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Philosophical Origins

• The development of Calculus was initially motivated in order
to compute extrema of functions (G. Leibniz, 1684).

• A natural generalization is to compute extrema of functionals
(i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of
required energy.

• Often attributed to P. L. Maupertuis (1744-1746).

• Already known to G. Leibniz (1705) and L. Euler (1744).
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Geometric Calculus of Variations

• My research interests focus on functionals with geometric
meaning (i.e., the Geometric Calculus of Variations).

• The Geometric Calculus of Variations is a central topic in:
· Differential Geometry
· Calculus of Variations
· Geometric Analysis
· Ordinary and Partial Differential Equations
· Complex Analysis

• The Geometric Calculus of Variations has applications to:
Physics, Biology, Fluid Mechanics, Computer Vision, Image
Reconstruction, and many more.

• Although the spirit of my research is primarily theoretical, I
continually seek out potential applications of it to other fields.
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Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of
determining the shape of elastic rods.

(i) Already posed by Jordanus de Nemore (Jordan of the Forest)
in the XIIIth Century.

(ii) Also appears in a fundamental problem by G. Galilei (1638).
(iii) History can be found in a report by R. Levien (2008).
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Variational Problems for Curves (Evolution)

• Jacob (James) Bernoulli (1691): Proposed the problem of
determining the shape of elastic rods.

• Johan Bernoulli (1697): Public challenge to Jacob Bernoulli;
determine the curve of minimum length (geodesics)

L[γ] :=
∫
γ
ds .

• D. Bernoulli (1742): In a letter to L. Euler suggested to study
elastic curves as minimizers of the bending energy,

E [γ] :=
∫
γ
κ2 ds .

• L. Euler (1744): Described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).
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Variational Problems for Curves (Recent)

• J. Langer and D. A. Singer (1984): Classified closed elastic
curves in M2(ρ) and in R3 (torus knots).

• R. Bryant and P. Griffiths (1986): Introduced a different
approach based on differential forms.

• Multiple generalizations. For instance,

F [γ] :=

∫
γ
P(κ) ds ,

for curves immersed in M3
r (ρ).

• Applications:

(i) Image Reconstruction
(ii) Submanifold Theory
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(Arroyo, Garay & P., 2016)
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Variational Problems for Surfaces (Area)

• J. Lagrange (1760): Raised the question of how to find the
surface with least area

A[Σ] :=

∫
Σ
dΣ ,

for a given fixed boundary. (Minimal surfaces).

• J. B. Meusnier (1776): Characterized them as H ≡ 0 surfaces.

• J. Plateau (1849): Demonstrated that Lagrange’s problem
could be physically realized by considering soap films.

• J. Douglas and T. Radó (1930-1931): Found the general
solution to Plateau’s problem, independently.
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Variational Problems for Surfaces (CMC)

• Constant mean curvature (CMC) surfaces are critical points of
the area functional for volume preserving variations, i.e.,
H ≡ Ho ∈ R.

• C.-E. Delaunay (1841): CMC surfaces of revolution are those
generated by rotating the roulettes of conic foci.

• A. Alexandrov (1958): Compact and embedded in R3 must be
a round sphere.

• H. C. Wente (1894): Found an immersed torus with CMC.
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Variational Problems for Surfaces (Willmore)

• S. Germain (1811): Proposed to study other energies such as

W[Σ] :=

∫
Σ
H2 dΣ .

• W. Blaschke and G. Thomsen (∼1920): The functional W is
conformally invariant.

• T. J. Willmore (1968): Reintroduced the functional W and
stated his famous conjecture.

• B.-Y. Chen (1974): Extended the functional W preserving the
conformal invariance.

• U. Pinkall (1985): Hopf tori in S3(ρ).
• F. C. Marques and A. Neves (2012): Proved the Willmore

conjecture.
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Modeling Biological Membranes

• P. B. Canham (1970): Proposed the minimization of the
Willmore energy as a possible explanation for the biconcave
shape of red blood cells.



Modeling Biological Membranes

• W. Helfrich (1973): Based on liquid cristallography, suggested
the extension

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

to model biological membranes.



Combination of Variational Problems

• The Thread Problem. H. W. Alt (1973): Minimize the area
functional where the length of the boundary is prescribed.

• The Euler-Plateau Problem. Giomi & Mahadevan (2012):
Minimize the area functional where the boundary components
are elastic, i.e.,

EP[Σ] := σ

∫
Σ
dΣ+

∮
∂Σ

(
ακ2 + β

)
ds .

• The Kirchhoff-Plateau Problem. Minimize the area functional
where the boundary components are subjected to bending and
twisting.

• The Euler-Helfrich Problem. Minimize the Helfrich energy
where the boundary components are elastic, i.e.,

EH[Σ] :=

∫
Σ

(
a[H + co ]

2 + bK
)
dΣ+

∮
∂Σ

(
ακ2 + β

)
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THE END

Thank You!

https://www.math.ttu.edu/∼apampano/


