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¢ Da Rios (1906): Modeled the movement of a thin vortex
filament in a viscous fluid by the motion of a curve
propagating according to
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the localized induction equation.
® This evolution represents a binormal flow: X; = kB.

® Da Rios also obtained the so-called Da Rios equations for the
vortex filament:

Kt = —2KsT — KTs,

2
Tt = (’<ﬂss+m—7'2> .
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Motivation

These compatibility equations are the Gauss-Codazzi
equations of the local surface generated by the evolution.
Hasimoto (1972): Discovered that the localized induction
equation is equivalent to the non-linear Schrodinger equation
(a soliton equation).
Hasimoto (1971): Found that if the evolution according to
the localized induction equation is by isometries the initial
vortex filament must be a classical elastic curve.
Question: What happens if we consider a binormal flow of the
type

Xt = I(H)B,

for arbitrary smooth functions F7?
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Binormal Evolution Surfaces

Given a smooth map X : U C R?2 —s M3(p), we consider the
evolution problem

X, =f (\%XSXSD Xo X Vx.Xs ,

where f is a suitable smooth function.

® This evolution is equivalent to the binormal flow
X, = kf(k)B (: P(K)B) .

® The corresponding immersed surface (U, X) in M3(p) is called

a binormal evolution surface with velocity P(k).

® We can employ the theory of submanifolds to compute the
Gauss-Codazzi equations and extend the classical Da Rios
equations.
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Initial Filament

For the binormal flow X; = P(k)B, we have

Theorem (GARAY & P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations
correspond with the evolution under isometries and slippage of a
general Kirchhoff centerline.

In particular, if there is no slippage then the initial filament is
critical for

It is a generalized elastic curve.
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Generalized Elastic Curves

Let v C M3(p) be a generalized elastic curve.

Theorem (LANGER & SINGER, 1984)

The vector field along the critical curve ~ defined by
T = P(x)B,

is a Killing vector field along . By definition,

I(v) = I(x) = Z(r) = 0 hold.

Theorem (LANGER & SINGER, 1984)

Killing vector fields along curves can uniquely be extended to
Killing vector fields in M3(p).
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Geometric Construction of BES

Let v C M3(p) be a generalized elastic curve.
1. Consider the Killing vector field along v: Z = P(k)B.
2. Extend Z to a Killing vector field of M3(p): &.

3. Since M3(p) is complete, the one-parameter group of
isometries determined by £ is {¢¢ |t € R}.
4. We construct the binormal evolution surface (Garay & P.,
2016)
Sy ={X(s,t) = ¢:(7(s))} -

Theorem (ARROYO, GARAY & P., 2017)

By construction S, is a {-invariant surface. If «y is planar (7 = 0),
S, is either flat isoparametric or a rotational surface.



Illustration

(Arroyo, Garay & A. P., 2019)
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Application I: CMC Surfaces

Theorem (ARROYO, GARAY & P., 2018)

Invariant CMC surfaces in M3(p) are binormal evolution surfaces
whose initial filaments are critical for

e(v)=AMds.

In particular, if ¥ C S?(p), we have (Arroyo, Garay & P., 2019):
® There exist non-trivial closed critical curves for any value of p.

® If v is a simple closed critical curve, then p# —+/p/3 is
negative.



Application I: CMC Surfaces

(Arroyo, Garay & A. P., 2019)

e Coincides with previous results of Perdomo and Ripoll.
e Verify the Lawson’s conjecture (proved by Brendle in 2013).

e After Pinkall-Sterling’s conjecture (proved by Andrews-Li in
2015), these are all embedded CMC tori.



Application II: Biconservative Surfaces



Application II: Biconservative Surfaces

Theorem (CADEO, MONTALDO, ONICIUC & Piu, 2014)

Non-CMC biconservative surfaces in M3(p) are rotational.
Moreover, they are linear Weingarten surfaces satisfying

3k1+ky=0.



Application II: Biconservative Surfaces

Theorem (CADEO, MONTALDO, ONICIUC & Piu, 2014)

Non-CMC biconservative surfaces in M3(p) are rotational.
Moreover, they are linear Weingarten surfaces satisfying

3k1+ky=0.

Theorem (MONTALDO & P., 2023)

Non-CMC biconservative surfaces in M3(p) are binormal evolution
surfaces whose initial filaments are critical for

O(y) = / k4 ds .
g
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THE END
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