

Binormal Evolution of Generalized Elastic Curves

Álvaro Pámpano Llarena Texas Tech University

Geometry of Submanifolds. Celebrating Bang-Yen Chen's 80th Anniversary

9th European Congress of Mathematics, Sevilla

July 16, 2024

• Da Rios (1906): Modeled the movement of a thin vortex filament in a viscous fluid by the motion of a curve propagating according to

$$X_t = X_s \times X_{ss} \,,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

the localized induction equation.

• Da Rios (1906): Modeled the movement of a thin vortex filament in a viscous fluid by the motion of a curve propagating according to

$$X_t = X_s \times X_{ss} \,,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

the localized induction equation.

• This evolution represents a binormal flow: $X_t = \kappa B$.

• Da Rios (1906): Modeled the movement of a thin vortex filament in a viscous fluid by the motion of a curve propagating according to

$$X_t = X_s \times X_{ss} \,,$$

the localized induction equation.

- This evolution represents a binormal flow: $X_t = \kappa B$.
- Da Rios also obtained the so-called Da Rios equations for the vortex filament:

$$\begin{aligned} \kappa_t &= -2\kappa_s \tau - \kappa \tau_s \,, \\ \tau_t &= \left(\frac{\kappa_{ss}}{\kappa} + \frac{\kappa^2}{2} - \tau^2\right)_s \end{aligned}$$

• These compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- These compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- Hasimoto (1972): Discovered that the localized induction equation is equivalent to the non-linear Schrödinger equation (a soliton equation).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- These compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- Hasimoto (1972): Discovered that the localized induction equation is equivalent to the non-linear Schrödinger equation (a soliton equation).
- Hasimoto (1971): Found that if the evolution according to the localized induction equation is by isometries the initial vortex filament must be a classical elastic curve.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- These compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- Hasimoto (1972): Discovered that the localized induction equation is equivalent to the non-linear Schrödinger equation (a soliton equation).
- Hasimoto (1971): Found that if the evolution according to the localized induction equation is by isometries the initial vortex filament must be a classical elastic curve.
- Question: What happens if we consider a binormal flow of the type

$$X_t = \mathcal{F}(\kappa)B\,,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for arbitrary smooth functions \mathcal{F} ?

Given a smooth map $X : U \subseteq \mathbb{R}^2 \longrightarrow M^3_r(\rho)$, we consider the evolution problem

$$X_t = f\left(|\widetilde{\nabla}_{X_s}X_s|\right)X_s \times \widetilde{\nabla}_{X_s}X_s\,,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where f is a suitable smooth function.

Given a smooth map $X : U \subseteq \mathbb{R}^2 \longrightarrow M^3_r(\rho)$, we consider the evolution problem

$$X_t = f\left(|\widetilde{\nabla}_{X_s}X_s|\right)X_s \times \widetilde{\nabla}_{X_s}X_s\,,$$

where f is a suitable smooth function.

• This evolution is equivalent to the binormal flow

$$X_t = \kappa f(\kappa) B\left(=\dot{P}(\kappa)B\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Given a smooth map $X : U \subseteq \mathbb{R}^2 \longrightarrow M^3_r(\rho)$, we consider the evolution problem

$$X_t = f\left(|\widetilde{\nabla}_{X_s}X_s|\right)X_s \times \widetilde{\nabla}_{X_s}X_s\,,$$

where f is a suitable smooth function.

This evolution is equivalent to the binormal flow

$$X_t = \kappa f(\kappa) B\left(=\dot{P}(\kappa)B\right).$$

• The corresponding immersed surface (U, X) in $M^3(\rho)$ is called a binormal evolution surface with velocity $\dot{P}(\kappa)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Given a smooth map $X : U \subseteq \mathbb{R}^2 \longrightarrow M^3_r(\rho)$, we consider the evolution problem

$$X_t = f\left(|\widetilde{\nabla}_{X_s}X_s|\right)X_s \times \widetilde{\nabla}_{X_s}X_s\,,$$

where f is a suitable smooth function.

• This evolution is equivalent to the binormal flow

$$X_t = \kappa f(\kappa) B\left(=\dot{P}(\kappa)B\right).$$

- The corresponding immersed surface (U, X) in $M^3(\rho)$ is called a binormal evolution surface with velocity $\dot{P}(\kappa)$.
- We can employ the theory of submanifolds to compute the Gauss-Codazzi equations and extend the classical Da Rios equations.

Initial Filament

For the binormal flow $X_t = \dot{P}(\kappa)B$, we have

Theorem (GARAY & P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations correspond with the evolution under isometries and slippage of a general Kirchhoff centerline.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Initial Filament

For the binormal flow $X_t = \dot{P}(\kappa)B$, we have

Theorem (GARAY & P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations correspond with the evolution under isometries and slippage of a general Kirchhoff centerline.

In particular, if there is no slippage then the initial filament is critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} P(\kappa) \, ds$$
 .

It is a generalized elastic curve.

Generalized Elastic Curves

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

Generalized Elastic Curves

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

Theorem (LANGER & SINGER, 1984)

The vector field along the critical curve γ defined by

 $\mathcal{I}=\dot{P}(\kappa)B\,,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a Killing vector field along γ . By definition, $\mathcal{I}(v) = \mathcal{I}(\kappa) = \mathcal{I}(\tau) = 0$ hold.

Generalized Elastic Curves

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

Theorem (LANGER & SINGER, 1984)

The vector field along the critical curve γ defined by

 $\mathcal{I}=\dot{P}(\kappa)B\,,$

is a Killing vector field along γ . By definition, $\mathcal{I}(v) = \mathcal{I}(\kappa) = \mathcal{I}(\tau) = 0$ hold.

Theorem (LANGER & SINGER, 1984)

Killing vector fields along curves can uniquely be extended to Killing vector fields in $M^3(\rho)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

- 1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.
- 2. Extend \mathcal{I} to a Killing vector field of $M^3(\rho)$: ξ .

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

- 1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.
- 2. Extend \mathcal{I} to a Killing vector field of $M^3(\rho)$: ξ .
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t | t ∈ ℝ}.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

- 1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.
- 2. Extend \mathcal{I} to a Killing vector field of $M^3(\rho)$: ξ .
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t | t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & P., 2016)

$$S_{\gamma} = \{X(s,t) = \phi_t(\gamma(s))\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

- 1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.
- 2. Extend \mathcal{I} to a Killing vector field of $M^3(\rho)$: ξ .
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t | t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & P., 2016)

$$S_{\gamma} = \{X(s,t) = \phi_t(\gamma(s))\}.$$

Theorem (ARROYO, GARAY & P., 2017)

By construction S_{γ} is a ξ -invariant surface.

Let $\gamma \subset M^3(\rho)$ be a generalized elastic curve.

- 1. Consider the Killing vector field along γ : $\mathcal{I} = \dot{P}(\kappa)B$.
- 2. Extend \mathcal{I} to a Killing vector field of $M^3(\rho)$: ξ .
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t | t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & P., 2016)

$$S_{\gamma} = \{X(s,t) = \phi_t(\gamma(s))\}.$$

Theorem (ARROYO, GARAY & P., 2017)

By construction S_{γ} is a ξ -invariant surface. If γ is planar ($\tau = 0$), S_{γ} is either flat isoparametric or a rotational surface.

Illustration

(Arroyo, Garay & A. P., 2019)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (ARROYO, GARAY & P., 2018)

Invariant CMC surfaces in $M^3(\rho)$ are binormal evolution surfaces whose initial filaments are critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (ARROYO, GARAY & P., 2018)

Invariant CMC surfaces in $M^3(\rho)$ are binormal evolution surfaces whose initial filaments are critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, .$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In particular, if $\gamma \subset S^2(\rho)$, we have (Arroyo, Garay & P., 2019):

Theorem (ARROYO, GARAY & P., 2018)

Invariant CMC surfaces in $M^3(\rho)$ are binormal evolution surfaces whose initial filaments are critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, .$$

In particular, if $\gamma \subset \mathbb{S}^2(\rho)$, we have (Arroyo, Garay & P., 2019):

• There exist non-trivial closed critical curves for any value of μ .

Theorem (ARROYO, GARAY & P., 2018)

Invariant CMC surfaces in $M^3(\rho)$ are binormal evolution surfaces whose initial filaments are critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, .$$

In particular, if $\gamma \subset \mathbb{S}^2(\rho)$, we have (Arroyo, Garay & P., 2019):

There exist non-trivial closed critical curves for any value of μ.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• If γ is a simple closed critical curve, then $\mu \neq -\sqrt{\rho/3}$ is negative.

(Arroyo, Garay & A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.
- Verify the Lawson's conjecture (proved by Brendle in 2013).
- After Pinkall-Sterling's conjecture (proved by Andrews-Li in 2015), these are all embedded CMC tori.

Theorem (CADEO, MONTALDO, ONICIUC & PIU, 2014) Non-CMC biconservative surfaces in $M^3(\rho)$ are rotational. Moreover, they are linear Weingarten surfaces satisfying

 $3\kappa_1+\kappa_2=0\,.$

Theorem (CADEO, MONTALDO, ONICIUC & PIU, 2014) Non-CMC biconservative surfaces in $M^3(\rho)$ are rotational. Moreover, they are linear Weingarten surfaces satisfying

 $3\kappa_1 + \kappa_2 = 0.$

Theorem (MONTALDO & P., 2023)

Non-CMC biconservative surfaces in $M^3(\rho)$ are binormal evolution surfaces whose initial filaments are critical for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \kappa^{1/4} \, ds \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Thank You!