
LECTURE NOTES

Math 3342, Mathematical Statistics

Álvaro Pámpano Llarena

1 Descriptive Statistics (Chapter 1)

1.1 Measures of Location

Definition 1.1 The arithmetic mean x̄ of a sample of observations x1,...,xn is given by

x̄ =
x1 + ...+ xn

n
=

1

n

n∑
i=1

xi .

Definition 1.2 The geometric mean x̄g of a sample of observations x1,...,xn is defined by

x̄g = (x1 · · ·xn)
1/n =

(
n∏

i=1

xi

)1/n

.

Definition 1.3 The harmonic mean x̄h of a sample of observations x1,...,xn is

x̄h =
n

1
x1

+ ...+ 1
xn

=
n∑n
i=1

1
xi

=

(
1

n

n∑
i=1

x−1
i

)−1

.

Proposition 1.4 For any sample of observations the following inequalities hold:

x̄ ≥ x̄g ≥ x̄h .

Example 1.5 In a course with four exams your grades are 4, 7, 3, 6 (out of ten). If all of them

are worth the same, compute the means and decide which one you prefer. (Answer: x̄ = 5,

x̄g = 4.74 and x̄h = 4.48.)

Remark 1.6 There are other possibilities to define means. Throughout this course we will

focus on the (arithmetic) mean. When the mean is computed over all the population is said the

(population) mean and denoted by µ.
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Definition 1.7 A median of a sample is the value such that at most half of the sample is less

than it and at most half is greater than it.

Remark 1.8 To compute the median, we first order the n observations x1,...,xn from smallest

to largest. Then, the median x̃ is the single middle value if n is odd, or the average of the two

middle values if n is even.

Definition 1.9 The mode is the value that appears most often in a sample.

Example 1.10 The salaries of four people per month are: $500, 000, $200, $300 and $100.

Compute the mean and the median. Is it accurate to say that people is rich? (Answer: x̄ =

125, 100 and x̃ = 250.)

Remark 1.11 A trimmed mean can be used to avoid this problems, eliminating the smallest

and largest values of the sample.

Remark 1.12 There are other measures of location: for instance, quartiles and percentiles.

Roughly speaking, quartiles divide the data set into four equal parts, while percentiles divide it

in 100 parts.

1.2 Measures of Variability

Definition 1.13 The variance of a sample of observations x1,...,xn is given by

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 ,

where x̄ is the (arithmetic) mean.

Definition 1.14 The variance of a population x1,...,xn is given by

σ2 =
1

n

n∑
i=1

(xi − µ)2 ,

where µ is the (arithmetic) mean of the population.

Remark 1.15 The difference in the denominator is just a corrector factor which will simplify

the formulas to make inference.

Definition 1.16 The standard deviation of a sample of observations x1,...,xn is the (positive)

square root of the variance, i.e.,

s =
√
s2 .
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Definition 1.17 The standard deviation of a population is the (positive) square root of the

variance of the population, i.e.,

σ =
√
σ2 .

Proposition 1.18 Given an arbitrary sample of observations x1,...,xn the following relation

holds:
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

.
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2 Probability (Chapter 2)

2.1 Sample Spaces and Events

Definition 2.1 An experiment is any process whose outcome is subject to uncertainty.

Definition 2.2 The sample space of an experiment, denoted by S, is the set of all possible

outcomes of that experiment.

Example 2.3 Determine the sample space of the experiment consisting on tossing three coins.

(Heads and Tails). (Answer: S = {HHH,HHT,HTT,HTH, THH, THT, TTT, TTH}.)

Definition 2.4 An event is any collection (subset) of outcomes contained in the sample space

S. An event is simple if it consists of exactly one outcome and compound if it consists of more

than one outcomes.

Example 2.5 Imagine three vehicles taking an exit from a highway. They may turn left (L)

or right (R). The sample space is

S = {LLL,LLR,LRR,LRL,RLL,RLR,RRR,RRL}.

A simple event could be {LRR}, while examples of compound events are:

1. Exactly one vehicle turns right:

{LLR,LRL,RLL}.

2. At least one vehicle turns left:

{LLL,LLR,LRR,LRL,RLL,RLR,RRL}.

3. The three vehicles turn in the same direction:

{LLL,RRR}.

Remark 2.6 Roughly speaking, the probability of an event to occur is the number of possible

outcomes in the event divided by the number of total outcomes.

Definition 2.7 The complement of an event A, denoted A′, is the set of all outcomes in S
that are not contained in A.

Definition 2.8 The union of two events A and B, A∪B, is the event consisting of all outcomes

that are either in A, or in B, or in both.
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Definition 2.9 The intersection of two events A and B, A ∩ B, is the event consisting of all

outcomes that are in both A and B.

Definition 2.10 If two events have empty intersection, i.e., A ∩ B = ∅, they are said to be

mutually exclusive or disjoint.

Remark 2.11 A useful representation of events and manipulations can be represented using

Venn diagrams.

2.2 Counting Techniques

Definition 2.12 Consider a set of n distinct elements. An ordered subset is called a permutation.

An unordered subset is called a combination.

Remark 2.13 A permutation is an ordered combination.

Example 2.14 Among 10 athletes, the possible ways to distribute the medals in the Olympic

games is a permutation of size 3 among 10 individuals, P3,10.

Example 2.15 Among 10 flavors of ice cream, the possible variations we have to get three

scoops of different flavors is a combination of size 3 among 10 objects, C3,10.

Remark 2.16 There exist both permutations and combinations with repetition, denoted by P r
k,n

and Cr
k,n, respectively.

Proposition 2.17 (Permutations) The number of permutations of size k that can be formed

from n elements is:

P r
k,n = nk ,

if repetition is allowed; and,

Pk,n =
n!

(n− k)!
,

if repetition is not allowed.

Remark 2.18 The symbol ! represents the factorial which is defined by

n! = n · (n− 1) · · · 3 · 2 · 1 =
n∏

i=1

i .

By definition, 0! = 1.

Example 2.19 How many telephone numbers of 10 digits may exist? (Answer: 1010.)
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Example 2.20 How many ways are there to distribute the medals (Gold, Silver and Bronze)

in the Olympic games among 10 athletes? (Answer: 720.)

Proposition 2.21 (Combinations) The number of combinations of size k that can be formed

from n elements is:

Ck,n =

(
n

k

)
=

n!

k!(n− k)!
,

if repetition is not allowed; and

Cr
k,n =

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
,

if repetition is allowed.

Remark 2.22 The number (
n

k

)
is called a combinatorial number.

2.3 Definition and Properties of Probability

Remark 2.23 The objective of probability is to assign to each event in an experiment a number

which gives a precise measure of the chance that the corresponding event will occur.

Definition 2.24 Consider an experiment with sample space S. A probability measure is a

function P : S → [0, 1] such that:

(i) P (S) = 1, and

(ii) If {Ai}∞i=1 is an infinite collection of disjoint events, then

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) .

Proposition 2.25 The probability of the null event is zero, i.e., P (∅) = 0.

Remark 2.26 Due to this proposition, the second Axiom in the definition is also valid for

finite collection of disjoint events.

Proposition 2.27 For any event A, the probability of the complement event is

P (A′) = 1− P (A) .
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Example 2.28 (Birthday Problem) The birthday problem asks for the probability that, among

n randomly selected people, at least two share a birthday (we do not consider February 29).

1. How many people are needed for that the probability exceeds 0.5? (Answer: 23.)

2. What is the probability that, among 31 people, at least two share a birthday? (Answer:

0.73.)

Proposition 2.29 For any two events A and B, the probability of the union is

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

Example 2.30 (Monty Hall Problem (Part I)) Suppose you are on the game show “Let’s

Make a Deal” whose host was Monty Hall. You are given the choice of three doors. Behind one

door is a car, while behind the others, there are goats. Once you pick up a door, the host (who

knows what is behind every door) opens another door behind which there is a goat. The host

then gives you the opportunity of changing doors.

1. What is the probability of winning the car if you stay with your original pick? (Answer:

1/3.)

2. What is the probability of winning the car if you switch to the other closed door? (Answer:

2/3.)

(Hint: Describe the sample space and count all the winning outcomes.)

2.4 Conditional Probability

Definition 2.31 For any two events A and B with P (B) > 0, the conditional probability of A

given that B has (already) occurred is defined by

P (A|B) =
P (A ∩B)

P (B)
.

Example 2.32 Suppose that of all individuals buying a certain digital camera, 60% include an

optional memory card in their purchase, 40% include an extra battery, and 30% include both a

card and a battery. Consider randomly selecting a buyer.

1. Given that the selected individual purchased an extra battery, compute the probability that

an optional card was also purchased. (Answer: 0.75.)

2. Given that the selected individual purchased a memory card, compute the probability that

an extra battery was also purchased. (Answer: 0.5.)
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Example 2.33 Reading habits of a randomly selected reader with respect to “Art” (A), “Books”

(B) and “Cinema” (C) are: P (A) = 0.14, P (B) = 0.23, P (C) = 0.37, P (A ∩ B) = 0.08,

P (A ∩ C) = 0.09, P (B ∩ C) = 0.13 and P (A ∩B ∩ C) = 0.05.

1. Compute the probability of reading about art, given that the reader reads about books.

(Answer: 0.348).

2. Compute the probability that the selected individual reads about art given that he reads at

least one of the other two topics. (Answer: 0.255).

3. Compute the probability of reading about art, given that the selected individual reads at

least one topic. (Answer: 0.286).

4. Compute the probability that the selected individual reads at least one of the first two

columns given that he reads about cinema. (Answer: 0.459).

Definition 2.34 A collection of events {Ai}ki=1 is said to be exhaustive if, at least, one of them

must occur, i.e., if
⋃k

i=1Ai = S.

Remark 2.35 A collection of mutually exclusive and exhaustive events is a partition of the

sample space.

Theorem 2.36 (The Law of Total Probability) Let {Ai}ki=1 be a collection of mutually ex-

clusive and exhaustive events. Then, for any other event B,

P (B) =
k∑

i=1

P (B|Ai)P (Ai) .

Theorem 2.37 (Bayes’ Theorem) Let {Ai}ki=1 be a collection of mutually exclusive and ex-

haustive events. Then, for any other event B with P (B) > 0, the (posterior) probability of Aj,

for some j = 1, ..., k, given that B has already occurred is

P (Aj|B) =
P (Aj ∩B)

P (B)
=

P (B|Aj)P (Aj)∑k
i=1 P (B|Ai)P (Ai)

.

Example 2.38 (Monty Hall Problem (Part II)) Use Bayes’ Theorem to solve the Monty

Hall problem. (Hint: For simplicity, assume we pick door number 1 and Monty opens door

number 2. The numbers of the doors do not matter, if you prefer think that the doors are called

α, β and γ, and we numbered them as they are appearing. Let Ai=“The car is behind the door

number i” and B=“Monty opens door number 2”. Compute P (A1|B) and P (A′
1|B).)

Example 2.39 Only 1 in 100 adults is afflicted with a virus disease for which a diagnostic test

has been developed. The test is such that when an individual actually has the disease, a positive

result will occur 90% of the time (sensitivity), whereas an individual without the disease will

show a positive test result only 1% of the time (specificity of 99%).
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1. If a randomly selected individual is tested and the result is positive, what is the probability

that the individual has the disease? (Answer: 0.48).

2. If a randomly selected individual is tested and the result is negative, what is the probability

that the individual has the disease? (Answer: 0.001).

Example 2.40 Assume 8 in 10 adults are afflicted with a virus disease for which a diagnostic

test has been developed. The test is such that when an individual actually has the disease, a

positive result will occur 75% of the time (sensitivity), whereas an individual without the disease

will show a positive test result only 5% of the time (specificity of 95%).

1. If a randomly selected individual is tested and the result is positive, what is the probability

that the individual has the disease? (Answer: 0.98).

2. If a randomly selected individual is tested and the result is negative, what is the probability

that the individual has the disease? (Answer: 0.51).

Definition 2.41 Two events A and B are independent if P (A|B) = P (A) and are dependent

otherwise.

Proposition 2.42 Two events A and B are independent if and only if

P (A ∩B) = P (A)P (B) .

2.5 Exercises

1. Compute the formula for the probability of the union of three arbitrary events A, B and

C.

2. Three people are participating in a competition of art. This competition gives a prize

of $200 to the best artist and $100 to the second best. How many options are there to

distribute the prizes? (Answer: 6.)

3. Three people are participating in a competition of art. Each participant presents 2 pieces

of art. The competition gives a prize of $200 to the best piece of art and $100 to the

second best. How many options are there to distribute the prizes? (Answer: 30.)

4. To prepare a salad we have the following ingredients: tomato, carrot, potato and broccoli.

How many options are there to prepare the salad with only 2 ingredients? And with 3?

And with 1? And with 4? (Answer: 6, 4, 4, 1.)

5. There are 10 people in a chess competition. How many games must be fixed so that each

participant plays against all the others exactly once? (Answer: 45.)

6. In a group of 10 students, 6 are men and 4 are women. How many ways are there to

choose a committee of 3 people, where at least one is a woman? (Answer: 100.)
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7. In a store there are 6 different types of cookies. In how many ways can we choose 4

cookies? And 4 different cookies? (Answer: 126, 15.)

8. In a school, there are the options of studying either Spanish and French. The 90% of

the students are coursing Spanish while the rest course French. Among those that study

Spanish 30% are boys while among those that study French, 40% are boys. Randomly

choosing a student, compute the probability that is a girl. (Answer: 0.69.)

9. The 76% of students of Civil Engineering have failed Materials, and 45% have failed

Statics. Moreover, 30% of them failed both courses. If a randomly selected student has

failed Materials, what is the probability that he has as well failed Statics? (Answer: 0.39.)

10. The probability that a randomly selected person likes ice cream is 60%, while the prob-

ability a person likes pancakes is 36%. Moreover, the probability that a person likes

pancakes given that the individual likes ice cream is 40%. Compute the probability that

a person likes ice cream, given that the individual likes pancakes. (Answer: 0.667.)
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3 Discrete Random Variables (Chapter 3)

Definition 3.1 A random variable is a function whose domain is the sample space and whose

range is the real numbers.

Remark 3.2 Roughly speaking, a random variable is any rule that associates a number with

each possible outcome.

Example 3.3 Consider the sample space S = {S, F} be composed by S (success) and F (fail-

ure). We can define a random variable X by

X(S) = 1 , X(F ) = 0 .

Definition 3.4 Any random variable whose only possible values are 0 and 1 is called a

Bernoulli random variable.

Definition 3.5 A discrete random variable is a random variable whose possible values are a

discrete set (i.e., a countably infinite set).

Example 3.6 The number of unbroken eggs in a randomly chosen standard egg carton, is a

discrete random variable.

3.1 Probability Distributions

Definition 3.7 The probability distribution or probability mass function of a discrete random

variable X is defined by

p(x) = P (X = x) ,

for every number x. In other words, p(x) is the probability of all events A ∈ S such that

X(A) = x.

Example 3.8 Consider six boxes of components. In each box there may be a number of de-

fective components, as follows: Box 1, 3, and 6 have no defective components; Box 4 has 1

defective component; and, Box 2 and 5 have 2 defective components. We define the discrete

random variable X to be the number of defective components in the corresponding box, i.e.,

X(Box 1) = 0 , X(Box 2) = 2 , X(Box 3) = 0 ,

X(Box 4) = 1 , X(Box 5) = 2 , X(Box 6) = 0 .

One of the boxes is randomly selected for shipment. Compute the probability of each event.

(Answer: p(0) = 0.5, p(1) = 1/6 and p(2) = 1/3.)
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Example 3.9 At a certain electronic store they buy computers, either laptops or desktops.

Define the discrete random variable X such that X = 1 if the costumer buys a desktop computer

and X = 0 if the costumer buys a laptop. If 20% of all purchasers select a desktop, compute

the probability mass function. (Answer: p(0) = 0.8 and p(1) = 0.2.)

Definition 3.10 The cumulative distribution function F (x) of a discrete random variable X

with probability mass function p(x) is defined by

F (x) = P (X ≤ x) =
∑
y≤x

p(y) ,

for every number x.

Remark 3.11 For any value x, F (x) is the probability that the observed value of X will be at

most x.

Example 3.12 A store carries flash drives with either 1 GB, 2 GB, 4 GB, 8 GB, or 16 GB

of memory. The probability mass function p(x) is given by

p(1) = 0.05 , p(2) = 0.1 , p(4) = 0.35 , p(8) = 0.4 , p(16) = 0.1 .

Compute the cumulative distribution function.

Proposition 3.13 For any two numbers a and b such that a ≤ b, then

P (a ≤ X ≤ b) = F (b)− F (a∗) ,

where a∗ represents the largest possible X value that is strictly less than a.

Example 3.14 Consider the discrete random variable X to be the number of days of sick leave

taken by a randomly selected employee during a particular year. If the maximum number of

allowable sick days per year is 14, then the possible values of X are 0,...,14. Assume F (0) =

0.58, F (1) = 0.72, F (2) = 0.76, F (3) = 0.81, F (4) = 0.88 and F (5) = 0.94.

1. Compute P (2 ≤ X ≤ 5). (Answer: 0.22.)

2. Compute P (X = 3). (Answer: 0.05.)

3.2 Expected Values

Definition 3.15 Let X be a discrete random variable of possible values D and probability mass

function p(x). The expected value of X, denoted by E(X) (also, by µX) is

E(X) =
∑
x∈D

xp(x) .
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Example 3.16 Let X be a Bernoulli random variable with probability mass function p(1) = p

and p(0) = 1− p. Then,

E(X) = 0p(0) + 1p(1) = p .

Proposition 3.17 Let X be a discrete random variable. Then for any function h, h(X), is

also a discrete random variable and

E(h(X)) =
∑
x∈D

h(x)p(x) .

Example 3.18 A computer store has purchased three computers of a certain type at $500

apiece. It will sell them from $1000 apiece. The manufacturer has agreed to repurchase any

computers still unsold after a specified period at $200 apiece. Let X denote the number of

computers sold, and suppose p(0) = 0.1, p(1) = 0.2, p(2) = 0.3 and p(3) = 0.4. With h(X)

denoting the profit associated with selling X units, the given information implies that

h(X) = 1000X + 200(3−X)− 1500 = 800X − 900 .

Then, the expected profit is then:

E(h(X)) = h(0)p(0) + h(1)p(1) + h(2)p(2) + h(3)p(3) = 700 .

Proposition 3.19 Let h be an affine function, h(X) = aX + b. Then,

E(h(X)) = E(aX + b) = aE(X) + b .

Definition 3.20 Let X be a discrete random variable with probability mass function p(x) and

expected value µ. Then the variance of X, denoted by V (X) (also by σ2
X) is

V (X) =
∑
x∈D

(x− E(X))2p(x) = E
(
(X − E(X))2

)
.

The standard deviation of X is
√

V (X), often denoted by σX .

Example 3.21 A library has an upper limit of 6 on the number of DVDs that can be checked

out to an individual at one time. Consider only those who currently have DVDs checked out

and let X denote the number of DVDs checked out to a randomly selected individual. Assume

that the probability mass function of X is given by

p(1) = 0.3 , p(2) = 0.25 , p(3) = 0.15 , p(4) = 0.05 , p(5) = 0.1 , p(6) = 0.15 .

The expected value of X is E(X) = 2.85, while the variance is V (X) = 3.2275.

Proposition 3.22 Let X be a discrete random variable. Then

V (X) = E(X2)− E(X)2 .

Proposition 3.23 Let X be a discrete random variable. Then,

V (aX + b) = a2V (X) ,

for any real numbers a and b.
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3.3 The Binomial Probability Distribution

Definition 3.24 Assume that the following conditions are satisfied for an experiment:

(i) The experiment consists of a sequence of n fixed smaller experiments, called trials.

(ii) Each trial can result in either success or failure. We say that these trials are dichotomous

trials.

(iii) The trials are independent.

(iv) The probability of success is constant from trial to trial.

Then, we say that the experiment is a binomial experiment.

Example 3.25 Toss a coin n times in a raw.

Definition 3.26 The binomial random variable X ∼ Bin(n, p) associated with a binomial ex-

periment consisting of n trials with probability of success p is defined as the number of successes

among the n trials.

Theorem 3.27 The probability mass function of a binomial random variable X ∼ Bin(n, p) is

given by

b(x;n, p) =


(
n

x

)
px(1− p)n−x , x = 0, ..., n ,

0 , otherwise .

Moreover, the cumulative distribution function is

B(x;n, p) = P (X ≤ x) =
x∑

y=0

b(y;n, p) ,

for x = 0, ..., n.

Example 3.28 Each of six randomly selected soda drinkers is given a glass containing regular

soda (S) and one containing a diet soda (F). Suppose there is actually no tendency among the

drinkers to prefer one to the other. Then:

1. Compute the probability p of a selected individual preferring regular soda. (Answer: p =

0.5).

2. Let X be the number among the six who prefer regular soda, then X ∼ Bin(6, p). Com-

pute the probability that at least three prefer regular soda. (Answer: P (X ≥ 3) =∑6
x=3 b(x; 6, 1/2) = 0.656).

3. Compute the probability that at most one prefers regular soda. (Answer: P (X ≤ 1) =

0.109).

Proposition 3.29 If X ∼ Bin(n, p), then E(X) = np and V (X) = np(1− p).
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3.4 The Poisson Probability Distribution

Definition 3.30 A discrete random variable X is said to have a Poisson distribution with

parameter µ > 0 if the probability mass function of X is

p(x;µ) = e−µµ
x

x!
,

for x = 0, 1, 2, .....

Proposition 3.31 Suppose that in the binomial probability mass function b(x;n, p) we let the

number of trials n → ∞ and p → 0 such that np → µ > 0. Then b(x;n, p) → p(x;µ).

Example 3.32 Let X denote the number of defects in a particular transistor, and suppose it

has a Poisson distribution with µ = 2.

1. Compute the probability that there are exactly three defects. (Answer: P (X = 3) =

p(3, 2) = e−2 23

3!
= 0.18).

2. Compute the probability that there are at most three defects. (Answer: P (X ≤ 3) =∑3
x=0 e

−2 2x

x!
= 0.857.)

Proposition 3.33 If X has a Poisson distribution with parameter µ, then E(X) = V (X) = µ.
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4 Continuous Random Variables (Chapter 4)

Definition 4.1 A continuous random variable is a random variable whose possible values are

an uncountable set and no possible value of the variable has positive probability.

Definition 4.2 Let X be a continuous random variable. Then a probability distribution or

probability density function of X is a function f(x) such that for any two numbers a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx .

Remark 4.3 The probability that X takes on a value in the interval [a, b] is the area below the

density function.

Definition 4.4 The cumulative distribution function F (x) for a continuous random variable

X is the function

F (x) = P (X ≤ x) =

∫ x

−∞
f(y) dy ,

for every number x ∈ R.

Remark 4.5 For every x, F (x) represents the area below the density function to the left of x.

F (x) increases smoothly as x increases.

Proposition 4.6 Let X be a continuous random variable with probability density function f(x)

and cumulative distribution function F (x). Then, for any number a ∈ R,

P (X > a) = 1− F (a) ,

and for any two numbers a < b,

P (a ≤ X ≤ b) = F (b)− F (a) .

Definition 4.7 The expected or mean value of a continuous random variable X with probability

density function f(x) is

µX = E(X) =

∫ ∞

−∞
xf(x) dx .

Proposition 4.8 If X is a continuous random variable with probability density function f(x)

and h(X) is any function of X, then

E[h(X)] = µh(X) =

∫ ∞

−∞
h(x)f(x) dx .
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Definition 4.9 The variance of a continuous random variable X with probability density func-

tion f(x) and mean value µX is

σ2
X = V (X) =

∫ ∞

−∞
(x− µX)

2f(x) dx = E
(
(X − µX)

2
)
.

The standard deviation of X is σX =
√

V (X).

Proposition 4.10 Let X be a continuous random variable. Then,

V (X) = E(X2)− [E(X)]2 .

4.1 The Uniform Distribution

Definition 4.11 A continuous random variable X is said to have a uniform distribution on

the interval [a, b] if the probability density function of X is

f(x; a, b) =

{
1

b−a
, a ≤ x ≤ b ,

0 , otherwise .

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Figure 1: A uniform distribution on the interval [1, 2].

Example 4.12 Consider the reference line connecting the valve stem on a tire to the center

point, and let X be the angle measured clockwise to the location of an imperfection. One possible

probability density function for X is

f(x) =

{
1/360 , 0 ≤ x < 360 ,

0 , otherwise .

Compute the probability that the angle of occurrence is within 90 of the reference line.
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4.2 The Normal Distribution

Definition 4.13 A continuous random variable X is said to have a normal distribution with

parameters µ ∈ R and σ > 0 if the probability density function of X is

f(x;µ, σ) =
1√
2π σ

e−
(x−µ)2

2σ2 ,

for x ∈ R.

Remark 4.14 The density curve associated to a normal distribution is a Gaussian bell. The

parameter µ is the location parameter, and it gives the value where the curve is centered. The

parameter σ is the scale parameter and changing its value stretches or compresses the curve.

Definition 4.15 The normal distribution with parameter value µ = 0 and σ = 1 is called

the standard normal distribution. A continuous random variable having a standard normal

distribution is called a standard normal random variable and will be denoted by Z.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

Figure 2: The standard normal distribution.

Example 4.16 Compute the following probabilities:

1. P (Z ≤ 1.25). (Answer: 0.8944).

2. P (Z > 1.25). (Answer: 0.1056).

3. P (Z ≤ −1.25). (Answer: 0.1056).

4. P (−0.38 ≤ Z ≤ 1.25). (Answer: P (Z ≤ 1.25) − P (Z ≤ −0.38) = 0.8944 − 0.3520 =

0.5424).

Remark 4.17 A very useful critical value is z = 1.645, for which P (Z ≤ 1.645) = 0.95, that

is a 95%.
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Remark 4.18 Although the standard normal distribution almost never serves as a model for

a naturally arising population, it is really useful to obtain information about the more general

normal distributions. Indeed, there exist tables with the corresponding probabilities tabulated

(see Appendix A).

Theorem 4.19 If X has a normal distribution with mean µ and standard deviation σ, then

Z = (X − µ)/σ has a standard normal distribution. Therefore,

P (a ≤ X ≤ b) = P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
.

Example 4.20 Assume that reaction time for an in-traffic response to a brake signal from

standard break lights can be modeled with a normal distribution having mean value 1.25 seconds

and standard deviation of 0.46 seconds. What is the probability that reaction time is between

1.00 seconds and 1.75 seconds? (Answer: P (1.00 ≤ X ≤ 1.75) = P (−0.54 ≤ Z ≤ 1.09) =

0.8621− 0.2946 = 0.5675).

Example 4.21 The breakdown voltage of a randomly chosen diode of a particular type is known

to be normally distributed. What is the probability that a diode’s breakdown voltage is within 1

standard deviation of its mean value? (Answer: P (µ − σ ≤ X ≤ µ + σ) = P (−1 ≤ Z ≤ 1) =

0.6826).

Remark 4.22 If the population distribution of a variable is normal, then about 68% of the

values are within 1 standard deviation of the mean, and about 95% within 2.

4.3 The Exponential Distribution

Definition 4.23 A continuous random variable is said to have an exponential distribution with

(scale) parameter λ > 0 if the probability density function of X is

f(x;λ) =

{
λe−λx , x ≥ 0 ,

0 , otherwise.

Proposition 4.24 Let X be a continuous random variable with exponential distribution of

parameter λ > 0. Then the mean value and the variance are, respectively,

µ =
1

λ
σ2 =

1

λ2
.

Proposition 4.25 Let X be a continuous random variable with exponential distribution. Then,

the cumulative distribution function is

F (x;λ) =

{
0 , x < 0 ,

1− e−λx , x ≥ 0 .
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Figure 3: The exponential distribution with scale parameter λ = 1.

Example 4.26 Assume that the distribution of stress range in certain bridge connections fol-

lows the exponential distribution with mean value 6. Compute:

1. The probability that stress range is at most 10. (Answer: P (X ≤ 10) = F (10; 0.1667) =

0.811.)

2. The probability that stress range is between 5 and 10. (Answer: P (5 ≤ X ≤ 10) = 0.246.)

Remark 4.27 Suppose that the number of events occurring in any time interval of length t

has a Poisson distribution with parameter αt (where α, the rate of the event process, is the

expected number of events occurring in 1 unit of time) and that numbers of occurrences in non-

overlapping intervals are independent of one another. Then the distribution of elapsed time

between the occurrence of two successive events is exponential with parameter λ = α.

Example 4.28 Suppose that calls to a certain center occur according to a Poisson process

with rate α = 0.5 call per day. (Then the number of days X between successive calls has an

exponential distribution with parameter 0.5.) Compute the probability that more than 2 days

elapse between calls. (Answer: P (X > 2) = 1− F (2; 0.5) = 0.368.)

Remark 4.29 The exponential distribution is usually used to model the distribution of compo-

nent lifetime. A partial reason is that the exponential distribution is said to have “memoryless”

property. Suppose component lifetime is exponentially distributed with parameter λ. After

putting the component into service, we leave for a period to and then return to find the compo-

nent still working. What is now the probability that it lasts at least and additional t period?

P (X ≥ t |X ≥ to) =
P ((X ≥ t+ to) ∩ (X ≥ to))

P (X ≥ to)
.

The event X ≥ to is redundant. Therefore,

P (X ≥ t |X ≥ to) =
P (X ≥ t+ to)

P (X ≥ to)
= e−λt .

Hence, this conditional probability is identical to the original probability P (X ≥ t). Roughly

speaking, the distribution of additional lifetime is exactly the same as the original distribution

of lifetime.
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4.4 The Gamma Distribution

Definition 4.30 For every α > 0, the gamma function Γ(α) is defined by

Γ(α) =

∫ ∞

0

xα−1e−x dx .

Proposition 4.31 The following properties hold for the gamma function Γ(α):

(i) For any α > 1, Γ(α) = (α− 1)Γ(α− 1) (which follows integrating by parts).

(ii) For any positive integer n, Γ(n) = (n− 1)!.

(iii) Γ(1/2) =
√
π.

Definition 4.32 A continuous random variable X is said to have a gamma distribution if the

probability density function of X is

f(x;α, β) =

{
1

βαΓ(α)
xα−1e−x/β , x ≥ 0 ,

0 , otherwise ,

where the parameters α and β satisfy α > 0 and β > 0. The standard gamma distribution has

β = 1.
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Figure 4: Two gamma distributions for the parameters α = 1/2 and α = 2, respectively, and

β = 1.

Proposition 4.33 The mean and variance of a continuous random variable X having the

gamma distribution are, respectively,

µ = αβ , σ2 = αβ2 .

Example 4.34 The gamma distribution is widely used to model the extent of degradation such

as corrosion, creep, or wear. Let X represent the amount of degradation of a certain type, and

suppose that it has a standard gamma distribution with α = 2. Compute:

1. The probability that the amount of degradation is between 3 and 5. (Answer: P (3 ≤ X ≤
5) = F (5; 2)− F (3; 2) = 0.960− 0.801 = 0.159.)

2. The probability that the amount of degradation exceeds 4. (Answer: P (X > 4) = 1 −
P (X ≤ 4) = 1− F (4; 2) = 1− 0.908 = 0.092.
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4.5 The χ2 Distribution

Definition 4.35 Let ν be a positive integer. Then a continuous random variable X is said to

have a χ2 distribution with parameter ν if the probability density function of X is the gamma

density with α = ν/2 and β = 2. The parameter ν is called the number of degrees of freedom.

2 4 6 8 10

0.05

0.10

0.15

Figure 5: The χ2 distribution with 2 degrees of freedom.

4.6 The Weibull Distribution

Definition 4.36 A continuous random variable X is said to have a Weibull distribution with

shape parameter α > 0 and scale parameter β > 0 if the probability density function of X is

f(x;α, β) =

{
α
βαx

α−1e−(x/β)α , x ≥ 0 ,

0 , x < 0 .
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Figure 6: Two Weibull distributions for shape parameters α = 1/2 and α = 2, respectively,

and scale parameters β = 1.

Proposition 4.37 Assume X is a continuous random variable which has a Weibull distribu-

tion with shape parameter α and scale parameter β. Then, the mean and variance of X are,

respectively,

µ = β Γ (1 + 1/α) , σ2 = β2
(
Γ(1 + 2/α)− [Γ(1 + 1/α)]2

)
.
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Moreover, the cumulative distribution function is

F (x;α, β) =

{
0 , x < 0 ,

1− e−(x/β)α , x ≥ 0 .

Example 4.38 In recent years the Weibull distribution has been used to model engine emissions

of various pollutants. Let X denote the amount of NOx emission (g/gal) from a randomly

selected four-stroke engine of a certain type, and suppose that X has a Weibull distribution

with α = 2 and β = 10. Compute:

1. P (X ≤ 10). (Answer: P (X ≤ 10) = F (10; 2, 10) = 1− e−(10/10)2 = 0.632.)

2. P (X ≤ 25). (Answer: 0.998.)

3. The value c which separates the 5% of all engines having the largest amounts of NOx

emissions from the remaining 95%. (Answer: 0.95 = 1− e−(c/10)2, so c = 17.3.)

Remark 4.39 A Weibull model may also allow shifts in the smallest value (translating the

curve). In this case, the cumulative distribution function is obtained by replacing x by x− γ.

Example 4.40 An understanding of the volumetric properties of asphalt is important in de-

signing mixtures which will result in high-durability pavement. For a particular mixture, let

X be the air void volume (%) and assume is modeled with a three-parameter Weibull dis-

tribution. Suppose the values of the parameters are γ = 4, α = 1.3, and β = 0.8. Com-

pute the probability that air void volume of a specimen is between 5% and 6%. (Answer:

P (5 ≤ X ≤ 6) = F (6; 1.3, 0.8, 4) − F (5; 1.3, 0.8, 4) = 1 − e−[(6−4)/0.8]1.3 − (1 − e−[(5−4)/0.8]1.3) =

0.263− 0.037 = 0.226.)

4.7 The Lognormal Distribution

Definition 4.41 A nonnegative continuous random variable X is said to have a lognormal

distribution if the random variable Y = log(X) has a normal distribution. The resulting proba-

bility density function of a lognormal random variable when log(X) is normally distributed with

parameters µ and σ is

f(x;µ, σ) =

{
1√

2π σx
e−[log(x)−µ]2/(2σ2) , x ≥ 0 ,

0 , x < 0 .

Proposition 4.42 Let X be a continuous random variable X lognormally distributed. The

mean and variance of X are, respectively,

E(X) = eµ+σ2/2 , V (X) = (eσ
2 − 1)e2µ+σ2

.
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Figure 7: The lognormal distribution for µ = 0 and σ = 1.

Proposition 4.43 The cumulative distribution function of a nonnegative continuous random

variable X with lognormal distribution is given by

F (x;µ, σ) = P (X ≤ x) = P (log(X) ≤ log(x)) = P

(
Z ≤ log(x)− µ

σ

)
.

Example 4.44 The lognormal distribution seems to be the best option for describing the dis-

tribution of maximum pit depth data from cast iron pipes in soil. Assume that a lognormal

distribution with µ = 0.353 and σ = 0.754 is appropriate for maximum pit depth (mm) of

buried pipelines. Compute:

1. The mean and variance of the pit depth. (Answer: E(X) = 1.891 and V (X) = 2.7387.)

2. The probability that maximum pit depth is between 1 and 2 mm. (Answer: P (1 ≤ X ≤
2) = 0.354.)

3. What value c is such that only 1% have a maximum pit depth exceeding c? (Answer:

0.99 = P (X ≤ c) and so c = 8.247.)

4.8 The Beta Distribution

Definition 4.45 A continuous random variable X is said to have a beta distribution with pa-

rameters α > 0, β > 0, A and B if the probability density function of X is

f(x;α, β,A,B) =

{
1

B−A
Γ(α+β)
Γ(α)Γ(β)

(
x−A
B−A

)α−1 ( B−x
B−A

)β−1
, A ≤ x ≤ B ,

0 , otherwise .

Proposition 4.46 Let X be a continuous random variable X having a beta distribution. The

mean and variance of X are, respectively,

µ = A+ (B − A)
α

α + β
, σ2 =

(B − A)2αβ

(α + β)2(α + β + 1)
.
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Figure 8: The beta distribution with parameters α = 1/2, β = 2, A = 1 and B = 2.

Example 4.47 Project managers often use a method labeled PERT (for Program Evaluation

and Review Technique) to coordinate the various activities making up a large project. One

successful application was in the construction of the Apollo spacecraft. A standard assumption

in PERT analysis is that the time necessary to complete any particular activity once it has

been started has a beta distribution with A being the optimistic time and B the pessimistic one.

Suppose that in constructing a single-family house, the time X (in days) necessary for lying the

foundation has a beta distribution with A = 2, B = 5, α = 2 and β = 3. Compute:

1. The mean of X. (Answer: 3.2.)

2. The probability that it takes at most 3 days to lay the foundation. (Answer: P (X ≤ 3) =

0.407.)

4.9 The Student’s t Distribution
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Figure 9: Two t distributions with parameters ν = 1 and ν = 4, respectively.

Definition 4.48 A continuous random variable X is said to have a (Student’s) t distribution

with parameter ν > 0, if the probability density function of X is

f(x; ν) =
Γ
(
ν+1
2

)
√
ν π Γ

(
ν
2

) (1 + x2

ν

)− ν+1
2

,

for every x ∈ R. The parameter ν is called the degrees of freedom. (See Appendix B.)
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Review Problems

1. A factory uses three production lines to manufacture cans of a certain type. In the

following lines we give the percentages of nonconforming cans, categorized by type of

nonconformance, for each of the three lines during a particular time period:

Blemish: Line 1, 15; Line 2, 12; and, Line 3, 20.

Crack: Line 1, 50; Line 2, 44; and, Line 3, 40.

Pull-Tab Problem: Line 1, 21; Line 2, 28; and, Line 3, 24.

Surface Defect: Line 1, 10; Line 2, 8; and, Line 3, 15.

Other: Line 1, 4; Line 2, 8; and, Line 3, 2.

During this period, line 1 produced 500 nonconforming cans, line 2 produced 400 such

cans, and line 3 was responsible for 600 nonconforming cans. Suppose that one of these

1500 cans is randomly selected.

(a) What is the probability that the can was produced by line 1? (Answer: 1/3.)

(b) If the selected can came from line 1, what is the probability that it had a blemish?

(Answer: 0.150.)

(c) Given that the selected can had a surface defect, what is the probability that it came

from line 1? (Answer: 0.291.)

2. Individual A has a circle of five close friends (B, C, D, E and F). A has heard a certain

rumor from outside the circle and has invited the five friends to a party to circulate the

rumor. To begin, A selects one of the five at random and tells the rumor to the chosen

individual. That individual then selects at random one of the four remaining individuals

and repeats the rumor. Continuing, a new individual is selected from those not already

having heard the rumor by the individual who has just heard it, until everyone has been

told.

(a) What is the probability that the rumor is repeated in the order B, C, D, E and F?

(Answer: 0.083.)

(b) What is the probability that F is the third person at the party to be told the rumor?

(Answer: 0.2.)

(c) What is the probability that F is the last person to hear the rumor? (Answer: 0.2.)

(d) If at each state the person who currently “has” the rumor does not know who

has already heard it and selects the next recipient at random from all five possible
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individuals, what is the probability that F has still not heard the rumor after it has

been told ten times at the party? (Answer: 0.1074.)

3. Of all customers purchasing automatic garage-door openers, 75% purchase a chain-driven

model. Let X be the number among the next 15 purchasers who select the chain-driven

model.

(a) What is the probability mass function of X? (Answer: b(x; 15, 0.75).)

(b) Compute P (X ≥ 10). (Answer: 0.686.)

(c) Compute P (6 ≤ X ≤ 10). (Answer: 0.313.)

(d) Compute µ and σ2. (Answer: 11.25, 2.81.)

(e) If the store currently has in stock 10 chain-driven models and 8 shaft-driven models,

what is the probability that the requests of these 15 customers can all be met from

existing stock? (Answer: 0.310.)

4. Suppose that the number of drivers who travel between a particular origin and destination

during a designated time period has a Poisson distribution with parameter µ = 20. What

is the probability that the number of drivers will:

(a) Be at most 10? (Answer: 0.011.)

(b) Exceed 20? (Answer: 0.441.)

(c) Be between 10 and 20, inclusive? Be strictly between 10 and 20? (Answer: 0.554,

0.459.)

(d) Be within 2 standard deviations of the mean value? (Answer: 0.945.)

5. The Weibull distribution is proposed as a model for time (in hours) to failure of solid

insulating specimens subjected to AC voltage. The values of the parameters depend on

the voltage and temperature; suppose α = 2.5 and β = 200.

(a) What is the probability that a specimen’s lifetime is at most 250? Less than 250?

More than 300? (Answer: 0.826, 0.826, 0.0636.)

(b) What is the probability that a specimen’s lifetime is between 100 and 250? (Answer:

0.664.)

(c) What value is such that exactly 50% of all specimens have lifetime exceeding that

value? (Answer: 172.727.)

6. Let X be the nonpoint source load of total dissolved solids, which can be modeled with a

lognormal distribution having mean value 10281 kg/km/day and coefficient of variation

(σX/µx) of 0.4.

(a) What are the mean value and standard deviation of log(X)? (Answer: 9.164, 0.385.)

(b) What is the probability that X is at most 15000 kg/day/km? (Answer: 0.879.)
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(c) What is the probability that X exceeds its mean value, and why is this probability

not 0.5? (Answer: 0.4247.)

(d) Is 17000 the 95th percentile of distribution? (Answer: No, P (Z ≤ 1.498) = 0.9332.)

7. The defect length of a corrosion defect in a pressurized steel pipe is normally distributed

with mean value 30mm and standard deviation 7.8mm.

(a) What is the probability that defect length is at most 20mm? Less than 20mm?

(Answer: 0.1003.)

(b) What is the 75th percentile of defect length distribution? (Answer: 35.226.)

(c) What is the 15th percentile of the defect length distribution? (Answer: 21.888.)

(d) What values separate the middle 80% of the defect length distribution from the

smallest 10% and largest 10%? (Answer: 20.016 and 39.984.)
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5 Point Estimation (Chapter 6)

Definition 5.1 A point estimate of a parameter θ is a single number that can be regarded as a

sensible value for θ. It is obtained by selecting a suitable statistic and computing its value from

the given sample data. The selected statistic is called the point estimator of θ.

Example 5.2 A random sample of n = 3 batteries might yield observed lifetimes (hours)

x1 = 5, x2 = 6.4 and x3 = 5.9. The computed value of the sample mean lifetime is x̄ = 5.77,

and it is reasonable to regard 5.77 as a plausible value of µ, the population mean.

Definition 5.3 A point estimator θ̂ is said to be an unbiased estimator of θ if E(θ̂) = θ for

every possible value of θ. If θ̂ is not unbiased, the difference E(θ̂)− θ is called the bias of θ̂.

Remark 5.4 It may seem necessary to know the value of θ to see whether θ̂ is unbiased or not.

This is not usually the case though since unbiasedness is a general property of the estimator’s

sampling distribution (where it is centered) which typically does not depend on any particular

parameter value.

Proposition 5.5 When X is a binomial random variable with parameters n and p, the sample

proportion p̂ = X/n is an unbiased estimator of p.

Example 5.6 Suppose that X, the reaction time to a certain stimulus, has a uniform distri-

bution on the interval from 0 to an unknown upper limit θ. It is desired to estimate θ on the

basis of a random sample X1, ..., Xn of reaction times. Since θ is the largest possible time in

the entire population of reaction times, consider as a first estimator the largest sample reaction

time: θ̂1 = max{X1, ..., Xn}. For instance, if n = 5 and x1 = 4.2, x2 = 1.7, x3 = 2.4, x4 = 3.9

and x5 = 1.3, the point estimate of θ is θ̂1 = 4.2. This will always be a biased estimate because

E(θ̂1) =
n

n+ 1
θ < θ .

However, we can modify θ̂1 to get an unbiased estimator, namely,

θ̂2 =
n+ 1

n
max{X1, ..., Xn} .

Theorem 5.7 (Principle of Unbiased Estimation) When choosing among several differ-

ent estimators of θ, select one that is unbiased.

Proposition 5.8 If X1, ..., Xn is a random sample from a distribution with mean µ, then X̄ is

an unbiased estimator of µ. If in addition the distribution is continuous and symmetric, then

X̃ and any trimmed mean are also unbiased estimators of µ.
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Proposition 5.9 Let X1, ..., Xn be a random sample from a distribution with mean µ and

variance σ2. Then the estimator

σ̂2 = S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
,

is unbiased for estimating σ2.

Remark 5.10 There are examples in which there exist several unbiased estimators for a par-

ticular parameter.

Theorem 5.11 (Principle of Minimum Variance Unbiased Estimation) Among all es-

timators of θ that are unbiased, choose the one that has a minimum variance. The resulting θ̂

is called the minimum variance unbiased estimator of θ.

Example 5.12 The estimator θ̂2 of previous example was an unbiased estimator, but it is not

the only one. For instance, since the expected value of a uniformly distributed random variable

is just the midpoint of the interval, then E(Xi) = θ/2 (this follows from the definition) and,

hence, E(2X̄) = θ. That is, the estimator θ̂3 = 2X̄ is also unbiased for θ. Nevertheless, the

estimator θ̂2 has smaller variance. We use:

V (Xi) = σ2 = E(X2
i )− E(Xi)

2 =

∫ θ

0

x2

θ
dx− θ2

4
=

θ2

12
,

and so V (X̄) = θ2/(12n), i.e., V (2X̄) = 4V (X̄) = θ2/(3n). On the other hand, V (θ̂2) =

(n+ 1)2θ2/(12n2).

Theorem 5.13 Let X1, ..., Xn be a random sample from a normal distribution with parameters

µ and σ. Then the estimator µ̂ = X̄ is the minimum value unbiased estimator for µ.

Definition 5.14 The standard error of an estimator θ̂ is its standard deviation σθ̂ =

√
V (θ̂).

Remark 5.15 If the standard error itself involves unknown parameters whose values can be

estimated, substitution of these estimates into σθ̂ yields the estimated standard error.
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6 Confidence Intervals (Chapter 7)

Remark 6.1 Assume that the population distribution is normal. More precisely, the actual

sample observations x1, ..., xn are assumed to be the result of a random sample X1, ..., Xn from

a normal distribution with mean value µ and standard deviation σ. Then, the sample mean X̄

is normally distributed with expected value µ and standard deviation σ/
√
n. Then, we have the

standard normal variable

Z =
X̄ − µ

σ/
√
n
.

Definition 6.2 Let x1, ..., xn be the observations from a normal distribution with mean value

µ and standard deviation σ. The interval(
x̄− 1.96

σ√
n
, x̄+ 1.96

σ√
n

)
,

is called a 95% confidence interval for µ.

Example 6.3 Industrial engineers who specialize in ergonomics are concerned with designing

workspace and worker-operated devices so as to achieve high productivity and comfort. In order

to determine the preferred height for an experimental keyboard with large forearm-wrist support,

a sample of n = 31 trained typists was selected, and the preferred keyboard height was determined

for each typist. The resulting sample average preferred height was x̄ = 80 (cm). Assuming that

the preferred height is normally distributed with σ = 2 (cm), compute the 95% confidence

interval for µ, the true average preferred height for the population of all experienced typists.

(Answer: (79.3, 80.7).)

Remark 6.4 A confidence interval does not mean that the probability of µ lying in that interval

is 0.95. The correct interpretation is that if we keep picking samples over and over again the

95% of times the average will lie in that interval.

Remark 6.5 Observe that the value 1.96 in above definition comes from the critical value

c = 1.96 such that

P

(
−c ≤ Z =

X̄ − µ

σ/
√
n

≤ c

)
= 0.95 ,

which means that the area below the standard normal curve between −1.96 and 1.96 is 0.95.

However, we may as well pick other critical values to get other confidence intervals.

Definition 6.6 A 100(1− α)% confidence interval for the mean µ of a normal population when

the value of σ is known is given by(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
,

where zα/2 is the critical value such that

P

(
−zα/2 ≤ Z =

X̄ − µ

σ/
√
n

≤ zα/2

)
= 1− α .
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Proposition 6.7 The sample size for the confidence interval to have a width w is

n = 4z2α/2
σ2

w2
.

Example 6.8 Extensive monitoring of a computer time-sharing system has suggested that re-

sponse time to a particular editing command is normally distributed with standard deviation 25

milisec. A new operating system has been installed, and we wish to estimate the true average

response time µ for the new environment. Assuming that response times are still normally dis-

tributed with σ = 25, what sample size is necessary to ensure that the resulting 95% confidence

interval has a width of (at most) 10? (Answer: n = 96.04 and so, since it must be a natural

number, n = 97 is required.)

Remark 6.9 The confidence intervals described above rely heavily in the fact that the standard

deviation σ is know, which is rarely the case.

Theorem 6.10 Let X̄ be the mean of a random sample of size n from a normal distribution

with mean µ. Then, the random variable

T =
X̄ − µ

S/
√
n
,

has a t distribution with n− 1 degrees of freedom.

Remark 6.11 Recall that the probability density function of a t distribution with n− 1 degrees

of freedom is

f(x;n− 1) =
Γ
(
n
2

)√
(n− 1) π Γ

(
n−1
2

) (1 + x2

n− 1

)−n
2

,

for every x ∈ R.

Proposition 6.12 Let x̄ and s be the sample mean and sample standard deviation computed

from the results of a random sample from a normal distributed population with mean µ. Then

a 100(1− α)% confidence interval for µ is(
x̄− tα/2,n−1

s√
n
, x̄+ tα/2,n−1

s√
n

)
,

where tα/2,n−1 is the t critical value, i.e., the value such that

P
(
−tα/2,n−1 < T < tα/2,n−1

)
= 1− α .

Example 6.13 The following is a data on the modulus of rupture of composite beams designed

to add value to low-grade sweetgum lumbers:

6807.99 , 7637.06 , 6663.28 , 6165.03 , 6991.41 , 6992.23 ,

6981.46 , 7569.75 , 7437.88 , 6872.39 , 7663.18 , 6032.28 ,

6906.04 , 6617.17 , 6984.12 , 7093.71 , 7659.50 , 7378.61 ,

7295.54 , 6702.76 , 7440.17 , 8053.26 , 8284.75 , 7347.95 ,

7422.69 , 7886.87 , 6316.67 , 7713.65 , 7503.33 , 7674.99 .
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The sample mean and sample standard deviation are 7203.191 and 543.54, respectively. Com-

pute a confidence interval for true average of the modulus of rupture using a confidence level of

95%. (Answer: The necessary t critical value is t0.025,29 = 2.045 and so (7000.253, 7406.129).)

Example 6.14 Consider the following sample of fat content (in percentage) of n = 10 ran-

domly selected hot dogs:

25.2 , 21.3 , 22.8 , 17.0 , 29.8 , 21.0 , 25.5 , 16.0 , 20.9 , 19.5 .

Assuming that these were selected from a normal population distribution, compute a 95% con-

fidence interval for the population mean fact content. (Answer: The sample mean is x̄ = 21.9

and the critical t value is t0.025,9 = 2.262, so (18.94, 24.86).)

Remark 6.15 Suppose you are going to eat a single hot dog of this type and want a prediction

for the resulting fat content. A point prediction, analogous to a point estimator is just x̄ = 21.9,

but this does not give any information about the reliability or precision.

Proposition 6.16 A prediction interval for a single observation to be selected from a normal

population distribution is(
x̄− tα/2,n−1s

√
1 +

1

n
, x̄+ tα/2,n−1s

√
1 +

1

n

)
.

The prediction level is 100(1− α)%.

Example 6.17 Compute the prediction interval for previous Exercise. (Answer: s = 4.134

and so (12.09, 31.71).).

Theorem 6.18 Let X1,...,Xn be a random sample from a normal distribution with parameters

µ and σ2. Then the random variable

(n− 1)S2

σ2
=

1

σ2

n∑
i=1

(
Xi − X̄

)2
,

has a χ2 probability distribution with n− 1 degrees of freedom.

Definition 6.19 A 100(1− α)% confidence interval for the variance σ2 of a normal popula-

tion is (
(n− 1)

s2

χ2
α/2,n−1

, (n− 1)
s2

χ2
1−α/2,n−1

)
,

where

P

(
χ2
1−α/2,n−1 <

(n− 1)S2

σ2
< χ2

α/2,n−1

)
= 1− α .
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Example 6.20 The accompanying data on breakdown voltage of electrically stressed circuits

was obtained from a normal probability distribution:

1470 , 1510 , 1690 , 1740 , 1900 , 2000 , 2030 , 2100 , 2190 ,

2200 , 2290 , 2380 , 2390 , 2480 , 2500 , 2580 , 2700 .

Compute a 95% confidence interval for the variance of the breakdown voltage distribution. (An-

swer: The sample variance is s2 = 137324.3, and the critical χ2 values needed are χ2
0.975,16 =

6.908 and χ2
0.025,16 = 28.845. Then the interval is (76172.3, 318064.4).)

Remark 6.21 The confidence intervals described above rely heavily in the fact that the popu-

lation is normally distributed. Without knowing this, but having sufficiently large sample, we

can still find confidence intervals.

Theorem 6.22 (Central Limit Theorem) Let X1, ..., Xn be a random sample from a dis-

tribution with mean µ and variance σ2. Then, if n is sufficiently large, X̄ has approximately a

normal distribution with µX̄ = µ and σ2
X̄
= σ2/n.

Proposition 6.23 If n is sufficiently large, the standardized variable

Z =
X̄ − µ

S/
√
n
,

where S is the sample standard deviation, has approximately a standard normal distribution.

This implies that the interval (
x̄− zα/2

s√
n
, x̄+ zα/2

s√
n

)
,

is a large-sample confidence interval for µ with confidence level approximately 100(1− α)%.

Remark 6.24 Above formula is valid regardless of the shape of the population distribution.

Example 6.25 Here are reported prices for a sample of 50 Boxsters, the cheapest model of

Porsche:

2948, 2996, 7197, 8338, 8500, 8759, 12710, 12925, 15767, 20000, 23247, 24863, 26000, 26210,

30552, 30600, 35700, 36466, 40316, 40596, 41021, 41234, 43000, 44607, 45000, 45027, 45442,

46963, 47978, 49518, 52000, 53334, 54208, 56062, 57000, 57365, 60020, 60265, 60803, 62851,

64404, 72140, 74594, 79308, 79500, 80000, 80000, 84000, 113000, 118634.

Compute the large-sample confidence interval for µ of about 95% confidence level. (Answer:

n = 50, x̄ = 45679.4, s = 26641.675 and so (38294.7, 53064.1).)
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Example 6.26 The charge-to-tap time (min) for carbon steel in one type of open hearth furnace

is to be determined for each heat in a sample of size n. If the investigator believes that almost

all times in the distribution are between 320 and 440, what sample size would be appropriate for

estimating the true average time to within 5 minutes with a confidence level of 95%? (Answer:

A reasonable value for s is (440− 320)/4 = 30. Thus,

n =

(
1.96× 30

5

)2

= 138.3 ,

that is, n = 139.)
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7 Tests of Hypothesis (Chapter 8)

Definition 7.1 A statistical hypothesis, or just hypothesis, is a claim or assertion either about

the value of a single parameter, about the values of several parameters, or about the form of an

entire probability distribution.

Remark 7.2 In any hypothesis-testing problem, there are two contradictory hypothesis under

consideration. The objective is to decide, based on sample information, which of the two hypoth-

esis is “correct”. The problem will be formulated so that one of the claims is initially favored.

The initially favored claim will not be rejected unless sample evidence contradicts it.

Definition 7.3 The null hypothesis, denoted by H0, is the claim initially assumed to be true.

The alternative hypothesis, denoted by Ha, is the assertion that is contradictory to H0.

Remark 7.4 The null hypothesis will be rejected in favor of the alternative hypothesis only

if sample evidence suggests that H0 is “false”. If the sample does not strongly contradict H0,

we will continue to believe in the plausibility of the null hypothesis. Roughly speaking, the two

possible conclusions from a hypothesis-testing analysis are then: reject H0, or fail to reject H0.

Definition 7.5 A test of hypotheses is a method for using sample data to decide whether the

null hypothesis should be rejected.

Remark 7.6 In our treatment of hypothesis testing, H0 will generally be stated as an equality

or inequality claim. If θ denotes the parameter of interest, the null hypothesis will have the

form

H0 : θ = θ0 ,

(respectively, with ≥ or ≤) where θ0 is a specified number called the null value of the parameter.

The alternative to the null hypothesis will look like one of the following three assertions:

1. Ha : θ > θ0.

2. Ha : θ < θ0.

3. Ha : θ ̸= θ0.

Remark 7.7 A test procedure is a rule, based on sample data, for deciding whether H0 should

be rejected. The key issue will be the following: suppose that H0 is in fact true and we have a

random sample. Then, how likely is it that a sample at least as contradictory to this hypothesis

as our sample would result?

Definition 7.8 A test statistic is a function of the sample data used as a basis for deciding

whether H0 should be rejected. The P-value is the probability, calculated assuming that the null

hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H0 as

the value calculated from the available sample data.
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Remark 7.9 A conclusion is reached in a hypothesis testing analysis by selecting a number α,

called the significance level of the test, that is reasonably close to 0. Then, H0 will be rejected

in favor of Ha if the P -value is smaller or equal α. The smaller the significance level, the more

protection is being given to the null hypothesis and the harder it is for that hypothesis to be

rejected. Similarly, the smaller the P -value is, the stronger is the evidence against H0 and in

favor of Ha.

Remark 7.10 The P -value is not the probability that the null hypothesis is true or that it is

false, nor is it the probability that an erroneous conclusion is reached.

Example 7.11 Assume a random sample of n = 51 batteries gave a sample mean zinc mass of

2.06 g and a sample standard deviation of 0.141 g. Does this data provide compelling evidence

for concluding that the population mean zinc mass exceeds 2.0 g? Let’s employ a significance

level of 0.01 to reach a conclusion.

If µ denotes the true average zinc mass for such batteries, the relevant hypothesis are{
H0 : µ = 2.0

Ha : µ > 2.0
.

The reasonably “large” sample size allows us to use the Central Limit Theorem, according to

which the sample mean X̄ has approximately a normal distribution. Furthermore, the standard-

ized variable

Z =
X̄ − µ

S/
√
n
,

has approximately a standard normal distribution. The test statistic results from standardizing

X̄ assuming that H0 is true, i.e., the test statistic is

Z =
X̄ − 2

S/
√
n
.

We now employ our sample for n = 51, x̄ = 2.06, and s = 0.141 to obtain that z = 3.04.

Any value of x̄ larger than 2.06 is more contradictory to H0 than 2.06 itself, and values of x̄

that exceed 2.06 correspond to values of z that exceed 3.04. So, any z ≥ 3.04 is at least as

contradictory to H0.

Since the test statistic has approximately a standard normal distribution when H0 is true,

we have that the P -value is more or less the probability that a standard normal random variable

is bigger or equal 3.04, i.e., 0.0012.

Finally, because 0.0012 ≤ 0.01 = α, the null hypothesis should be rejected at the chosen

significance level. It appears that true average zinc mass does indeed exceed 2.

Definition 7.12 A type I error consists of rejecting the null hypothesis H0 when it is true. A

type II error involves not rejecting H0 when it is false.
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Proposition 7.13 The test procedure that rejects H0 if the P -value is smaller or equal α and

otherwise does not reject H0 has probability of type I error α. That is, the significance level

employed in the test procedure is the probability of a type I error.

Example 7.14 An automobile model is known to sustain no visible damage 25% of the time

in 10-mph crash tests. A modified bumped design has been proposed in an effort to increase this

percentage. Let p denote the proportion of all 10-mph crashes with this new bumper that result

in no visible damage. The hypothesis to be tested are:{
H0 : p = 0.25

Ha : p > 0.25
.

Clearly, the null hypothesis H0 means there is no improvement.

The test will be based on an experiment involving n = 20 independent crashes with prototypes

of the new design. The natural test statistic here is X, the number of crashes with no visible

damage. If H0 is true, E(X) = np0 = 20× 0.25 = 5. Intuition suggests that an observed value

x much larger than this would provide strong evidence against H0 and in support of Ha.

Consider using a significance level of α = 0.1. The P -value is the probability of X ≥ x when

X has a binomial distribution with n = 20 and p = 0.25. So,

P (X ≥ x) = 1− P (X < x) = 1− P (X ≤ x− 1) = 1−B(x− 1; 20, 0.25) .

Computing some of these values we have P (X ≥ 7) = 0.214, P (X ≥ 8) = 0.102, and P (X ≥
9) = 0.041, hence, rejecting H0 with the fixed significance level is equivalent to rejecting H0

when X ≥ 9 holds.

Example 7.15 (Monty Hall Problem (Part III)) Make the experiment repeating the Monty

Hall problem n = 34 times. Let X be the number of wins after switching. The wrong answer

(as we know from the theory of probability) to the Monty Hall problem is that switching does not

matter and so the probability of winning the car would be 1/3. We want to verify experimentally

that this wrong answer can be rejected with a small significance level α. The hypothesis to be

tested are: {
H0 : p = 1/3

Ha : p > 1/3
.

If H0 is true we expect between 11 and 12 wins. An experimental value of wins x much larger

than 12 would provide strong evidence against H0 and in support of Ha.

The P-value is the probability of X ≥ x when X has a binomial distribution with n = 34

and p = 1/3. So,

P (X ≥ x) = 1−B(x− 1; 34, 1/3) .

Computing some values we have that P (X ≥ 16) = 0.07 so, if x is 16 or more, the null

hypothesis can be rejected at a significance level of α = 0.1. If x is 17 or more, the null

hypothesis H0 can be rejected at a significance level α = 0.05, since P (X ≥ 17) = 0.03.
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Example 7.16 The drying time of a type of paint under specified test conditions is known

to be normally distributed with mean value 75 minutes and standard deviation of 9 minutes.

Chemists have proposed a new additive designed to decrease average drying time. It is believed

that drying times with this additive will remain normally distributed with σ = 9. Because of

the expense associated with the additive, evidence should strongly suggest an improvement in

average drying time before such a conclusion is adopted.

Let µ denote the true average drying time when the additive is used. The appropriate

hypotheses are: {
H0 : µ = 75

Ha : µ < 75
.

Only if H0 can be rejected will the additive be declared successful and used.

Experimental data is to consist of drying times from n = 25 test specimens. Let X1,...,X25

denote the 25 drying times. The sample mean drying time X̄ then has a normal distribution

with expected value µX̄ = µ and standard deviation σX̄ = σ/
√
n = 1.8. When H0 is true, we

expect X̄ to be 75; a sample mean much smaller than this would be contradictory to H0 and

supportive of Ha.

Our test statistic here will be X̄ standardized normal assuming H0 is true:

Z =
X̄ − 75

1.8
.

The sampling distribution of X̄ is normal because the population distribution is normal, which

implies that Z has a standard normal distribution when H0 is true.

Consider carrying out the test using a significance level of α = 0.01. For a given value x̄ of

the sample mean and corresponding calculated value z, the form of the alternative hypothesis

implies that values more contradictory to H0 than this are values less than x̄ and, correspond-

ingly, values of the test statistic that are less than z. Thus, the P -value is the probability of

Z ≤ z when H0 is true. The P -value will equal α = 0.01 when z captures lower-tail area of

0.01 under the z curve, which happens precisely at z = −2.33.

Example 7.17 A manufacturer of sprinkler systems used for fire protection in office buildings

claims that the true average system-activation temperature is 130. A sample of n = 9 systems,

when tested, yields a sample average activation temperature of 131.08. If the distribution of acti-

vation times is normal with standard deviation 1.5, does the data contradict the manufacturer’s

claim at significance level α = 0.01?

1. Parameter of interest: µ is the true average activation temperature.

2. Null hypothesis: H0 : µ = 130 (null value is µ0 = 130).

3. Alternative hypothesis: Ha : µ ̸= 130 (a departure from the claimed value in either

direction is of concern).

39



4. Test statistic:

Z =
X̄ − µ0

σ/
√
n

=
X̄ − 130

1.5/
√
n

.

5. Substituting n = 9 and x̄ = 131.08, we get z = 2.16. That is the observed sample mean is

a bit more than 2 standard deviations above what would have been expected were H0 true.

6. The inequality in Ha implies that the test is two-tailed, so the P -value results from doubling

the captured tail area, i.e., 0.0308.

7. Since the P -value is bigger than α, H0 cannot be rejected at that significance level. The

data does not give strong support to the claim that the true average differs from the design

value of 130.

Example 7.18 Carbon nanofibers have potential application as heat-management materials,

for composite reinforcement, and as components for nanoelectronics and photonics. The ac-

companying data on failure stress of a fiber specimens is:

300 , 312 , 327 , 368 , 400 , 425 , 470 , 556 , 573 , 575 ,

580 , 589 , 626 , 637 , 690 , 715 , 757 , 891 , 900 .

We then have n = 19, x̄ = 562.68, s = 180.874, s/
√
n = 41.495. Does the data provide

compelling evidence for concluding that true average failure stress exceeds 500?

Assuming a normal distribution, let’s carry out a test of the relevant hypotheses using a

significance level of α = 0.05.

1. The parameter of interest is µ, the true average failure stress.

2. The null hypothesis is H0 : µ = 500.

3. The appropriate alternative hypothesis is Ha : µ > 500 (so we will believe that true

average failure stress exceeds 500 only if the null hypothesis can be rejected).

4. The one-sample t test statistic is

T =
X̄ − 500

S/
√
n

.

Its value t for the given data results from replacing X̄ by x̄ and S by s.

5. The test-statistic value is t = 1.51.

6. The test is based on 19− 1 degrees of freedom. So, the P -value is more or less 0.075.

7. Since the P -value is bigger than α, there is not enough evidence to justify rejecting the

null hypothesis at that significance level.
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Example 7.19 Many deleterious effects of smoking on health have been well documented. An

investigation into whether time perception, an indicator of a person’s ability to concentrate, is

impaired during nicotine withdrawal was described in one of these investigations. After a 24-

hour smoking abstinence, each of 20 smokers was asked to estimate how much time had elapsed

during a 45-second period. Here is the data:

69 , 65 , 72 , 73 , 59 , 55 , 39 , 52 , 67 , 57 ,

56 , 50 , 70 , 47 , 56 , 45 , 70 , 64 , 67 , 53 .

Assuming the normal distribution of the population, let’s carry out a test of hypotheses at

significance level α = 0.05 to decide whether true average perceived elapsed time differs from

the known time 45.

1. Denote by µ the true average perceived elapsed time for all smokers exposed to the described

experimental regimen.

2. The null hypothesis is H0 : µ = 45.

3. The alternative hypothesis is Ha : µ ̸= 45.

4. The one-sample t test statistic is

T =
X̄ − 45

S/
√
n

.

5. Using x̄, s and n, its value is t = 6.5.

6. The P -value value for a two-tailed test is twice the area under the 19 degrees of freedom

t curve, which is approximately 0.

7. A P -value as small as what we obtained argues very strongly for rejection of H0 at any

reasonable significance level.
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8 Statistical Inference (Chapter 9)

Remark 8.1 We have already studied confidence intervals and hypothesis-testing procedures for

a single sample. Here, we extend these methods to situations involving two different population

distributions.

8.1 z Tests

Remark 8.2 The basic assumptions are the followings:

1. X1,...,Xm is a random sample from a normal distribution with mean µ1 and variance σ2
1.

2. Y1,...,Yn is a random sample from a normal distribution with mean µ2 and variance σ2
2.

3. The X and Y samples are independent of one another.

Proposition 8.3 The expected value of X̄ − Ȳ is µ1 − µ2, so X̄ − Ȳ is an unbiased estimator

of µ1 − µ2. The standard deviation of X̄ − Ȳ is

σX̄−Ȳ =

√
σ2
1

m
+

σ2
2

n
.

Remark 8.4 Since the population distributions are normal, both X̄ and Ȳ have normal distri-

butions. Furthermore, independence of the two samples implies that the two sample means are

independent of one another. Thus, the difference X̄ − Ȳ is normally distributed, with expected

value µ1 − µ2 and standard deviation σX̄−Ȳ .

Example 8.5 Analysis of a random sample consisting of m = 20 specimens of cold-rolled

steel to determine yield strengths resulted in a sample average strength of x̄ = 29.8. A second

random sample of n = 25 two-sided galvanized steel specimens gave a sample average strength

of ȳ = 34.7. Assuming that the two yield-strength distributions are normal with σ1 = 4 and

σ2 = 5, does the data indicate that the corresponding true average yield strengths µ1 and µ2 are

different?

Let’s carry out a test at significance level α = 0.1.

1. The parameter of interest is µ1−µ2, the difference between the true average strengths for

the two types of steel.

2. The null hypothesis is H0 : µ1 − µ2 = 0.

3. The alternative hypothesis is Ha : µ1 − µ2 ̸= 0.

4. The test statistic value is then

z =
x̄− ȳ − µ1 + µ2√

σ2
1

m
+

σ2
2

n

.
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5. Substituting m = 20, x̄ = 29.8, σ2
1 = 16, n = 25, ȳ = 34.7, and σ2

2 = 25, yields z = −3.66.

That is, the observed value of x̄− ȳ is more than 3 standard deviations below what would

be expected were H0 true.

6. The P -value is then approximately 0.

7. Consequently, since the P -value is smaller than α, H0 is rejected at level 0.01 in favor of

the conclusion that µ1 ̸= µ2.

Example 8.6 Of 215 male physicians who were Harvard graduates and died between November

1974 and October 1977, the 125 in full-time practice lived an average of 48.9 years beyond

graduation, whereas the 90 with academic affiliations lived an average of 43.2 years beyond

graduation. Does the data suggest that the mean lifetime after graduation for doctors in full-

time practice exceeds the mean lifetime for those who have academic affiliation?

Let µ1 denote the true average number of years lived beyond graduation for physicians in

full-time practice, and let µ2 denote the same quantity for physicians with academic affiliations.

Assume the 125 and 90 physicians to be random samples from populations one and two, respec-

tively. Assume that σ1 = 14.6 and σ2 = 14.4. The hypotheses are H0 : µ1 − µ2 = 0 versus

Ha : µ1 − µ2 > 0. The computed value of the test statistic is

z =
48.9− 43.2√
(14.6)2

125
+ (14.4)2

90

= 2.85 .

The P -value is 0.0022. At significance level α = 0.01, H0 is rejected in favor of the conclusion

that µ1 > µ2.

Remark 8.7 The assumptions of normal population distributions and known values of σ1 and

σ2 are, fortunately, unnecessary when both sample sizes are sufficiently large. In this case,

the Central Limit Theorem guarantees that X̄ − Ȳ has approximately a normal distribution

regardless of the underlying population distributions.

Example 8.8 What impact does fast-food consumption have on various dietary and health

characteristics? The following data is about the daily calorie intake both for a sample of teens

who said they did not typically eat fast food and another sample of teens who said they did

usually eat fast food:

No eat fast food: m = 663, x̄ = 2258 and s1 = 1519.

Yes eat fast food: n = 413, ȳ = 2637 and s2 = 1138.

Does this data provide strong evidence for concluding that true average calorie intake for teens

who typically eat fast food exceeds by more than 200 calories per day the true average intake for

those who do not typically eat fast food? Let’s carry out a test of hypotheses at a significance

level of α = 0.05.

The parameter of interest is µ1 − µ2, where µ1 is the true average calorie intake for teens

who do not typically eat fast food and µ2 is the true average intake for teens who do typically
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eat fast food. The hypotheses of interest are:{
H0 : µ1 − µ2 = −200

Ha : µ1 − µ2 < −200
.

The test statistic value is

z =
x̄− ȳ + 200√

s21
m
+

s22
n

= −2.2 .

The inequality in Ha implies that the P -value is 0.0139. Since this value is smaller than α, the

null hypothesis is rejected.

Definition 8.9 Provided that m and n are both large, a confidence interval for µ1 − µ2 with a

confidence level of approximately 100(1− α)% is(
x̄− ȳ − zα/2

√
s21
m

+
s22
n
, x̄− ȳ + zα/2

√
s21
m

+
s22
n

)
.

8.2 t Tests

Remark 8.10 The basic assumptions are the followings:

1. X1,...,Xm is a random sample from a normal distribution.

2. Y1,...,Yn is a random sample from a normal distribution.

Theorem 8.11 The standardized variable

T =
X̄ − Ȳ − (µ1 − µ2)√

S2
1

m
+

S2
2

n

,

where µ1 and µ2 are the mean values of X and Y , respectively, and S1 and S2 are the corre-

sponding standard deviations, has approximately a t distribution with ν degrees of freedom. The

number ν can be estimated from the data by

ν =

(
s21
m
+

s22
n

)2
(s21/m)2

m−1
+

(s22/n)
2

n−1

,

and rounding it down to the nearest integer.

Definition 8.12 The two-sample t confidence interval for µ1−µ2 with confidence level 100(1−
α)% is (

x̄− ȳ − tα/2,ν

√
s21
m

+
s22
n
, x̄− ȳ + tα/2,ν

√
s21
m

+
s22
n

)
.
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Example 8.13 The void volume within a textile fabric affects comfort, flammability, and in-

sulation properties. Permeability of a fabric refers to the accessibility of void space to the flow

of a gas or liquid. The following is summary information on air permeability for a number of

different fabric types:

Cotton: m = 10, x̄ = 51.71 and s1 = 0.79.

Triacetate: n = 10, ȳ = 136.14 and s2 = 3.59.

Assuming that the porosity distributions for both types of fabric are normal, let’s calculate a

confidence interval for the difference between true average porosity for the cotton fabric and that

for the triacetate fabric, using a 95% confidence level. (Answer: The degrees of freedom can be

approximated by: ν = 9.87, so we will consider ν = 9. For this value, t0.025,9 = 2.262 and the

resulting interval is: (−87.06,−81, 8).)

8.3 Analysis of Paired Data

Remark 8.14 Up to now we have made inference utilizing the results of random samples of

different number of individuals from distributions. In contrast there are a number of experi-

mental situations in which there is only one set of n individuals, making two observations on

each one results in a natural pairing of values.

Remark 8.15 The basic assumptions are the followings:

1. The data consists of n independently selected pairs (X1, Y1), ..., (Xn, Yn), with E(Xi) = µ1

and E(Yi) = µ2.

2. Denote by Di = Xi − Yi the differences within the pairs. These values are normally

distributed with mean value µD and variance σ2
D (this is usually a consequence of X1, ..., Xn

and Y1, ..., Yn being normally distributed).

Remark 8.16 Since the differences Di constitute a normal random sample with mean µD,

hypothesis about µD can be tested using a one-sample t test.

Example 8.17 Musculoskeletal neck-and-shoulder disorders are all too common among office

staff who perform repetitive tasks using visual display units. A study was reported to determine

whether more varied work conditions would have any impact on arm movement. The accom-

panying data was obtained from a sample n = 16 subjects. Each observation is the amount of

time, expressed as a proportion of total time observed, during which arm elevation was below 30

The two measurements from each subject were obtained 18 months apart. During this period,

work conditions were changed, and subjects were allowed to engage in a wider variety of work

tasks. Does the data suggest that true average time during which elevation is below 30 differs

after the change from what it was before the change?
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These are the differences:

81− 78 = 3 , 87− 91 = −4 , 86− 78 = 8 , 82− 78 = 4 , 90− 84 = 6 ,

86− 67 = 19 , 96− 92 = 4 , 73− 70 = 3 , 74− 58 = 16 , 75− 62 = 13 ,

72− 70 = 2 , 80− 58 = 22 , 66− 66 = 0 , 72− 60 = 12 , 56− 65 = −9 ,

82− 73 = 9 .

Assume these differences are normally distributed and test the appropriate hypothesis.

1. Let µD denote the true average difference between elevation time before the change in work

conditions and time after the change.

2. The null hypothesis will be H0 : µD = 0 (there is no difference between true average time

before the change and true average time after the change).

3. The alternative hypothesis is Ha : µD ̸= 0.

4. We will use the test statistic value

t =
d̄− 0

sD/
√
n
= 3.3 .

5. The P -value is approximately 0.004.

6. When α > 0.004, the null hypothesis can be rejected.

8.4 Inferences Concerning Two Population Variances

Definition 8.18 The F probability distribution is a distribution which has two parameters ν1 >

0 and ν2 > 0, called the number of numerator degrees of freedom and number of denominator

degrees of freedom. (We will omit the explicit expression of the associated density distribution,

since it is rather complicated).

Proposition 8.19 If X1 and X2 are two independent χ2 random variables with ν1 and ν2
degrees of freedom, respectively, then the random variable

F =
X1/ν1
X2/ν2

,

has an F distribution.

Theorem 8.20 Let X1,...,Xm be a random sample from a normal distribution with variance σ2
1

and Y1,...,Yn another random sample independent of X from a normal distribution with variance

σ2
2. Assume that S2

1 and S2
2 denote the two sample variances. Then the random variable

F =
S2
1/σ

2
1

S2
2/σ

2
2

has an F distribution with ν1 = m− 1 and ν2 = n− 1.
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Example 8.21 A random sample of 200 vehicles traveling on gravel roads in a county with

posted speed limit of 35 mph on such roads resulted in a sample mean speed of 37.5 mph and

a sample standard deviation of 8.6 mph, whereas another random sample of 200 vehicles in

a county with posted speed limit of 55 mph resulted in a sample mean and sample standard

deviation of 35.8 mph and 9.2 mph, respectively.

Let’s carry out a test at significance level α = 0.1 to decide whether the two population

distribution variances are identical.

1. Denote by σ2
1 the variance of the speed distribution on the 35 mph roads, and by σ2

2 the

variance of the speed distribution on 55 mph roads.

2. The null hypothesis is H0 : σ2
1 = σ2

2.

3. The alternative hypothesis is Ha : σ2
1 ̸= σ2

2.

4. The test statistic value is f = s21/s
2
2 = 0.87.

5. We have a F distribution with 199 numerator degrees of freedom and 199 denominator

degrees of freedom. Then, F0.1,199,199 = 0.83. The P -value is approximately 0.342.

6. The P -value clearly exceeds the significance level. Therefore, the null hypothesis cannot

be rejected.
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Review Problems

1. Assume that the helium porosity (in percentage) of coal samples taken from any particular

seam is normally distributed with true standard deviation 0.75.

(a) Compute a 95% confidence interval for the true average porosity of a certain seam if

the average porosity for 20 specimens from the seam was 4.85. (Answer: (4.52, 5.18).)

(b) How large a sample size is necessary if the width of the 95% interval is to be 0.4?

(Answer: 55.)

2. For a sample of 50 kitchens with gas cooking appliances monitored during a one-week

period, the sample mean CO2 level (ppm) was 654.16, and the sample standard deviation

was 164.43.

(a) Calculate a 95% confidence interval for true average CO2 level in the population of

all homes from which the sample was selected. (Answer: (608.58, 699.74).)

(b) How large a sample size is necessary if the width of the 95% interval is to be 50?

(Answer: 167.)

3. The following observations on degree of polymerization for paper specimens for which

viscosity times concentration fell in a certain middle range are given:

418 , 421 , 421 , 422 , 425 , 427 , 432 , 434 , 437 ,

439 , 446 , 447 , 448 , 453 , 454 , 463 , 465 .

Assuming they were selected from a normal distribution, calculate a 95% confidence

interval for the true average degree of polymerization. (Hint: t0.025,16 = 2.12. Answer:

(430.5, 446.1).)

4. A sample of 50 lenses used in eyeglasses yields a sample mean thickness of 0.34mm. The

desired true average thickness of such lenses is 3.2mm. Does the data strongly suggest

that the true average thickness of such lenses is something other than what is desired?

Test using a significance level α = 0.05. (Hint: P (Z ≤ 3.12) = 0.9991.)

5. The following summary data on daily caffeine consumption for a sample of adults is given:

n = 47, x̄ = 215mg and s = 235mg. Suppose that it has previously been believed that

mean consumption was at most 200mg. Does the given data contradict this prior belief?

Use a significance level of α = 0.1. (Hint: P (Z ≤ 0.44) = 0.67.)

6. The true average breaking strength of ceramic insulators of a certain type is supposed

to be at least 10psi. They will be used for a particular application unless sample data

indicates conclusively that this specification has not been met. A test of hypotheses using

a significance level α = 0.01 is to be based on a random sample of 10 insulators which

gives a sample mean of 9psi. Assume that the breaking-strength distribution is normal

and:
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(a) The true standard deviation is 0.8. (Hint: P (Z ≤ 1.25) = 0.8944.)

(b) The sample standard deviation is 0.8. (Hint: P (Z ≤ 1.25) = 0.875.)

7. Wire electrical-discharge machining (WEDM) is a process used to manufacture conductive

hard metal components. It uses a continuously moving wire that serves as an electrode.

Coating on the wire electrode allows for cooling of the wire electrode core and provides an

improved cutting performance. The following sample observations on total coating layer

thickness (in µm) of eight wire electrodes used for WEDM is given:

21 , 16 , 29 , 35 , 42 , 24 , 24 , 25 .

Calculate a 99% confidence interval for the standard deviation of the coating layer thick-

ness distribution. (Answer: (4.82, 21.85).)

8. The following data on time to repair (min) a rail break in high rail on a curved track of

a certain railway line is presented:

159 , 120 , 480 , 149 , 270 , 547 , 340 , 43 , 228 , 202 , 240 , 218 .

Assume that the population distribution of repair time is normal. Is there compelling

evidence for concluding that true average repair time exceeds 200 min? Carry out a test

of hypotheses using a significance level of α = 0.05. (Hint: P (T11 ≤ 1.2) = 0.872.)

9. The sample average unrestrained compressive strength for 45 specimens of a particular

type of brick was computed to be 3107psi, and the sample standard deviation was 188.

Does the data strongly indicate that the true average unrestrained compressive strength

is less than the design value 3200? Test using α = 0.001. (Hint: P (Z ≤ 3.32) = 0.9995.)

10. The American Academy of Pediatrics recommends a vitamin D level of at least 20ng/ml

for infants. A sample of 102 preterm infants judged to be of appropriate weight for

their gestational age shows a sample mean vitamin D level at 2 weeks of 21 with sample

standard deviation of 11. Does this provide convincing evidence that the population

mean vitamin D level for such infants exceed 20? Test the relevant hypotheses using a

significance level of α = 0.1. (Hint: P (Z ≤ 0.92) = 0.8212.)

11. Is there any systematic tendency for part-time college faculty to hold their students to

different standards than do full-time faculty? An article reported that for a sample

of 125 courses taught by full-time faculty, the mean course GPA was 2.7186 and the

standard deviation was 0.63342, whereas for a sample of 88 courses taught by part-

timers, the mean and standard deviation were 2.8639 and 0.49241, respectively. Does it

appear that true average course GPA for part-time faculty differs from that for faculty

teaching full-time? Test the appropriate hypotheses at significance level α = 0.01. (Hint:

P (Z ≤ 1.88) = 0.9699.)

12. Suppose µ1 and µ2 are true mean stopping distances at 50mph for cars of a certain type

equipped with two different types of breaking systems. Assuming that the populations
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are normally distributed, test at significance level α = 0.01 whether µ2 exceeds by more

than 10 units µ1. Use the following data: m = 6, x̄ = 115.7, s1 = 5.03, n = 6, ȳ = 129.3

and s2 = 5.38. (Hint: P (T9 ≤ 1.2) = 0.87.)
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Appendix A. Table of the Standard Normal Distribution
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Appendix B. Table of the Student’s t Distribution
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