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Modeling Biological Membranes

W. Helfrich (1973) suggested to study the critical points of

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

to model biological membranes.
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The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an
embedding X : Σ → R3 the Helfrich energy is given by

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

where the energy parameters are:

• The bending rigidity: a > 0.

• The spontaneous curvature: co ∈ R.
• The saddle-splay modulus: b ∈ R.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.
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Euler-Lagrange Equation

The Euler-Lagrange equation associated to H is

∆(H + co) + 2 (H + co) (H [H − co ]− K ) = 0 ,

a fourth order nonlinear elliptic PDE.

Special Solutions:

1. Constant Mean Curvature Surfaces with H ≡ −co .

2. Right Cylinders over elastic curves (circular at rest), i.e.,
critical points of

Θ[γ] :=

∫
γ
(κ+ µ)2 ds .

3. Circular Biconcave Discoids with H2 − K = c2o .
(Far from the axis of rotation.)
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Circular Biconcave Discoids

Proposition (López, Palmer & P., Preprint)

Let ψ ∈ C∞
o (Σ) and consider normal variations δX = ψν, then

δH[Σ] = 8πcoψ|r=0
.
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Axially Symmetric Solutions

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for H must be:

(i) A planar disc (H ≡ −co = 0).

(ii) A spherical cap (H ≡ −co ̸= 0).

(iii) A domain whose mean curvature satisfies

H + co = −ν3
z
.

(The Reduced Membrane Equation.)

• The surface must be a topological disc. Annular domains in
circular biconcave discoids are critical for H.
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Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dΣ .

Solutions can be viewed as:

• Capillary surfaces with constant gravity in H3.

• Weighted CMC surfaces for the density ϕ = −2 log(z).

• Extended (−2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for the Helfrich energy H.

• The right cylinders over elastic curves satisfy the reduced
membrane equation.



Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dΣ .

Solutions can be viewed as:

• Capillary surfaces with constant gravity in H3.

• Weighted CMC surfaces for the density ϕ = −2 log(z).

• Extended (−2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for the Helfrich energy H.

• The right cylinders over elastic curves satisfy the reduced
membrane equation.



Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dΣ .

Solutions can be viewed as:

• Capillary surfaces with constant gravity in H3.

• Weighted CMC surfaces for the density ϕ = −2 log(z).

• Extended (−2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for the Helfrich energy H.

• The right cylinders over elastic curves satisfy the reduced
membrane equation.



Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dΣ .

Solutions can be viewed as:

• Capillary surfaces with constant gravity in H3.

• Weighted CMC surfaces for the density ϕ = −2 log(z).

• Extended (−2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for the Helfrich energy H.

• The right cylinders over elastic curves satisfy the reduced
membrane equation.



Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ0 is embedded in a one parameter family of axially
symmetric solutions of the reduced membrane equation
(parameterized by co) which all share the same boundary circle.
Precisely, at Σ0, a non-axially symmetric branch bifurcates.



Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ0 is embedded in a one parameter family of axially
symmetric solutions of the reduced membrane equation
(parameterized by co) which all share the same boundary circle.

Precisely, at Σ0, a non-axially symmetric branch bifurcates.



Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ0 is embedded in a one parameter family of axially
symmetric solutions of the reduced membrane equation
(parameterized by co) which all share the same boundary circle.
Precisely, at Σ0, a non-axially symmetric branch bifurcates.



Axially Symmetric Family

Theorem (Palmer & P., Preprint)

Subdomains of Σ0 are stable and superdomains of Σ0 are unstable
for the functional G.



Axially Symmetric Family

Theorem (Palmer & P., Preprint)

Subdomains of Σ0 are stable and superdomains of Σ0 are unstable
for the functional G.



Axially Symmetric Family

Theorem (Palmer & P., Preprint)

Subdomains of Σ0 are stable and superdomains of Σ0 are unstable
for the functional G.



Axially Symmetric Family

Theorem (Palmer & P., Preprint)

Subdomains of Σ0 are stable and superdomains of Σ0 are unstable
for the functional G.



Bifurcating Branch

Conjecture

It is a subcritical pitchfork bifurcation.



Bifurcating Branch

Conjecture

It is a subcritical pitchfork bifurcation.



Bifurcating Branch

Conjecture

It is a subcritical pitchfork bifurcation.



Modified (Conformal) Gauss Map

For a real constant co we define the map Y co : Σ → S41 ⊂ E5
1 by

Y co := (H + co)X + (ν, q, q),

where q := X · ν is the support function and

X :=

(
X ,

X 2 − 1

2
,
X 2 + 1

2

)
.

Theorem (Palmer & P., 2022)

The immersion X : Σ → R3 is critical for the Helfrich energy H
with respect to compactly supported variations if and only if

∆Y co + ∥dY co∥2Y co = 2co(0, 0, 0, 1, 1)
T .

(The map Y co fails to be an immersion where H2 − K = c2o .)
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Special Solutions

Assume that Y co lies in the hyperplane ⟨Y co , ω⟩ = 0. Depending
on the causal character of ω we have:

1. Case ω := (0, 0, 0, 1, 1) is a null vector. Then, the surface has
constant mean curvature H ≡ −co .

2. Case ω := (0, 0, 0, 0, 1) is a timelike vector. Necessarily co = 0
must hold, i.e., the surface is Willmore.

3. Case ω := (0, 0, 1, 0, 0) is a spacelike vector. Then,

H + co = −ν3
z
.

(The Reduced Membrane Equation.)
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The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ+

∮
∂Σ

(
ακ2 + β

)
ds ,

where α > 0 and β > 0.

Boundary Conditions

The Euler-Lagrange equations on the boundary ∂Σ are:

a (H + co) + bκn = 0 ,

J ′ · ν − a∂nH + bτ ′g = 0 ,

J ′ · n + a (H + co)
2 + bK = 0 ,

where J is a vector field along ∂Σ defined by

J := 2αT ′′ +
(
3ακ2 − β

)
T .
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Ground State Equilibria

Assume H + co ≡ 0 holds on Σ. Then, the Euler-Lagrange
equations reduce to

bκn = 0 , on ∂Σ ,

J ′ · ν + bτ ′g = 0 , on ∂Σ ,

J ′ · n − bτ2g = 0 , on ∂Σ .

Proposition (Palmer & P., 2021)

Let X : Σ → R3 be an equilibrium with H + co ≡ 0. Then, each
boundary component C is a simple and closed critical curve for

F [C ] ≡ Fµ,λ[C ] :=

∫
C

(
[κ+ µ]2 + λ

)
ds ,

where µ := ±b/(2α) and λ := β/α− µ2.
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Results of Topological Discs

Theorem (Palmer & P., 2021)

Let X : Σ → R3 be a CMC H = −co disc type surface critical for
E . Then:

1. Case b = 0. The boundary is either a circle of radius
√
α/β

or a simple closed elastic curve representing a torus knot of
type G (q, 1) for q > 2.

2. Case b ̸= 0. The surface is a planar disc bounded by a circle
of radius

√
α/β and co = 0.

Idea of the proof:

• Elastic curves are torus knots G (q, p) with 2p < q and the
surface is a Seifert surface.

• Nitsche’s argument involving the Hopf differential.
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Minimal Discs Spanned by Elastic Curves



Minimal Annuli Spanned by Elastic Curves



Absolute Minimizers

Theorem (Palmer & P., 2021)

The Euler-Helfrich energy E is bounded below if and only if

E := 2
√
αβ − |b| ≥ 0 .

For the lower bound to be attained, the surface must have
H ≡ −co and the boundary must be composed by circles of radius√
α/β. In addition, either b = 0 or κn ≡ 0 must hold along the

boundary.

• In the case of a topological annulus, the lower bound can
always be attained or approached.
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Nodoidal Domains



Topological Discs

Conjecture

If E ≥ 0 holds, the infimum of the Euler-Helfrich energy E is
attained by an axially symmetric surface with non-constant mean
curvature. (Reduced Membrane Equation.)
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Second Variation Formula

Theorem (Palmer & P., Preprint)

Let X : Σ → R3 be an immersion critical for the Helfrich energy H
satisfying the reduced membrane equation. Then, for every
f ∈ C∞

o (Σ),

δ2H[Σ] =

∫
Σ
f F [f ] dΣ+

1

2

∫
∂Σ

L[f ] ∂nf ds ,

where

F [f ] :=
1

2

(
P∗ +

2

z2

)
◦ P[f ] .

(Here, P is the operator arising as twice the variation of the
quantity H + ν3/z , and P∗ is its adjoint operator.)

• Compute the second variation through the flux formula.
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