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Álvaro Pámpano Llarena
Texas Tech University

Geometry of Submanifolds. Celebrating Bang-Yen
Chen’s 80th Anniversary

9th European Congress of Mathematics, Sevilla

July 16, 2024



Motivation

• Da Rios (1906): Modeled the movement of a thin vortex
filament in a viscous fluid by the motion of a curve
propagating according to

Xt = Xs × Xss ,

the localized induction equation.

• This evolution represents a binormal flow: Xt = κB.

• Da Rios also obtained the so-called Da Rios equations for the
vortex filament:

κt = −2κsτ − κτs ,

τt =

(
κss
κ

+
κ2

2
− τ2

)
s

.
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Motivation

• These compatibility equations are the Gauss-Codazzi
equations of the local surface generated by the evolution.

• Hasimoto (1972): Discovered that the localized induction
equation is equivalent to the non-linear Schrödinger equation
(a soliton equation).

• Hasimoto (1971): Found that if the evolution according to
the localized induction equation is by isometries the initial
vortex filament must be a classical elastic curve.

• Question: What happens if we consider a binormal flow of the
type

Xt = F(κ)B ,

for arbitrary smooth functions F?
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Binormal Evolution Surfaces

Given a smooth map X : U ⊆ R2 −→ M3
r (ρ), we consider the

evolution problem

Xt = f
(
|∇̃XsXs |

)
Xs × ∇̃XsXs ,

where f is a suitable smooth function.

• This evolution is equivalent to the binormal flow

Xt = κf (κ)B
(
= Ṗ(κ)B

)
.

• The corresponding immersed surface (U,X ) in M3(ρ) is called
a binormal evolution surface with velocity Ṗ(κ).

• We can employ the theory of submanifolds to compute the
Gauss-Codazzi equations and extend the classical Da Rios
equations.
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= Ṗ(κ)B

)
.

• The corresponding immersed surface (U,X ) in M3(ρ) is called
a binormal evolution surface with velocity Ṗ(κ).
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Initial Filament

For the binormal flow Xt = Ṗ(κ)B, we have

Theorem (Garay & P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations
correspond with the evolution under isometries and slippage of a
general Kirchhoff centerline.

In particular, if there is no slippage then the initial filament is
critical for

Θ(γ) =

∫
γ
P(κ) ds .

It is a generalized elastic curve.
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Generalized Elastic Curves

Let γ ⊂ M3(ρ) be a generalized elastic curve.

Theorem (Langer & Singer, 1984)

The vector field along the critical curve γ defined by

I = Ṗ(κ)B ,

is a Killing vector field along γ. By definition,
I(v) = I(κ) = I(τ) = 0 hold.

Theorem (Langer & Singer, 1984)

Killing vector fields along curves can uniquely be extended to
Killing vector fields in M3(ρ).
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I = Ṗ(κ)B ,

is a Killing vector field along γ. By definition,
I(v) = I(κ) = I(τ) = 0 hold.

Theorem (Langer & Singer, 1984)

Killing vector fields along curves can uniquely be extended to
Killing vector fields in M3(ρ).



Generalized Elastic Curves

Let γ ⊂ M3(ρ) be a generalized elastic curve.

Theorem (Langer & Singer, 1984)

The vector field along the critical curve γ defined by
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Geometric Construction of BES

Let γ ⊂ M3(ρ) be a generalized elastic curve.

1. Consider the Killing vector field along γ: I = Ṗ(κ)B.

2. Extend I to a Killing vector field of M3(ρ): ξ.

3. Since M3(ρ) is complete, the one-parameter group of
isometries determined by ξ is {ϕt | t ∈ R}.

4. We construct the binormal evolution surface (Garay & P.,
2016)

Sγ = {X (s, t) = ϕt(γ(s))} .

Theorem (Arroyo, Garay & P., 2017)

By construction Sγ is a ξ-invariant surface. If γ is planar (τ = 0),
Sγ is either flat isoparametric or a rotational surface.
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Application I: CMC Surfaces

Theorem (Arroyo, Garay & P., 2018)

Invariant CMC surfaces in M3(ρ) are binormal evolution surfaces
whose initial filaments are critical for

Θ(γ) =

∫
γ

√
κ− µ ds .

In particular, if γ ⊂ S2(ρ), we have (Arroyo, Garay & P., 2019):

• There exist non-trivial closed critical curves for any value of µ.

• If γ is a simple closed critical curve, then µ ̸= −
√
ρ/3 is

negative.
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Application II: Biconservative Surfaces

Theorem (Cadeo, Montaldo, Oniciuc & Piu, 2014)

Non-CMC biconservative surfaces in M3(ρ) are rotational.
Moreover, they are linear Weingarten surfaces satisfying

3κ1 + κ2 = 0 .

Theorem (Montaldo & P., 2023)

Non-CMC biconservative surfaces in M3(ρ) are binormal evolution
surfaces whose initial filaments are critical for

Θ(γ) =

∫
γ
κ1/4 ds .
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THE END

Thank You!


