

Some Geometric Variational Open Problems

Álvaro Pámpano Llarena

SIAM and AWM TTU Colloquium Texas Tech University

Lubbock, October 18, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of required energy.

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of required energy.

- Often attributed to P. L. Maupertuis (1744-1746).
- Already known to G. Leibniz (1705) and L. Euler (1744).

• My research interests focus on functionals with geometric meaning (i.e., the Geometric Calculus of Variations).

- My research interests focus on functionals with geometric meaning (i.e., the Geometric Calculus of Variations).
- The Geometric Calculus of Variations is a central topic in:

- · Differential Geometry
- \cdot Calculus of Variations
- · Geometric Analysis
- · Ordinary and Partial Differential Equations
- · Complex Analysis

- My research interests focus on functionals with geometric meaning (i.e., the Geometric Calculus of Variations).
- The Geometric Calculus of Variations is a central topic in:
 - · Differential Geometry
 - · Calculus of Variations
 - · Geometric Analysis
 - · Ordinary and Partial Differential Equations
 - · Complex Analysis
- The Geometric Calculus of Variations has applications to: Physics, Biology, Fluid Mechanics, Computer Vision, Image Reconstruction, and many more.

- My research interests focus on functionals with geometric meaning (i.e., the Geometric Calculus of Variations).
- The Geometric Calculus of Variations is a central topic in:
 - · Differential Geometry
 - · Calculus of Variations
 - · Geometric Analysis
 - · Ordinary and Partial Differential Equations
 - · Complex Analysis
- The Geometric Calculus of Variations has applications to: Physics, Biology, Fluid Mechanics, Computer Vision, Image Reconstruction, and many more.
- Although the spirit of my research is primarily theoretical, I continually seek out potential applications of it to other fields.

Variational Problems for Curves (Origin)

Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.

- (I) Already posed by Jordanus de Nemore (Jordan of the Forest) in the XIIIth Century.
- (II) Also appears in a fundamental problem by G. Galilei (1638).

(III) History can be found in a report by R. Levien (2008).

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma] := \int_{\gamma} \, ds$$
 .

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma]:=\int_{\gamma}\,ds\,.$$

• D. Bernoulli (1742): In a letter to L. Euler suggested to study elastic curves as minimizers of the bending energy,

$$\mathcal{E}[\gamma] := \int_{\gamma} \kappa^2 \, ds$$
 .

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma] := \int_{\gamma} \, ds$$
 .

• D. Bernoulli (1742): In a letter to L. Euler suggested to study elastic curves as minimizers of the bending energy,

$$\mathcal{E}[\gamma] := \int_{\gamma} \kappa^2 \, ds$$
 .

・ロト・西ト・ヨト・ヨト・ 日・ うらぐ

• L. Euler (1744): Described the shape of planar elasticae (partially solved by Jacob Bernoulli, 1692-1694).

J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).

- J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).
- R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.

- J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).
- R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.
- Multiple generalizations. For instance,

$$\mathcal{F}[\gamma] := \int_{\gamma} \mathsf{P}(\kappa) \, ds \, ,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for curves immersed in $M_r^3(\rho)$.

- J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).
- R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.
- Multiple generalizations. For instance,

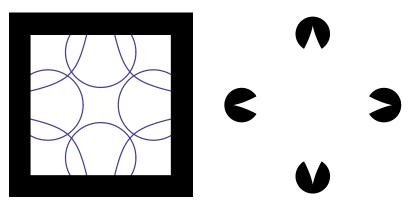
$$\mathcal{F}[\gamma] := \int_{\gamma} \mathsf{P}(\kappa) \, ds \, ,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for curves immersed in $M_r^3(\rho)$.

- Applications:
 - (I) Image Reconstruction
 - (II) Submanifold Theory

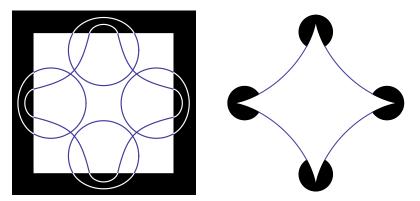
Image Reconstruction



(Arroyo, Garay & P., 2016)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Image Reconstruction



(Arroyo, Garay & P., 2016)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for a given fixed boundary. (Minimal surfaces).

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma,$$

for a given fixed boundary. (Minimal surfaces).

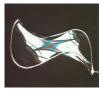
• J. B. Meusnier (1776): Characterized them as $H \equiv 0$ surfaces.

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

for a given fixed boundary. (Minimal surfaces).

- J. B. Meusnier (1776): Characterized them as $H \equiv 0$ surfaces.
- J. Plateau (1849): Demonstrated that Lagrange's problem could be physically realized by considering soap films.



• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

for a given fixed boundary. (Minimal surfaces).

- J. B. Meusnier (1776): Characterized them as $H \equiv 0$ surfaces.
- J. Plateau (1849): Demonstrated that Lagrange's problem could be physically realized by considering soap films.

J. Douglas and T. Radó (1930-1931): Found the general solution to Plateau's problem, independently.

 Constant mean curvature (CMC) surfaces are critical points of the area functional for volume preserving variations, i.e., H ≡ H_o ∈ ℝ.

- Constant mean curvature (CMC) surfaces are critical points of the area functional for volume preserving variations, i.e., H ≡ H_o ∈ ℝ.
- C.-E. Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.

- Constant mean curvature (CMC) surfaces are critical points of the area functional for volume preserving variations, i.e., H ≡ H_o ∈ ℝ.
- C.-E. Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- A. Alexandrov (1958): Compact and embedded in \mathbb{R}^3 must be a round sphere.

- Constant mean curvature (CMC) surfaces are critical points of the area functional for volume preserving variations, i.e., H ≡ H_o ∈ ℝ.
- C.-E. Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- A. Alexandrov (1958): Compact and embedded in ℝ³ must be a round sphere.

• H. C. Wente (1894): Found an immersed torus with CMC.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

• W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (~1920): The functional W is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional W and stated his famous conjecture.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional W and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional W preserving the conformal invariance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional W and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional $\mathcal W$ preserving the conformal invariance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• U. Pinkall (1985): Hopf tori in $\mathbb{S}^3(\rho)$.

Variational Problems for Surfaces (Willmore)

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma$$
 .

- W. Blaschke and G. Thomsen (~1920): The functional W is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional W and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional W preserving the conformal invariance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- U. Pinkall (1985): Hopf tori in $\mathbb{S}^3(\rho)$.
- F. C. Marques and A. Neves (2012): Proved the Willmore conjecture.

Modeling Biological Membranes

• P. B. Canham (1970): Proposed the minimization of the Willmore energy as a possible explanation for the biconcave shape of red blood cells.

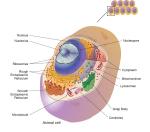
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

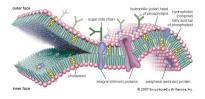
Modeling Biological Membranes

• W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

to model biological membranes.





◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• The Thread Problem. H. W. Alt (1973): Minimize the area functional where the length of the boundary is prescribed.

- The Thread Problem. H. W. Alt (1973): Minimize the area functional where the length of the boundary is prescribed.
- The Euler-Plateau Problem. Giomi & Mahadevan (2012): Minimize the area functional where the boundary components are elastic, i.e.,

$$\mathcal{EP}[\Sigma] := \sigma \int_{\Sigma} d\Sigma + \oint_{\partial \Sigma} (\alpha \kappa^2 + \beta) ds.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The Thread Problem. H. W. Alt (1973): Minimize the area functional where the length of the boundary is prescribed.
- The Euler-Plateau Problem. Giomi & Mahadevan (2012): Minimize the area functional where the boundary components are elastic, i.e.,

$$\mathcal{EP}[\Sigma] := \sigma \int_{\Sigma} d\Sigma + \oint_{\partial \Sigma} (\alpha \kappa^2 + \beta) ds.$$

• The Kirchhoff-Plateau Problem. Minimize the area functional where the boundary components are subjected to bending and twisting.

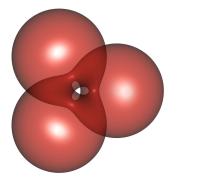
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

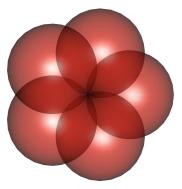
- The Thread Problem. H. W. Alt (1973): Minimize the area functional where the length of the boundary is prescribed.
- The Euler-Plateau Problem. Giomi & Mahadevan (2012): Minimize the area functional where the boundary components are elastic, i.e.,

$$\mathcal{EP}[\Sigma] := \sigma \int_{\Sigma} d\Sigma + \oint_{\partial \Sigma} (\alpha \kappa^2 + \beta) ds.$$

- The Kirchhoff-Plateau Problem. Minimize the area functional where the boundary components are subjected to bending and twisting.
- The Euler-Helfrich Problem. Minimize the Helfrich energy where the boundary components are elastic, i.e.,

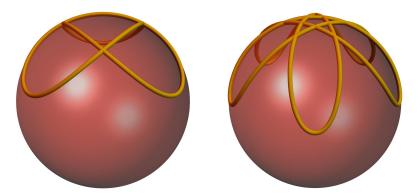
$$\mathcal{EH}[\Sigma] := \int_{\Sigma} \left(a[H + c_o]^2 + bK \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,.$$





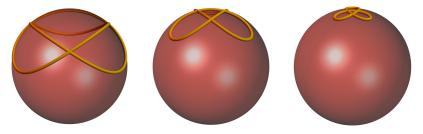
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(Arroyo, Garay & P., 2018)



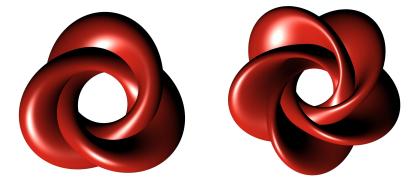
(Arroyo, Garay & P., 2019)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



(Oniciuc, Montaldo & P., 2022)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

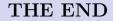


(P., 2020) (Gruber, P. & Toda, Submitted)

(Palmer & P., 2022)

(Palmer & P., Submitted)

(Palmer & P., Submitted)



Thank You!

https://www.math.ttu.edu/~apampano/

