

Variational Theory of Membranes

Álvaro Pámpano Llarena Texas Tech University

AMS Spring Western Sectional Meeting Special Session on "Recent Advances in Differential Geometry" San Francisco State University

May 5, 2024

Modeling Biological Membranes

Modeling Biological Membranes

W. Helfrich (1973) suggested to study the critical points of

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b K
ight) d\Sigma \,,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

to model biological membranes.

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

a fourth order nonlinear elliptic PDE.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.

The Euler-Lagrange equation associated to \mathcal{H} is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

3. Circular Biconcave Discoids with $H^2 - K = c_o^2$.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

3. Circular Biconcave Discoids with $H^2 - K = c_o^2$. (Far from the axis of rotation.)

Circular Biconcave Discoids

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Circular Biconcave Discoids

Proposition (López, Palmer & P., Preprint) Let $\psi \in C_o^{\infty}(\Sigma)$ and consider normal variations $\delta X = \psi \nu$, then

$$\delta \mathcal{H}[\Sigma] = 8\pi c_o \psi_{|_{r=0}} \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

• The surface must be a topological disc. Annular domains in circular biconcave discoids are critical for *H*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} \frac{1}{z^2} d\Sigma - 2c_o \int_{\Omega} \frac{1}{z^2} d\Sigma \,.$$

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} \frac{1}{z^2} d\Sigma - 2c_o \int_{\Omega} \frac{1}{z^2} d\Sigma.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2\log(z)$.
- Extended (-2)-singular minimal surfaces.

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} \frac{1}{z^2} d\Sigma - 2c_o \int_{\Omega} \frac{1}{z^2} d\Sigma.$$

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2\log(z)$.
- Extended (-2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane equation is critical for the Helfrich energy \mathcal{H} .

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} \frac{1}{z^2} d\Sigma - 2c_o \int_{\Omega} \frac{1}{z^2} d\Sigma \,.$$

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2\log(z)$.
- Extended (-2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane equation is critical for the Helfrich energy \mathcal{H} .

• The right cylinders over elastic curves satisfy the reduced membrane equation.

Symmetry Breaking Bifurcation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ_0 is embedded in a one parameter family of axially symmetric solutions of the reduced membrane equation (parameterized by c_o) which all share the same boundary circle.

Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ_0 is embedded in a one parameter family of axially symmetric solutions of the reduced membrane equation (parameterized by c_o) which all share the same boundary circle. Precisely, at Σ_0 , a non-axially symmetric branch bifurcates.

Theorem (Palmer & P., Preprint)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Palmer & P., Preprint)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Palmer & P., Preprint)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

Theorem (Palmer & P., Preprint)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Modified (Conformal) Gauss Map

Modified (Conformal) Gauss Map

For a real constant $\mathit{c_o}$ we define the map $Y^{\mathit{c_o}}:\Sigma\to\mathbb{S}^4_1\subset\mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2 - 1}{2}, \frac{X^2 + 1}{2}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modified (Conformal) Gauss Map

For a real constant c_o we define the map $Y^{c_o}:\Sigma\to \mathbb{S}^4_1\subset \mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2 - 1}{2}, \frac{X^2 + 1}{2}\right).$$

Theorem (Palmer & P., 2022)

The immersion $X : \Sigma \to \mathbb{R}^3$ is critical for the Helfrich energy \mathcal{H} with respect to compactly supported variations if and only if

$$\Delta Y^{c_o} + \|dY^{c_o}\|^2 Y^{c_o} = 2c_o(0,0,0,1,1)^T$$

(The map Y^{c_o} fails to be an immersion where $H^2 - K = c_o^2$.)

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.
- 3. Case $\omega := (0, 0, 1, 0, 0)$ is a spacelike vector. Then,

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

Boundary Problems

<ロト <回ト < 三ト < 三ト = 三

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where $\alpha > 0$ and $\beta > 0$.

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where $\alpha > 0$ and $\beta > 0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

$$\begin{aligned} a\left(H+c_o\right)+b\kappa_n &= 0,\\ J'\cdot\nu-a\partial_nH+b\tau_g' &= 0,\\ J'\cdot n+a\left(H+c_o\right)^2+bK &= 0, \end{aligned}$$

where J is a vector field along $\partial \Sigma$ defined by

$$J := 2\alpha T'' + (3\alpha \kappa^2 - \beta) T.$$

Ground State Equilibria

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$$\begin{array}{rcl} b\kappa_n &=& 0\,, & & \text{on }\partial\Sigma\,,\\ J'\cdot\nu+b\tau_g' &=& 0\,, & & \text{on }\partial\Sigma\,,\\ J'\cdot n-b\tau_g^2 &=& 0\,, & & \text{on }\partial\Sigma\,. \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ground State Equilibria

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$b\kappa_n$	=	0,	on $\partial \Sigma$,
$J'\cdot \nu + b au_g'$	=	0,	$ \text{ on }\partial\Sigma,$
$J' \cdot n - b\tau_g^2$	=	0,	on $\partial\Sigma$.

Proposition (Palmer & P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be an equilibrium with $H + c_o \equiv 0$. Then, each boundary component C is a simple and closed critical curve for

$$F[C] \equiv F_{\mu,\lambda}[C] := \int_C \left([\kappa + \mu]^2 + \lambda \right) ds \,,$$

where $\mu := \pm b/(2\alpha)$ and $\lambda := \beta/\alpha - \mu^2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Palmer & P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Theorem (Palmer & P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

Theorem (Palmer & P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Nitsche's argument involving the Hopf differential.

Minimal Discs Spanned by Elastic Curves

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Minimal Annuli Spanned by Elastic Curves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Absolute Minimizers

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Absolute Minimizers

Theorem (Palmer & P., 2021)

The Euler-Helfrich energy E is bounded below if and only if

$$\underline{E}:=2\sqrt{lpha\,eta}-|b|\geq 0$$
 .

For the lower bound to be attained, the surface must have $H \equiv -c_o$ and the boundary must be composed by circles of radius $\sqrt{\alpha/\beta}$. In addition, either b = 0 or $\kappa_n \equiv 0$ must hold along the boundary.

Absolute Minimizers

Theorem (Palmer & P., 2021)

The Euler-Helfrich energy E is bounded below if and only if

$$\underline{E}:=2\sqrt{lpha\,eta}-|b|\geq 0$$
 .

For the lower bound to be attained, the surface must have $H \equiv -c_o$ and the boundary must be composed by circles of radius $\sqrt{\alpha/\beta}$. In addition, either b = 0 or $\kappa_n \equiv 0$ must hold along the boundary.

 In the case of a topological annulus, the lower bound can always be attained or approached.

Nodoidal Domains

Topological Discs

Topological Discs

Conjecture

If $\underline{E} \ge 0$ holds, the infimum of the Euler-Helfrich energy E is attained by an axially symmetric surface with non-constant mean curvature. (Reduced Membrane Equation.)

Second Variation Formula

Second Variation Formula

Theorem (Palmer & P., Preprint)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion critical for the Helfrich energy \mathcal{H} satisfying the reduced membrane equation. Then, for every $f \in \mathcal{C}^{\infty}_o(\Sigma)$,

$$\delta^2 \mathcal{H}[\Sigma] = \int_{\Sigma} f F[f] \, d\Sigma + \frac{1}{2} \int_{\partial \Sigma} L[f] \, \partial_n f \, ds \,,$$

where

$$F[f] := \frac{1}{2} \left(P^* + \frac{2}{z^2} \right) \circ P[f].$$

(Here, *P* is the operator arising as twice the variation of the quantity $H + \nu_3/z$, and P^* is its adjoint operator.)

Second Variation Formula

Theorem (Palmer & P., Preprint)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion critical for the Helfrich energy \mathcal{H} satisfying the reduced membrane equation. Then, for every $f \in \mathcal{C}^{\infty}_{o}(\Sigma)$,

$$\delta^2 \mathcal{H}[\Sigma] = \int_{\Sigma} f F[f] \, d\Sigma + \frac{1}{2} \int_{\partial \Sigma} L[f] \, \partial_n f \, ds \,,$$

where

$$F[f] := \frac{1}{2} \left(P^* + \frac{2}{z^2} \right) \circ P[f].$$

(Here, *P* is the operator arising as twice the variation of the quantity $H + \nu_3/z$, and P^* is its adjoint operator.)

• Compute the second variation through the flux formula.

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, J. Nonlinear Sci. 31-1 (2021), 23.
- B. Palmer and A. Pámpano, The Euler-Helfrich Functional, *Calc. Var. Partial Differ. Equ.* **61** (2022), 79.
- B. Palmer and A. Pámpano, Symmetry Breaking Bifurcation of Membranes with Boundary, Nonlinear Anal. 238 (2024), 113393.
- B. Palmer and A. Pámpano, Stability of Membranes, *Preprint*, arXiv: 2401.05285 [math.DG].

Thank You!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00