's Conjecture (Lawson, 1970)

The only embedded minimal tori in $\mathbb{S}^{3}(\rho)$ is the Clifford torus. (Recently proved in [Brendle, 2013].)

Here, we use the work [Caddeo, Montaldo, Oniciuc & Piu, 2014] (among others) to define them.

Definition

A surface $S \subset S^3(\rho)$ is said to be biconservative if it satisfies

 $A_{\eta} (\operatorname{grad} H) + H \operatorname{grad} H = 0$

where η is the unit normal to S and A_{η} is the shape operator.

Here, we use the work [Caddeo, Montaldo, Oniciuc & Piu, 2014] (among others) to define them.

Definition

A surface $S \subset S^3(\rho)$ is said to be biconservative if it satisfies

 $A_{\eta} (\operatorname{grad} H) + H \operatorname{grad} H = 0$

where η is the unit normal to S and A_{η} is the shape operator.

Theorem (Caddeo, Montaldo, Oniciuc & Piu, 2014)

A biconservative surface of $\mathbb{S}^3(\rho)$ is either a constant mean curvature surface or a rotational surface.

Here, we use the work [Caddeo, Montaldo, Oniciuc & Piu, 2014] (among others) to define them.

Definition

A surface $S \subset S^3(\rho)$ is said to be biconservative if it satisfies

 $A_{\eta} (\mathrm{grad} H) + H \, \mathrm{grad} H = 0$

where η is the unit normal to S and A_{η} is the shape operator.

Theorem (Caddeo, Montaldo, Oniciuc & Piu, 2014)

A biconservative surface of $\mathbb{S}^3(\rho)$ is either a constant mean curvature surface or a rotational surface.

• Non-CMC biconservative surfaces are rotational linear Weingarten surfaces for

$$3\kappa_1+\kappa_2=0\,.$$

Theorem (Montaldo & —, *submitted*)

All non-CMC biconservative surfaces of $\mathbb{S}^3(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{0,1/4}(\gamma)=\int_{\gamma}\kappa^{1/4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

in $\mathbb{S}^2(\rho)$.

Theorem (Montaldo & —, *submitted*)

All non-CMC biconservative surfaces of $\mathbb{S}^3(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{0,1/4}(\gamma)=\int_{\gamma}\kappa^{1/4}$$

in $\mathbb{S}^2(\rho)$.

• All critical curves have periodic curvature.

Theorem (Montaldo & —, *submitted*)

All non-CMC biconservative surfaces of $\mathbb{S}^3(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{0,1/4}(\gamma)=\int_{\gamma}\kappa^{1/4}$$

in $\mathbb{S}^2(\rho)$.

- All critical curves have periodic curvature.
- Using closure conditions, we get

Theorem (Montaldo & —, *submitted*)

For $m < 2n < \sqrt{2} m$, there exists a biparametric family of closed biconservative surfaces.

Theorem (Montaldo & —, *submitted*)

All non-CMC biconservative surfaces of $\mathbb{S}^3(\rho)$ are, locally, binormal evolution surfaces with the initial condition critical for

$$oldsymbol{\Theta}(\gamma)\equivoldsymbol{\Theta}_{0,1/4}(\gamma)=\int_{\gamma}\kappa^{1/4}$$

in $\mathbb{S}^2(\rho)$.

- All critical curves have periodic curvature.
- Using closure conditions, we get

Theorem (Montaldo & —, *submitted*)

For $m < 2n < \sqrt{2} m$, there exists a biparametric family of closed biconservative surfaces. (None of them is embedded.)

Part III

Vertical Lifts

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

We denote by $\tilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration. 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote by $\widetilde{\pi}: \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- 2. The surface $\widetilde{S}_{\gamma} := \widetilde{\pi}^{-1}(\gamma)$ is an isometrically immersed surface in $\mathbb{S}^3(\rho)$.

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π
 ⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.
- 3. Moreover, \tilde{S}_{γ} is invariant under $\tilde{\xi}$ (the vertical Killing vector field).

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π
 ⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.
- Moreover, S
 ^ζ is invariant under ξ
 ^ξ (the vertical Killing vector field). All ξ-invariant surfaces of S³(ρ) can be seen as vertical lifts of curves.

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π
 ⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.
- Moreover, S
 ^ζ is invariant under ξ
 ^ξ (the vertical Killing vector field). All ξ-invariant surfaces of S³(ρ) can be seen as vertical lifts of curves.

4. If γ is closed, then \widetilde{S}_{γ} is a (flat) torus.

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π
 ⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.
- Moreover, S
 ^ζ is invariant under ξ
 ^ξ (the vertical Killing vector field). All ξ-invariant surfaces of S³(ρ) can be seen as vertical lifts of curves.

4. If γ is closed, then \widetilde{S}_{γ} is a (flat) torus. However, the horizontal lift of γ may not be closed.
Hopf Tori

We denote by $\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho)$ the (classical) Hopf fibration.

- 1. Let γ be an immersed curve in $\mathbb{S}^2(4\rho)$.
- The surface S
 _γ := π
 ⁻¹(γ) is an isometrically immersed surface in S³(ρ).
 It is usually called Hopf tube based on γ.
- Moreover, S
 ^ζ is invariant under ξ
 ^ξ (the vertical Killing vector field). All ξ-invariant surfaces of S³(ρ) can be seen as vertical lifts of curves.

4. If γ is closed, then S_γ is a (flat) torus. However, the horizontal lift of γ may not be closed.
(A condition on the enclosed area is essential, (Arroyo, Barros)

& Garay, 2000).)

Horizontal Lift (Base Curve)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Horizontal Lift (One Lift)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Horizontal Lift (Six Lifts)

▲ロト ▲舂 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Horizontal Lift (One Hundred Lifts)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Consider the biparametric family of energies

$$\mathcal{F}_{\lambda,p}(S) \equiv \mathcal{F}(S) := \int_{S} (H - \lambda)^p \, dA$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

Consider the biparametric family of energies

$$\mathcal{F}_{\lambda,p}(S) \equiv \mathcal{F}(S) := \int_{S} (H - \lambda)^{p} dA$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

These energies are kind of *p*-Willmore energies, (Gruber, Toda & Tran, 2019).

Consider the biparametric family of energies

$$\mathcal{F}_{\lambda,p}(S) \equiv \mathcal{F}(S) := \int_{S} (H - \lambda)^{p} dA$$

defined on the space of surface immersions in $\mathbb{S}^{3}(\rho)$.

- These energies are kind of *p*-Willmore energies, (Gruber, Toda & Tran, 2019).
- We introduce the notation $P(H) := (H \lambda)^p$.

Euler-Lagrange Equation

A critical point of $\mathcal{F}(S)$ in $\mathbb{S}^3(\rho)$ satisfies

$$\Delta P' + 2P' \left(2H^2 - K + 2\rho \right) - 4PH = 0$$

where $P' \equiv dP/dH$.

・ロト・日本・モト・モート ヨー うへで

For a Hopf tori \widetilde{S}_{γ} , the mean curvature is given by

$$H = \frac{1}{2} \left(\kappa \circ \widetilde{\pi} \right) \qquad \left(\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho) \right)$$

where κ is the curvature of γ in $\mathbb{S}^2(4\rho)$.

For a Hopf tori \widetilde{S}_{γ} , the mean curvature is given by

$$H = \frac{1}{2} \left(\kappa \circ \widetilde{\pi} \right) \qquad \left(\widetilde{\pi} : \mathbb{S}^3(\rho) \to \mathbb{S}^2(4\rho) \right)$$

where κ is the curvature of γ in $\mathbb{S}^2(4\rho)$.

• Let γ be a closed curve in $\mathbb{S}^2(4\rho)$.

For a Hopf tori \widetilde{S}_{γ} , the mean curvature is given by

$$H = rac{1}{2} \left(\kappa \circ \widetilde{\pi}
ight) \qquad \left(\widetilde{\pi} : \mathbb{S}^3(
ho) o \mathbb{S}^2(4
ho)
ight)$$

where κ is the curvature of γ in $\mathbb{S}^2(4\rho)$.

- Let γ be a closed curve in $\mathbb{S}^2(4\rho)$.
- Using *H* and the Symmetric Criticality Principle of Palais (Palais, 1979), we get

Theorem (-, submitted)

The Hopf torus $\widetilde{S}_{\gamma} = \widetilde{\pi}^{-1}(\gamma)$ based on γ is a critical point of $\mathcal{F}(S)$ if and only if γ is a generalized elastic curve in $\mathbb{S}^2(4\rho)$ with $\mu = \lambda/2$, i.e.,

$$\boldsymbol{\Theta}(\gamma) = \int_{\gamma} (\kappa - \mu)^{\boldsymbol{p}}$$

Correspondence Result

(ロ)、(型)、(E)、(E)、 E) の(の)

Correspondence Result

Theorem (—, *submitted*) The Hopf torus \widetilde{S}_{γ} based on γ is critical for

$$\mathcal{F}(S) = \int_{S} \left(H - \lambda\right)^{p} \, dA$$

in $\mathbb{S}^3(\rho)$ if and only if the binormal evolution torus S_{γ} generated by evolving γ under its associated binormal flow is a (rotational) linear Weingarten torus in $\mathbb{S}^3(4\rho)$, i.e. it satisfies

$$\kappa_1 = a\kappa_2 + b$$

between its principal curvatures κ_i .

Correspondence Result

Theorem (—, *submitted*) The Hopf torus \tilde{S}_{γ} based on γ is critical for

$$\mathcal{F}(S) = \int_{S} \left(H - \lambda\right)^{p} \, dA$$

in $\mathbb{S}^3(\rho)$ if and only if the binormal evolution torus S_{γ} generated by evolving γ under its associated binormal flow is a (rotational) linear Weingarten torus in $\mathbb{S}^3(4\rho)$, i.e. it satisfies

$$\kappa_1 = a\kappa_2 + b$$

between its principal curvatures κ_i .

 There exists a correspondence between (rotational) linear Weingarten tori and critical *p*-Willmore Hopf tori in S³.

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

・ロト・日本・モト・モート ヨー うへで

in $\mathbb{S}^2(4\rho)$.

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

in $S^2(4\rho)$. 1. Let γ be a closed critical curve.

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

in $\mathbb{S}^2(4\rho)$.

- 1. Let γ be a closed critical curve.
- 2. The parameters n and m in the closure condition satisfy:

 $m < 2n < \sqrt{2} m$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

in $\mathbb{S}^2(4\rho)$.

- 1. Let γ be a closed critical curve.
- 2. The parameters n and m in the closure condition satisfy:

$$m < 2n < \sqrt{2} m$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. There are no simple closed critical curves $(n \neq 1)$.

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

in $\mathbb{S}^2(4\rho)$.

- 1. Let γ be a closed critical curve.
- 2. The parameters *n* and *m* in the closure condition satisfy:

$$m < 2n < \sqrt{2} m$$
.

- 3. There are no simple closed critical curves $(n \neq 1)$.
- 4. The choices of smallest *n* and *m* is: n = 2 and m = 3.

We recover the Blaschke's curvature energy (p = 1/2 and $\mu = 0$):

$${oldsymbol \Theta}(\gamma)\equiv {oldsymbol \Theta}_{0,1/2}(\gamma)=\int_\gamma \sqrt{\kappa}$$

in $\mathbb{S}^2(4\rho)$.

- 1. Let γ be a closed critical curve.
- 2. The parameters *n* and *m* in the closure condition satisfy:

$$m < 2n < \sqrt{2} m$$
.

- 3. There are no simple closed critical curves $(n \neq 1)$.
- 4. The choices of smallest *n* and *m* is: n = 2 and m = 3.
- 5. We consider this critical curve, $\gamma_{2,3}$.

Critical Curve $\gamma_{2,3}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Invariant Surfaces Associated to $\gamma_{2,3}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(0) Minimal (Rotational) Torus

Invariant Surfaces Associated to $\gamma_{2,3}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$\mathcal{F}(S) = \int_{S} \sqrt{H} \, dA$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$\mathcal{F}(S) = \int_{S} \sqrt{H} \, dA$$

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)

Furthermore,

 For any m < 2n < √2 m, there exists a biparametric family of Hopf tori critical for F(S), i.e. 1/2-Willmore.

Consequences

Corollary

The Hopf torus \widetilde{S}_{γ} based on $\gamma_{2,3}$ is critical for

$$\mathcal{F}(S) = \int_{S} \sqrt{H} \, dA$$

in $\mathbb{S}^{3}(\rho)$. (1/2-Willmore.)

Furthermore,

 For any m < 2n < √2 m, there exists a biparametric family of Hopf tori critical for F(S), i.e. 1/2-Willmore.

• There is a correspondence between minimal tori and 1/2-Willmore Hopf tori in S³.

THE END

Thank You!

Acknowledgements: Research partially supported by MINECO-FEDER, PGC2018-098409-B-100 and by Gobierno Vasco, IT1094-16.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで